为了研究不结球白菜内部的群体结构,从全国搜集了78份广泛种植的蔬菜用不结球白菜品种,使用SSR标记对其进行多态性分析,并利用Structure 2.1软件统计分析标记数据划分群体结构。结果表明,初筛出的21对多态性SSR标记覆盖了白菜10个连锁群,在78份材料中扩增共产生了56个等位基因变异,平均每个SSR标记产生的等位基因数目为2.7个。Structure分析表明,所选的不结球白菜可分为4个亚类群,S1和S2亚类群主要集中了来自于南北方各省份的49份普通白菜,苗用大白菜主要分布在S3和S4亚类群,乌塌菜主要分布在S1和S4亚类群,菜心的遗传背景比较复杂;材料的类群划分与地理来源的关系在S2亚类群表现的较为明显。结果表明,不结球白菜内部存在着明显的群体结构,为合理利用现有的种质资源指导育种和进行新基因的挖掘奠定了基础。
To study population structure within non-heading Chinese cabbage crops,78 non-heading Chinese cabbage varieties grown in a large planting area in China were collected. Their DNA polymorphisms were analyzed by a set of SSR markers and their population structure were clustered by Structure 2. 1 software according SSR data. Out of SSR primer 120 pairs, 21 pairs origining 10 linkage groups of Brassica rapa were screened out with polymorphism and 56 alleles in the 78 varieties were generated. The average number of alleles per SSR locus was 2. 7. The 56 markers were imported in the program structure to identify subpopulations, resulting in 4 subgroups in the 78 varieties.Subpopulations S1 and S2 mainly included 49 Pak choi varieties from different provinces in southern or northern China. Seedling Chinese cabbages were mainly distributed in subpopulation S3 and S4. Wutacai varieties were mainly distributed in subpopulation S1 and S4. The genetic backgrouds of Caixin varieties were relatively complicated. The relationship between material grouping and geographical origin was very clear in subpopulation S2. This result indicated an obvious population structure within non-heading Chinese cabbage,which established the basis for utilizing the current germplasm resources to guide breeding and discovering the new genes.
[1] Morton N E. Linkage disequilibrium maps and association mapping[J]. Journal of Clinical Investigation, 2005, 115: 1425 - 1430.
[2] Zhu C S,Gore M,Buckler E S, et al. Status and prospects of association mapping in plants[J]. The Plant Genome,2008,1: 5 - 20.
[3] Aranzana M,Kim S,Zhao K, et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes[J]. Plos Genetics, 2005,1( 5) : 60.
[4] Kokina A,Rostoks N. Genome-wide and mla locus-specific characterisation of latvian barley varieties[J]. Proceedingsof the Latvian Academy of Sciences Section B, 2008,62: 103 - 109.
[5] Xie C,Zhang S,Li M, et al. Inferring genome ancestry and estimating molecular relatedness among 187 Chinese maize inbred lines[J]. Genetics and Genomics, 2007, 34:738 - 748.
[6] Hasan M,Friedt W,Pons-Khnemann J, et al. Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape ( Brassica napus ssp. Napus) [J]. Theoretical and Applied Genetics, 2008, 116: 1035 - 1049.
[7] Simko I,Hu J G. Population structure in cultivated lettuce and its impact on association mapping[J]. Journal of the American Society for Horticultural Science,2008,133( 1) : 61 - 68.
[8] Pritchard J K,Stephens M,Rosenberg N A, et al. Association mapping in structured population[J]. The American Journal of Human Genetics, 2000, 67: 170 - 181.
[9] Simko I. Population structure in cultivated lettuce and its impact pact on association mapping[J]. Journal of the American Society for Horticultural Science, 2008, 133( 1) : 61 -68.
[10] 侯喜林. 不结球白菜育种研究新进展[J]. 南京农业大学学报, 2003, 26( 4) : 111 - 115.
[11] Lowe A J,Moule C,Trick M, et al. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species[J]. Theoretical and Applied Genetics, 2004, 108: 1103 - 1112.
[12] Piquemal J,Cinquin E,Couton F, et al. Construction of an oilseed rape ( Brassica napus L. ) genetic map with SSR markers[J]. Theoretical and Applied Genetics,2005, 111: 1514 - 1523.
[13] Kim J S,Chung T Y,King G J, et al. A sequence-tagged linkage map of Brassica rapa reveals the pattern chromosomal segmental duplications[J]. Genetics,2006,174:29 - 39.
[14] Choi S R,Teakle G R,Plaha P, et al. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project[J]. Theoretical and Applied Genetics, 2007, 115: 777 - 792.
[15] Soengas P,Hand P,Vicente J G, et al. Dentification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa[J]. Theoretical and Applied Genetics, 2007, 114: 637 - 645.
[16] 王丽,乔爱民,孙一铭,等. 菜心基因组DNA 提取及RAPD 反应体系的优化[J]. 西南师范大学学报: 自然科学版, 2006, 31( 2) : 124 - 128.
[17] Zhao J J,Maria-Joao Paulo,Diaan Jamar, et al. Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa[J]. Genome, 2007( 50) : 963 -973.
[18] Pritchard J K,Stephens M,Donnelly P. Inference of population structure from multilocus genotype data[J]. Genetics,2000, 155: 945 - 959.
[19] 刘何. 白菜类作物种植材料的遗传多样性分析[D]. 保定: 河北农业大学, 2007.
[20] 高玉梅,张淑江,章时蕃,等. 白菜类作物资源群体结构分析[J]. 中国农学通报, 2009, 25( 21) : 332 - 334.
[21] Falush D,Stephens M,Pritchard J K. Inference of population structure using multilocus genotype data: dominant markers and null alleles[J]. Molecular Ecology Notes,2007,7: 574 -578.
[22] 张冬玲,张洪亮,魏兴华,等. 贵州栽培稻的遗传结构及其遗传多样性[J]. 科学通报, 2006, 51( 23) : 2747 -2754.
[23] 刘永忠,赵晋峰,王高鸿,等. 不同丝黑穗病抗性玉米自交系ISSR 多态性分析[J]. 山西农业科学,2010,38( 7) : 11 - 15.
[24] 杨兆顺,董海合,吴俊强,等. 利用RAPD 分子标记法聚类分析糯米种质资源[J]. 天津农业科学, 2005, 11( 4) :48 - 49.
[25] 刘建霞,雷海英,温日宇,等. 山西省马铃薯主栽品种遗传多样性的SSR 分析[J]. 华北农学报,2012,27( 6) : 72 - 77.