植物细胞壁在遭遇逆境后会出现增厚现象,以抵御不良环境。有研究认为这是由于细胞壁内的木质素沉积形成的。目前认为木质素的合成途径不只一条,但苯丙氨酸解氨酶(PAL)和肉桂酸4-羟基化酶(C4H)等酶在合成中起到了十分重要的作用。因此,本试验以野生蒙古扁桃为试验材料,研究干旱胁迫对其在不同生态环境条件下体内PAL和C4H酶活性影响的变化。结果表明:在遭受干旱胁迫时,蒙古扁桃叶内PAL和C4H活性随干旱胁迫程度的增加而逐渐增强,且干旱地区的蒙古扁桃叶内PAL和C4H活性要强于相对不干旱地区。PAL和C4H活性与植物的抗旱性呈正相关关系。
金丽萍
,
崔世茂
,
杜金伟
,
金彩霞
,
吴玉峰
,
其日格
. 干旱胁迫对不同生态条件下蒙古扁桃叶片PAL和C4H活性的影响[J]. 华北农学报, 2009
, 24(5)
: 118
-122
.
DOI: 10.7668/hbnxb.2009.05.025
Plant cell wall in the face of adversity will appear thicker,to withstand the adverse environment.It was a preliminary identification of the cell wall due to the formation of the lignin deposition.At present,the synthesis of lignin that is not only a means,but Phenylalanine Ammonia-Lyase (PAL) and Cinnamic acid 4-Hydroxylase (C4H),such as enzyme in the synthesis played a very important role.As a result,this experiment with wild Prunus mongolia Maxim used to study drought stress in different ecological conditions,the impact of the body of its PAL and C4H activity.The results showed that:when subjected to drought stress,Prunus mongolia Maxim almond leaves with the activity of PAL and C4H drought stress increased gradually increased,and in arid regions in Prunus mongolia Maxim almond leaf PAL and C4H activity than the relatively arid region.PAL and C4H activity and plant drought resistance was positive correlation between.
[1] 陆玲娣.中国植物志[M].北京:科学出版社,1986,1:8-17.
[2] 王继和.甘肃木本植物名录[M].兰州:甘肃文化出版社,1994,1:110.
[3] 李爱平,王晓江.优良生态灌木蒙古扁桃生物学特性与生态经济价值研究[J].内蒙古林业科技,2004(1):10.
[4] 戚康标,常弘,缪汝槐.中国珍稀濒危动物植物辞典[M].广州:广东人民出版社,2001:674.
[5] 付伟,廖祥儒,王俊峰,等.植物体内的木质素[J].生物学通报,2004,39(4):32-38.
[6] 杨顺楷,杨亚力,杨维力.苯丙氨酸解氨酶(PAL,EC4.3.1.5)反应机理研究新进展[J].生物加工过程,2004,2(4):2-3.
[7] Aallaeys T,Topp E,Nuyzer G,et al.Evaluation of denaturing gradient gel electrophoresis in the detction of 16S rDNA sequence variation in rhizobia and methanottophs[J].FEMS Microbiol Ecol,1997,24:279-285.
[8] 马艳玲,吴凤芝.枯萎病菌对不同抗性黄瓜品种苯丙氨酸解氨酶的影响[J].沈阳农业大学学报,2006,37(3):335-338.
[9] 李莉,赵越,马君兰.苯丙氨酸代谢途径关键酶:PAL、C4H、4CL研究新进展[J].生物信息学报,2006(5):187-189.
[10] 李靖,利容千.黄瓜感染霜霉病菌叶片中一些酶活性的变化[J].植物病理学报,1991,21(4):277-282.
[11] Liu C J,Heinstein P,Chen X Y.Expression pattern of genes encodingfarnesyl diphosphate synthase and sesquiterpene cyclase in cotton suspension cultured cells treated with fungal elicitors[J].Molec Plant-Microbe Interact,1999,12:1095-1104.
[12] 于明革,杨洪强,翟衡.植物木质素及其生理学功能[J].山东农业大学学报,2003,34(1):124-128.
[13] Legrand M,Friting B,Hirth I.Enzymes of the phenylpropanoid pathway and the necrotic reaction of hypersensitive tobacco to tobacco mosaic virus[J].Phytochemistry,1976(15):1353-1359.
[14] 冯沽,陈其焕.棉株体内几种生化物质与抗枯萎之间的关系的初步研究[J].植物病理学报,1991,21(4):291-297.
[15] Green N E,Hadwiger L A,Graham S.Phenylalanine ammonia-lyase.tyrosiune ammonia-lyase and lignin in wheat inoculated with Brysiphe graminis f.sp.tritici[J].Phytopathology,1975(65):1071-1074.
[16] 陈捷,蔺瑞名,高增贵,等.玉米弯孢叶斑病菌毒素对寄主防御酶系活性的影响及诱导抗性效应[J].植物病理学报,2002,32(1):43-48.
[17] 刘亚光,李海英,杨庆凯.大豆品种的抗病性与叶片内苯丙氨酸解氨酶活性关系的研究[J].大豆科学,2002,21(3):195-198.
[18] 郭红莲,程根武.玉米灰斑病抗性反应中酚类物质代谢作用的研究[J].植物病理学报,2003,33(4):342-346.
[19] 庄炳昌.抗性不同大豆感染灰斑病后若干生化反应[J].作物学报,1994,20(3):327-333.
[20] Loschke D C,Hadwiger L A.Effects of light and offusarium solanion synthesis and activity of phenylalanine ammonia-lyase in peas[J].Plant Physiol,1981,68:680-687.