先期抽薹已成为胡萝卜冬春大棚栽培和早春露地栽培的瓶颈,了解胡萝卜先期抽薹调控机理,有助于开展耐抽薹品种的选育。以春季栽培先期抽薹敏感的松滋野生胡萝卜(P1)为亲本,分别与6个栽培品种正反杂交获得F1和F2进行遗传分析,结果表明,胡萝卜先期抽薹以加性效应(VA)为主,还有显性效应(VD)及环境因子(Ve)。在露地和温室低温天数相似的生长条件下,P1和7262B(P6)在温室中的先期抽薹率显著降低,Amsterdam forcing(P4)在温室中均未出现抽薹,这可能是弱光条件所致。通过对P1、P4及其F1、F2植株遮光处理,发现短日照可显著推迟P1、F1和F2植株起始抽薹时间,降低先期抽薹率,而且处理时间越长,效果越显著,但P4处理前后均未出现抽薹。P1种根经不同时间7℃低温处理后,在长、短日照条件下表现出同样规律。而且P1植株经4~13℃处理14 d均能发生先期抽薹,其中7℃处理效果最佳。
关键词:
胡萝卜; 先期抽薹; 遗传; 低温; 光照
Premature bolting has become the bottleneck in winter and early spring carrot production. It is useful to understand the mechanism of premature bolting regulation for breeding anti-bolting carrot varieties. A genetic model including additive and dominance effects was used to evaluate the quantitative genetics of premature bolting with the F1 s and F2 s from the reciprocal crosses between Songzi( P1,a wild carrot species) and six cultivars. Phenotypic variance( VP ) and genetic variance components were significant for the ratio of premature bolting of hybrids, and additive variance( VA ) was as the main effect. The ratios of premature bolting of P1 and 7262B( P6) were significantly less in the greenhouse than those in the field and no bolting plants occurred to Amsterdam forcing( P4) in the greenhouse,which may be influenced by low light. Initiation of premature bolting of P1,F1 and F2 were delayed by short day and the ratios decreased significantly. The plants were treated more short days and more affection showed.But there were no affection to parent P4. The same results were found to P1 roots treated with different days of 7 ℃.Premature bolting could all be found to P1 plants treated with 14 d under the temperature of 4 to 13 ℃,and the optimum temperature for vernalization was 7 ℃.
[1] Simon P W. Genetic improvement of vegetable carotene content[M]/ / Bills D D,Kung S D. Biotechnology and nutrition: Proc. Third Int. Symp. Boston: Butterworth-Heinemann, 1992: 291 - 300.
[2] FAO. http: / /apps. fao. org. FAO Statistical Databases.2011.
[3] Rubatzky V E,Quiros C F,Simon P W. Carrots and related vegetable umbelliferae[M]. New York: CABI Publishing,1999.
[4] 中国农业科学院蔬菜花卉研究所. 中国蔬菜栽培学[M]. 北京: 农业出版社, 2010.
[5] Dickson M H,Peterson C E. Hastening greenhouse seed production for carrot breeding[J]. Proceedings of the American Society for Horticultural Science,1958( 71) : 412 -415.
[6] Alessandro M S,Galmarini C R. Inheritance of vernalization requirement in carrot[J]. Journal of the American Society for Horticultural Science, 2007, 132( 4) : 525 - 529.
[7] Alessandro M S,Galmarini C R,Iorizzo M, et al. Molecular mapping of vernalization requirement and fertility restoration genes in carrot[J]. Theoretical and Applied Genetics,2013, 126: 415 - 423.
[8] Sakr W S,Thompson H C. Effect of temperature and photoperiod on seedstalk development in carrots[J]. Proceedings of the American Society for Horticultural Science,1942, 41: 343 - 346.
[9] Atherton J G,Brewster J L,Basher E A. Flowering and bolting in carrot. Ⅰ. Juvenility, cardinal temperatures and thermal times for vernalization[J].Journal of Horticultural Science,1990, 65( 4) : 423 - 429.
[10] Yan W,Hunt L. Reanalysis of vernalization data of wheat and carrot[J]. Annals of Botany,1999,84 ( 5) : 615 -619.
[11] 鲍生有,欧承刚,庄飞云,等. 胡萝卜春季栽培先期抽薹的调查与分析[J]. 中国蔬菜,2010( 6) : 38 - 42.
[12] Atherton J G,Basher E A,Brewster J L. The effects of photoperiod on flowering in carrot[J]. Journal of Horticultural Science,1984( 59) : 213 - 215.
[13] Dias-Tagliacozzo G M,Válio I F M. Effect of vernalization on flowering of Daucus carota ( cv. Nantes and Brasilia)[J]. Revista Brasileira de Fisiologia Vegetal,1994,6( 1) : 71 - 73.
[14] 朱军. 遗传模型分析方法[M]. 北京: 中国农业出版社, 1997.
[15] 卓祖闯,万恩梅,张鲁刚,等. 大白菜抽薹性状的主基因+ 多基因遗传分析[J]. 西北植物学报,2009,29( 5) : 923 - 928.
[16] 张波,侯喜林. 不结球白菜晚抽薹性遗传分析[C]/ / 中国园艺学会十字花科分会第七届学术研讨会论文集, 2009: 73 - 77.
[17] 魏祥进,徐俊锋,江玲,等. 我国水稻主栽品种抽穗期多样性的遗传分析[J]. 作物学报, 2012, 38( 1) :10 - 22.
[18] Abe J,Guan G P,Shimamoto Y. A gene complex for annual habit in sugar beet( Beta vulgaris L.) [J]. Euphytica,1997, 94: 129 - 135.
[19] Chia T Y P,Müller A, Jung C, et al. Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting ( B)gene locus[J]. Journal of Experimental Botany, 2008, 59( 10) : 2735 - 2748.
[20] Kobayashi Y,Weigel D. Move on up, it's time for changemobile signals controlling photoperiod-dependent flowering[J]. Genes, 2007, 21: 2371 - 2384.
[21] Amasino R M,Michaels S D. The timing of flowering[J]. Plant Physiology, 2010, 154( 2) : 516 - 520.
[22] 余阳俊,张凤兰,赵岫云,等. 光周期与夜间补光光强对芸薹种抽薹开花的影响[J]. 华北农学报, 2007, 22( 6) : 114 - 118.
[23] Khokhar K M,Hadley P,Pearson S. Effect of photoperiod and temperature on inflorescence appearance and subsequent development towards flowering in onion raised from sets[J]. Scientia Horticulturae,2007, 112( 1) : 9 -15.
[24] 汤青林,王小佳,宋明,等. 芥菜和甘蓝启动抽薹的温光诱导体系研究[J]. 西南大学学报: 自然科学版, 2007, 29( 12) : 113 - 117.
[25] Dielen V,Notté C,Lutts S. Bolting control by low temperatures in root chicory ( Cichorium intybus var. sativum)[J]. Field Crops Research, 2005, 94( 1) : 76 - 85.
[26] Gianquinto G. Morphological and physiological aspects of phase transition in radicchio ( Cichorium intybus L. var.silvestre Bisch.: influence of daylength and its interaction with low temperature[J]. Scientia Horticulturae,1997, 71(1):13-26