以高羊茅为研究对象,采用不同PEG模拟干旱处理(CK、10%PEG、0.1 mmol/L SNP+10%PEG、1.0 mmol/LSNP+10%PEG等)方法,就外源NO供体SNP对高羊茅种子的萌发、幼苗生长及抗逆性的影响进行了探讨。结果表明,在PEG模拟干旱胁迫下,高羊茅种子的发芽率、发芽势、发芽指数、活力指数和幼苗叶绿素含量较对照呈下降趋势,而幼苗丙二醛(MDA)、脯氨酸、可溶性糖、超氧阴离子(O2 .- )和过氧化氢(H2O2)含量呈上升趋势,超氧化物歧化酶(SOD)和过氧化物酶(POD)活性则呈现先升高后降低的趋势。上述结果说明PEG模拟的干旱胁迫,使得高羊茅在种子萌发及幼苗生长过程中遭受逆境胁迫,且生长发育受到显著抑制。经外源NO供体SNP处理后,模拟干旱胁迫下的高羊茅种子发芽率、发芽势、发芽指数、活力指数和幼苗叶片叶绿素、脯氨酸、可溶性糖含量及SOD、POD、CAT活性均显著升高,而幼苗叶片MDA、O2.- 和H2O2含量显著下降,说明外源NO供体SNP处理后使PEG模拟干旱胁迫下高羊茅的生长发育得到了促进,减轻了干旱胁迫对高羊茅造成的伤害,提高了植株的整体抗旱性。通过对比几种不同SNP浓度,结果说明0.1 mmol/L SNP对PEG模拟干旱胁迫下高羊茅种子萌发及幼苗的保护效应较为显著。
The seed germination,seedling growth and stress resistance of Festuca arundinacea were discussed in this paper as the different treatment(CK,10% PEG,0.1mmol/L SNP + 10% PEG,1.0 mmol /L SNP + 10% PEG) were carried out in the experiments.The results showed that Festuca arundinacea seed germination rate,ger- minating energy,germination index,vigor index and seedling chlorophyll content and catalase(CAT) activities were downward trend,but the content of malondialdehyde(MDA) ,proline,soluble sugar,superoxide anion(O2 ) and hy-drogen peroxide(H2O2 ) of seedling leaves increased,the activities of superoxide dismutase(SOD) and peroxidase(POD) increased firstly and then decreased under the simulated drought stress.The results also showed that the growth and development of Festuca arundinacea were inhibited significantly under the simulated drought stress and the seedling suffered from drought stress.As being treated with the exogenous NO donor SNP,the Festuca arundina- cea seed germination rate,germinating energy,germination index,vigor index,and the leaves content of chlorophyll, proline and soluble sugar,the activities of SOD POD and CAT increased,the content of MDA,O2 and H2O2 declined.The results also showed that the growth and development of Festuca arundinacea were promoted,injury miti-gated when the seedlings enduring the PEG simulated drought stress being treated with the exogenous NO donor SNP.So it can be concluded that when the seedlings being treated with exogenous NO donor SNP,the protective effect is significant when the seedlings suffered from the 10% PEG solution simulated drought stress.
[1] 杨子君,赵树兰,多立安. 富营养化水体灌溉对高羊茅 生理生态特征的影响[J] .植物研究,2009,29(4): 439-444.
[2] 刘慧霞,王康英,郭兴华. 不同土壤水分条件下硅对坪 用高羊茅种子出苗及生物学特性的影响[J]. 草业学 报,2012,21(1): 199-205.
[3] 代 勋,李忠光,龚 明. 赤霉素 钙和甜菜碱对小桐 子种子萌发及幼苗抗低温和干旱的影响[J]. 植物科 学学报,2012,30(2): 204-212.
[4] 马富举,李丹丹,蔡 剑,等. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J]. 应用生态学报,2012,23(3): 724-730.
[5] 马俊会,杨华瑞,许喜堂,等. PEG-6000 胁迫对小麦三 叶期蛋白表达的影响 [J]. 麦类作物学报,2010,30 (5): 858-862.
[6] 朱教君,康宏樟,李智辉. 不同水分胁迫方式对沙地樟 子松幼苗光合特性的影响[J]. 北京林业大学学报,2006,28(2): 57-60.
[7] 冯慧芳,薛 立,任向荣,等. 4 种阔叶幼苗对 PEG 模 拟干旱的生理响应[J]. 生态学报,2011,31(2): 371-382.
[8] 左利萍,李 毅,焦 健. 渗透胁迫下河北杨叶片的生 理响应及相关分析[J]. 林业科学,2008,44(8): 56-61.
[9] 刘建新,王金成,王瑞娟,等. 硝普钠对镧胁迫下黑麦 草幼苗光合特性及矿质元素吸收的影响[J]. 环境科 学学报,2012,32(11): 2898-2904.
[10] Besson-Bard A,Pugin A,Wendehenne D. New insights into nitric oxide signaling in plants[J]. Annual Review of Plant Biology,2008,59: 21-39.
[11] Crawford N M,Guo F Q. New insights into nitric oxide metabolism and regulatory functions[J]. Trends in Plant Science,2005,10: 195-200.
[12] Garcia-Mata,Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant response against drought stress [J]. Plant Physiol,2001,126: 1196-1204.
[13] Beligni M V,Lamattina L. Is nitric oxide toxic or protec-tive[J]. Trends Plant Science,1999,4(8): 229-300.
[14] Beligni M V,Lamattina L. Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants [J]. Nitric Oxide,1999,3 (3): 199-208.
[15] Zhang H,Shen W B,Xu L L. Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress[J]. Acta Bo-tanica Sinica,2003,45: 901-905.
[16] 邵瑞鑫,上官周平. 外源一氧化氮供体 SNP 对受旱小 麦光合色素含量和 PS II 光能利用能力的影响[J]. 作物学报,2008,34(5): 818-822.
[17] 李海燕,郭永成,李刘洋,等. 外源一氧化氮对镉胁迫 下玉米幼苗根生长及氧化伤害的影响[J]. 西北植物 学报,2012,32(8): 1599-1605.
[18] 蒋明敏,徐晟,夏冰,等. 干旱胁迫下外源氯化 钙 水杨酸和一氧化氮对石蒜抗旱性的影响[J]. 植 物生理学报,2012,48(9): 909-916.
[19] 国家技术监督局. GB/T 3543. 1-3543. 7-1995 农作物 种子检验规程[S]. 北京: 中国标准出版社,1995.
[20] 回振龙,马兰,李朝周. CoCl2 对酸胁迫下多花黑麦 草种子萌发及幼苗抗性的影响[J]. 草业科学,2012,29(5): 753-758.
[21] 邹琦.植物生理学实验指导[M] . 北京: 中国农业出 版社,2000.
[22] Giannopolitis C N,Ries S K. Superoxide dismutases. I. Occurrence in higher plants [J]. Plant Physiology,1977,59: 309-314.
[23] Fu J M,Huang B. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress [J]. Environmental and Ex-perimental Botany,2001,45: 105-114.
[24] Chance B,Maehly A C. Assay of catalase and peroxida-ses[J]. Methods in Enzymology,1955,2: 764-775.
[25] Ke D S,Wang A G,Sun G C,et al. The effect of active oxygen on the activity of ACC synthase induced by exog-enous IAA [J]. Acta Botanica Sinica,2002,44: 551-556.
[26] Prochazkova D,Sairam R K,Srivastava G C,et al. Oxida-tive stress and antioxidant activity as the basis of senes-cence in maize leaves [J]. Plant Science,2001,161: 765-771.
[27] 曹 慧,王孝威,邹岩梅,等. 外源 NO 对干旱胁迫下 平邑甜茶幼苗叶绿素荧光参数和光合速率的影响 [J]. 园艺学报,2011,38(4): 613-620.
[28] He Y K,Tang R H,Hao Y,et al. Nitric oxide represses the Arabidopsis floral transition [J]. Science,2004,305: 1968-1971.
[29] Song L L,Ding W,Zhao M G,et al. Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed[J]. Photosynthesis Research,2006,171: 449-458.
[30] 李明,王根轩. 干旱胁迫对干草幼苗保护酶活性及 脂质过氧化作用的影响[J]. 生态学报,2002,22(4):503-507.
[31] Li Chao-zhou,Wang Gen-xuan. Interactions between re-active oxygen species,ethylene and polyamines in leaves of Glycyrrhiza inflata seedlings under root osmotic stress [J]. Plant Growth Regulation,2004,42: 55-60.
[32] Foyer C H,Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant Cell Environ,2009,28: 1056-1071.
[33] Gill S S,Tuteja N. Reactive oxygen species and antioxi-dant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol Biochem,2010,48: 909-930.
[34] Liu X,Huang B. Heat stress injury in relation to mem-brane lipid peroxidation in creeping bentgrass[J]. Crop Science,2000,40: 503-513.
[35] 李朝周. CoCl2 对 Na2 CO3 胁迫下苜蓿幼苗叶片细胞 膜的保护作用[J]. 草业学报,2007,16(3): 49-54.
[36] 焦健,李朝周,黄高宝. 钴对干旱胁迫下大豆幼苗 叶片的保护作用及其机理[J]. 应用生态学报,2006,17(5): 796-800.
[37] 焦健,李朝周,黄高宝. 乙烯产生抑制剂对高温胁 迫下蚕豆幼苗叶片的保护作用[J]. 植物生态学报,2006,30(3): 465-471.
[38] 赵丽英,邓西平,山仑. 活性氧清除系统对干旱胁迫 的响应机制[J] . 西北植物学报,2005,25 (2): 413-418.
[39] 王广恩,金卫平,李俊兰,等. 干旱胁迫下外源钙对棉 花幼苗抗旱相关生理指标的影响[J]. 华北农学报,2010,25(增刊): 115-118.
[40] 郭修武,王丛丛,周兴本,等. 水分胁迫下肥料配比对 葡萄生长发育的影响[J]. 华北农学报,2012,27(2): 140-145.