为分析系列化学诱变对玉米自交系AS-9诱变后代的影响,以玉米自交系AS-9及其化学诱变自交第1代M1和第4代M4为材料,进行发芽试验,同时利用分布在10条染色体上的68对SSR引物进行遗传变异分析。结果表明:诱变M1和M4种子的发芽率、芽长和根数普遍高于对照;能在2代玉米试材中扩增出多态性条带的引物有54对,占引物总数的79.41%;M1诱变系与基础材料对照的遗传相似系数平均值为0.364 7,遗传相似系数中心化后的数据在-0.12处,可将材料分为2个类群,基础材料(ⅠCK)为一类,诱变系为一类;M4诱变系与基础材料对照的遗传相似系数平均值为0.434 6,遗传相似系数中心化后的数据在-0.09处,可将材料分为基础自交系(ⅣCK)和诱变系2个类群;M1和M4主成分分析与聚类结果基本一致。说明基础材料AS-9与诱变系材料间存在真实的遗传差异,系列化学诱变已使玉米自交系AS-9产生了广泛的遗传变异。
李红英
,
卢存福
,
兰小中
,
杨凤娇
,
金德善
,
乔佩
,
卢骁
,
玉猛
,
陈玉珍
. 玉米自交系AS-9化学诱变后代SSR遗传变异分析[J]. 华北农学报, 2013
, 28(3)
: 92
-101
.
DOI: 10.3969/j.issn.1000-7091.2013.03.018
Analysis of genetic diversity in maize germplasm is of great importance to conserving and utilizing these valuable chemical mutagenic resources. In this research, the genetic differences between mutants ( M1&M4) and the corresponding orginal material( AS-9) was studied based on SSR markers with selected 54 polymorphism SSR primers. The results showed that the seed germination rate,bud length and root number of M1 &M4 were higher than AS-9 in most cases. In two generations maize materials,54 polymorphism primers can be amplified,accounting for 79. 41% of the total. Relatived toⅠCK , the average value of genetic similarity coefficient of M1 was 0.364 7.With the certered genetic similarity coefficient of - 0.12 by UPGMA, the maize inbred line materials were divided into two groups: the orginal material(ⅠCK) and mutants. Relatived to ⅣCK, the average value of genetic similarity coefficient of M4 was 0.434 6. With the cemtered genetic similarity coefficient of - 0.09, the maize materials were classified into two groups: ⅣCK and mutants. Principal component analysis and clustering results were similar. The results showed there were distinct variation between orginal material AS-9 and induced material, indicating chemical mutagen had produced genetic variations in maize inbred lines on large scale.
[1] 徐明,路铁刚. 植物诱变技术的研究进展[J]. 生物技术进展, 2011,1( 2) : 90 - 97.
[2] 刘录祥,郭会君,赵林姝,等. 我国作物育种20 年的基本成就与展望[J]. 核农学报, 2007, 21( 6) : 589 - 592.
[3] 李奇,石海春,柯永培,等. 玉米自交系48 - 2 和R08辐照后代M3 株系遗传变异的SSR 分析[J]. 核农学报, 2011, 25( 6) : 1100 - 1106.
[4] 覃鸿妮,蔡一林,杨春蓉,等. 玉米诱变系的SSR 遗传变异分析[J]. 核农学报, 2008, 22( 6) : 750 - 755.
[5] 秦家友,石海春,柯永培,等. 玉米辐射诱变系表型及SSR 遗传差异研究[J]. 玉米科学,2012,20( 2) : 41 -47.
[6] 魏良明,姜鸿勋,胡学安,等. 植物诱变新技术及其在玉米育种上的应用[J]. 玉米科学,2000,8 ( 1) : 19 -20.
[7] 赵霞,周波,李玉花,等. T-DNA 插入突变在植物功能基因组学中的应用[J]. 生物技术通讯,2009,20( 6) : 317 - 321.
[8] Walden R,Hayashi H,Schell J. T-DNA as a gene tag[J]. Plant, 1991,1( 3) : 281 - 288.
[9] Hiei Y,Ohta S,Komari T, et al . Efficient transformation of rice ( Oryzasativa L. ) mediated by agrobacterium and sequence analysis of the boundaries of the T-DNA[J].Plant Journal, 1994,6( 2) : 271 - 282.
[10] 郭龙彪,储成才,钱前. 水稻突变体与功能基因组学[J]. 植物学通报, 2006, 23( 1) : 1 - 13.
[11] Li Y H,Qian Q,Zhou Y, et al. BRITTLE CULM1,which encodes a COBRA-like protein,affects the mechanical properties of rice plants[J]. Plant Cell, 2003, 15: 2020 -2031.
[12] Haga K,Takano M,Neumann R, et al. The rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin[J]. Plant Cell,2005, 17: 103 - 115.
[13] Inukai Y,Sakamoto T,Ueguchi-Tanaka M, et al. Crown rootless 1,which is essential for crown root formation in 3 期李红英等: 玉米自交系AS-9 化学诱变后代SSR 遗传变异分析101 rice, is a target of an auxin response factor in auxin signaling[J]. Plant Cell, 2005, 17: 1387 - 1396.
[14] 叶亚峰. 水稻脆秆突变体遗传与基因定位研究[D].芜湖: 安徽大学, 2012.
[15] 乔晓,石海春,柯永培,等. 玉米航天诱变SP3 株系的遗传变异分析[J]. 玉米科学,2012,20 ( 3) : 15 -21.
[16] 蔡一林,何晓阳. 玉米单交种和地方品种的辐射效应及亲子相关性研究[J]. 核农学报,1995,9( 2) : 81 -85.
[17] 杨红善,常根柱,包文生. 紫花苜蓿的航天诱变[J].草业科学, 2013, 30( 2) : 253 - 258.
[18] 李清国,付晶,钮力亚,等. 化学诱变及其突变体筛选在育种中的应用[J]. 河北农业科学, 2010, 14( 5) :68 - 72.
[19] 崔霞,梁燕,李翠,等. 化学诱变及其在蔬菜育种中的应用[J]. 西北农林科技大学学报,2013,41( 3) : 1 - 8.
[20] 朱保葛,路子显,耿玉轩,等. 烷化剂EMS 诱发花生性状变异的效果及高产突变系的选育[J]. 中国农业科学, 1997, 30( 6) : 87 - 89.
[21] 张兵. EMS 诱导黄瓜突变体的初步研究[D]. 泰安: 山东农业大学, 2012.
[22] 尹冬冬,安调过,李立会,等. 分子标记技术在黑麦研究中的应用[J]. 中国生态农业学报,2011,19 ( 2) :477 - 483.
[23] Smith J S C,Chin E C L,Shu H , et al. An evaluation of the utility of SSR loci as molecular markers in maize( Zea mays L.) comparison with data from RFLPs and pedigree[J]. Theor Appl Genet, 1997, 95( 1 - 2) : 163 -173.
[24] Ajmone-Marsan P,Castiglioni P,Fusari F, et al. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers[J]. Theor Appl Genet, 1998, 96( 2) : 219 - 227.
[25] Reif J C,Melchinger A E,Xia X C, et al. Genetic distance based on simple sequence repeats and heterosis in tropical maize population[J]. Crop Sci,2003,43 ( 4) :1275 - 1282.
[26] Wang Feng-ge,Tian Hong-li,Zhao Jiu-ran, et al. Development and characterization of a core set of SSR markers for fingerprinting analysis of Chinese maize varieties[J]. Maydica, 2011, 56( 1) : 1686 - 1693.
[27] Yu Y,Wang R,Shi Y, et al. Genetic diversity and structure of the core collection for maize inbred lines in China[J]. Maydica, 2007, 52: 181 - 194.
[28] Wang Feng-ge,Zhao Jiu-ran,Dai Jing-rui, et al. Selection and development of representative simple sequence repeat primers and multiplex SSR sets for high throughput automated genotyping in maize [J]. Chinese Science Bulletin, 2007, 52(2) : 215 - 223.
[29] 刘志斋,吴迅,刘海利,等. 基于40 个核心SSR 标记揭示的820 份中国玉米重要自交系的遗传多样性与群体结构[J]. 中国农业科学, 2012, 45( 11) : 2107 - 2138.
[30] 李晓辉,李新海,李文华,等. SSR 标记技术在玉米杂交种种子纯度测定中的应用[J]. 作物学报, 2003, 29( 1) : 63 - 68.
[31] Saghai-Maroof M A,Soliman K M, Jorgensen R A,et al.Ribosomal DNA spacer-length polymorphisms in barley:mendelian inheritance,chromosomal location,and population dynamics[J]. PNAS,1984,81 ( 24 ) : 8014 - 8019.
[32] 张微. 利用RIL 群体定位玉米苗期根系QTL 的研究[D]. 北京: 中国农业大学, 2005.
[33] Kostovaa A,Todorovskaa E,Christova N, et al. Assessment of Genetic Variability Induced by Chemical Mutagenesis in Elite Maize Germplasm via SSR Markers[J].Crop Improvement, 2006, 16( 1 - 2) : 37 - 48.