论文

郑丰5号α-醇溶蛋白基因的克隆与序列分析

  • 李玉阁 ,
  • 邢冉冉 ,
  • 崔一飞 ,
  • 李锁平
展开
  • 河南大学生命科学学院, 河南开封 475004
李玉阁(1977- ),女,河南南阳人,讲师,在读博士,主要从事麦类作物的遗传学研究

收稿日期: 2013-05-06

  网络出版日期: 2014-10-14

基金资助

“十二五”农村领域国家科技计划项目(2011BAD07B00;2012AA101105);自然科学基金面上项目(31271713)

Cloning and Sequencing of- gliadin Genes from Common Wheat Cultivar Zhengfeng 5

  • LI Yu-ge ,
  • XING Ran-ran ,
  • CUI Yi-fei ,
  • LI Suo-ping
Expand
  • College of Life Science, Henan University, Kaifeng 475004, China

Received date: 2013-05-06

  Online published: 2014-10-14

摘要

α-醇溶蛋白是小麦籽粒贮藏蛋白的重要组分,其组成与含量对小麦加工品质具有重要影响。利用PCR从郑丰5号基因组中克隆α-醇溶蛋白基因,并对其序列进行分析。经克隆共获得32个α-醇溶蛋白新基因(ZF5A-1~ZF5A-32,GenBank注册序列号为JX828280~JX828311),其中15个为假基因,17个(ZF5A-1~ZF5A-17)具有完整开放阅读框。17个α-醇溶蛋白新基因中,除ZF5A-1、ZF5A-3、ZF5A-6、ZF5A-9、ZF5A-10、ZF5A-11、ZF5A-15编码的蛋白在特征Ⅱ区含有1个额外的半胱氨酸(C)外,其他10个基因编码的蛋白均具有α-醇溶蛋白的典型结构。根据推断氨基酸序列中4种主要T细胞优势多肽的分布及多聚谷氨酰胺区的长度,推测ZF5A-7和ZF5A-12可能定位于6A染色体,ZF5A-4、ZF5A-13、ZF5A-14和ZF5A-17可能定位于6B染色体,而ZF5A-1~ZF5A-3、ZF5A-5、ZF5A-6、ZF5A-8~ZF5A-11、ZF5A-15和ZF5A-16可能定位于6D染色体。17个新克隆α-醇溶蛋白基因及4个已知α-醇溶蛋白基因编码的蛋白的二级结构预测结果表明:α-螺旋、β-折叠的位置和核心序列是相对保守的,但不同蛋白α-螺旋和β-折叠的数量以及参与形成同一保守区域α-螺旋和β-折叠的氨基酸残基数却并不相同。克隆的17个α-醇溶蛋白基因中,除ZF5A-17编码的蛋白缺少α-螺旋(H2)、ZF5A-2、ZF5A-8编码的蛋白在特征区Ⅰ均存在1个额外的α-螺旋(HE1)、GQ891685和ZF5A-15编码的蛋白在多聚谷氨酰胺Ⅱ区存在1个额外的α-螺旋(HE2)外,5个保守的α-螺旋(H1~H5)恒定出现在其他基因的2个谷氨酰胺重复区和特征区中;此外,在C-末端特征区大部分基因(61.11%)还形成1个β-折叠结构(E)。郑丰5号中具有较多额外半胱氨酸、α-螺旋和β-折叠的α-醇溶蛋白基因,可能与其良好的加工品质密切相关。

本文引用格式

李玉阁 , 邢冉冉 , 崔一飞 , 李锁平 . 郑丰5号α-醇溶蛋白基因的克隆与序列分析[J]. 华北农学报, 2013 , 28(4) : 46 -52 . DOI: 10.3969/j.issn.1000-7091.2013.04.009

Abstract

The- gliadins are the important components of seed strorage proteins,and their composition and content play a major role in determining the processing quality of wheat.Using PCR technology,total 32 novel genes (Designated as ZF5A- 1- ZF5A-32; GenBank No: JX828280-JX828311 ) were cloned from the wheat cultivar Zhengfeng 5,including 17 full- ORF- gliadin genes(Designated as ZF5A-1-ZF5A-17) and 15 pseudogenes.The sequence analysis of deduced amino acids showed that 10 had the typical structural characteristics of- gliadin genes reported previously,and 7(ZF5A-1,ZF5A-3,ZF5A-6,ZF5A-9,ZF5A-10,ZF5A-11,ZF5A-15) possessed an additional cysteine residue in the unique domain .Based on the occurrence of the four major T cell immunogenic peptides and glutamine residues in the glutamine repeats,ZF5A- 7and ZF5A-12 could be assigned to chromosome 6A,ZF5A-4,ZF5A-13,ZF5A-14 and ZF5A-17 to chromosome 6B,and other 11 genes to chromosome 6D.The sec- ondary structure predication of 17 cloned genes and other four genes in public database demonstrated that the num- bers and distributions of-helix and-strand were variable in different mature-gliadins.Generally,5- helixes (H1-H5) usually presented in the two glutamine repeats and two unique domains for majority of- gliadins,but theputative proteins of ZF5A-17 lost the- helix(H2 ),ZF5A-2 and ZF5A-8 had an additional-helix in the uni domain (HE1 ),and GQ891685 and ZF5A- 15 had an additional- helix in the second glutamine repeat(HE2 ) addition,most of the genes(61.11%) had a-strand(E) in the C-terminal unique domain .High variations numbers of cysteine residue,-helixes and-strands in the-gliadins of Zhengfeng 5 might be strongly related its good rheological properties of dough.

参考文献

[1] Ma W,Apples R,Bekes F,et al. Genetic characterization of dough rheological properties in a wheat doubled haploid population: additive genetic effects and epistatic interac-tions[J]. Theoretical and Applied Genetics,2005,111: 410-422.
[2] Wieser H. Chemistry of gluten proteins[J]. Food Microbi-ology,2007,24: 115-119.
[3] Chen F G,Xu C H,Chen M Z,et al. A new alpha-gliadin gene family for wheat breeding: somatic introgression line II-12 derived from Triticum aestivum and Agropyron elon-gatum[J]. Molecular Breeding,2008,22: 675-685.
[4] Gu Y Q,Crossman C,Kong X,et al. Genomic organiza-tion of the complex alpha-gliadin gene loci in wheat[J]. Theoretical and Applied Genetics,2004,109: 648-657.
[5] Anderson O D,Greene F C. The-gliadin gene family. II. DNA and protein sequence variation,subfamily structure,and origins of pseudogenes[J]. Theoretical and Applied Genetics,1997,95: 59-65
[6] D'ovidion R,Masci S. The low-molecular-weight glutenin subunits of wheat gluten[J]. Journal of Cereal Science,2004,39: 321-339
[7] Khatkar B S,Fido R J,TATHAM S,et al. Functional properties of wheat gliadins. Effects on dynamic rheo-logical properties of wheat gluten[J]. Journal of Cereal Science,2002,35: 307-313.
[8] 李 敏,高 翔,陈其皎,等. 普通小麦中-醇溶蛋白 基因(GQ891685) 的克隆 表达及品质效应鉴定[J]. 中 国农业科学,2011,43: 4765-4774.
[9] Arentz-Hansen H,Kren R,Molberg,et al. The intesti-nal T cell response to-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tis-sue transglutaminase[J]. The Journal of Experimental Medicine,2000,191: 603-612.
[10] Vader W,Steoeniak D,Kooy Y,et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell re-sponses[J]. Proceedings of the National Academy of Sciences of USA,2003,100: 12390-12395.
[11] Van Herpen T W J M,Goryunova S V,Van der schoot J,et al. Alpha-gliadin genes from the A,B,and D genomesof wheat contain different sets of celiac disease epitopes [J]. BMC Genomics,2006,7: 1 13.
[12] Vaccino P,Becker H A,Brandolini A,et al. A catalogue of Triticum monococcum genes encoding toxic and immu-nogenic peptides for celiac disease patients[J]. Molecu-lar Genetics and Genomics,2009,281: 289-300.
[13] Ciccippo R,Sabatino A D,Corazza G R. The immune recognition of gluten in coeliac disease[J]. Clinical and Experimental Immunology,2005,140: 408-416.
[14] Koining F. Celiac disease: quantity matters[J]. Seminars in Immunopathology,2012,34: 541-549.
[15] Stein N,Herren G,Keller B. A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum[J]. Plant Breeding,2001,120(4): 354-356.
[16] 李玉阁,邢冉冉,李锁平. 栽培一粒小麦-醇溶蛋白 新基因的克隆与序列分析[J]. 麦类作物学报,2012,32(3): 387-392.
[17] Okita T W,Cheesbrough V,Reeves C D. Evolution and heterogeneity of the alpha-/beta-type and gamma-type gliadin DNA sequences[J]. The Journal of Biological Chemistry,1985,260: 8203-8213.
[18] Lafiandra D,Kasarda D D,Morris R. Chromosomal as-signment of genes coding for the wheat gliadin protein components of the cultivars Cheyenne' and Chinese Spring' by two-dimensional (two-pH ) electrophoresis [J]. Theoretical and Applied Genetics,1984,68 (6): 531-539.
[19] Palopoli L G,Simona E,Rombo A,et al. Improving pro-tein secondary structure predictions by prediction fusion [J] . Journal of Computational Biology,2009,3(1): 217-232.
[20] Koswatta T J,Samaraweera P,Sumansingle V A. A sim-ple comparison between specific protein secondary struc-ture prediction tools[J]. Tropical Agricultural Research,2011,23(1): 91-98.
[21] Link K,Simossis V A,Taylorw R,et al. A simple and fast secondary structure prediction method using hidden neural networks[J] . Bioinformatics,2005,21(2): 152-159.
[22] Xie Z Z,Wang C Y,Wang K,et al. Molecular character-ization of the celiac disease epitope domains in-gliadin genes in Aegilops tauschii and hexaploid wheats(Triticum aestivum L. ) [J]. Theoretical and Applied Genetics,2010,121: 1239-1251.
文章导航

/