野生茄托鲁巴姆高抗黄萎病,是研究茄子黄萎病抗性的理想试材。胚胎发育晚期丰富蛋白(LEA蛋白)是植物在逆境条件下生成的一类应激蛋白。研究以1个受黄萎病菌诱导的托鲁巴姆EST为种子序列,结合电子克隆及RT-PCR验证的策略,获得了LEA蛋白基因的全长cDNA序列,命名为StLEA1。该基因的完整开放阅读框为291bp,编码96个氨基酸,编码蛋白的分子量为10.748 kDa,等电点为9.913。经序列分析,StLEA1为水溶性蛋白,不存在信号肽,具有LEA5家族的典型结构域和保守序列,预测含有多个磷酸化位点。表达分析表明,托鲁巴姆受黄萎病菌侵染后,StLEA1在根系中上调表达。为探讨野生茄托鲁巴姆抗黄萎病分子机制提供了素材。
Solanum torvum,a wild species of eggplant,is highly resistant to Verticillium wilt.Therefore,it is the ideal material for studying the mechanism of resistance to Verticillium wilt in eggplant. Late embryogenesis abundant proteins ( LEA proteins) are a group of stress-responsive proteins in higher plants that are induced by environmental stress.In this study,a up-regulated EST while infected by Verticillium wilt was used as a querying probe to blast the GenBank database.Based on the assembled homologous cDNA sequences,a 490 bp cDNA was amplified and cloned by RT-PCR,designated StLEA1. The ORF of StLEA1 is 291 bp,coding a protein with 96 animo acids. The molecular weight of coding protein is 10. 748 kDa and isoelectric point is 9.913.StLEA1 protein is a soluble protein with multiple phosphorylation sites,conserve domain in Lea5,but without signal peptides.Quantitative RT-PCR analysis revealed that StLEA1 was up-regulated in roots while Solanum torvum was infected by Verticillium wilt.The result provides the material for studying the resistance mechanism of wild eggplant to Verticillium wilt.
[1] Hashimoto K.Studies on Verticillium wilt of Eggplant[J].Bulletin of the Saitama Horticultural,1989,2(3):110.
[2] Zeng H L,Ye P S,He L. Resistance evaluation of eggplant resources to Verticillium wilt in sichuan province[J].Agricultural Science & Technology,2009,10(5):123-125, 146.
[3] 连勇,刘富中,冯东昕. 应用原生质体融合技术获得茄子种间体细胞杂种[J]. 园艺学报, 2004, 31(1):39-42.
[4] 肖蕴华,林柏青. 茄子种质资源黄萎病抗性鉴定[J].中国蔬菜, 1995(1):32-33.
[5] 井立军,常彩涛,孙振久. 茄子黄萎病抗性的杂种优势及遗传[J]. 华北农学报, 2001, 16(2):58-61.
[6] 史仁玖,殷玥,王忠. 野生茄子( Solanum torvum) 抗黄萎病相关基因StoVe1 的克隆与分析[J]. 植物生理学通讯, 2006, 42(4):638-642.
[7] 周宝利,尹玉玲,李云鹏,等. 嫁接茄根系分泌物与抗黄萎病的关系及其组分分析[J]. 生态学报,2010,30(11):3073-3079.
[8] 张映霞,杨郁文,倪万潮. 陆地棉黄萎病菌诱导抑制消减杂交cDNA 文库的构建与分析[J]. 江苏农业学报,2008, 24(1):17-21.
[9] 朱龙付,涂礼莉,张献龙. 黄萎病菌诱导的海岛棉抗病反应的SSH 文库构建及分析[J]. 遗传学报,2005,32(5):528-532
[10] Soria-Guerra R E,Rosales-Mendoza S,Chang S, et al.Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes[J]. Theoretical and Applied Genetics,2010,120 (7):1315-1333.
[11] DureIII L,Crouch M,Harada J,et al. Common amino acid sequence domains among the LEA proteins of higher plants[J]. Plant Molecular Biology,1989,12: 475-486.
[12] Ingram J,Bartels D. The molecular basis of dehydration tolerance in plants[J]. Plant Molecular Biology,1996,47: 377-403.
[13] Liu R L,Liu M Q,Liu J, et al. Heterologous expression of an Ammopiptanthus mongolicus late embryogenesis abundant protein gene ( AmLEA) enhances Escherichia coli viability under cold and heat stress [J]. Plant Growth Regulation, 2010, 60(2):163- 168.
[14] 徐理,朱龙付,张献龙. 棉花抗黄萎病机制研究进展[J]. 作物学报, 2012, 38(9):1553-1560.
[15] Battaglia M,Olvera-Carrillo Y,Garciarrubio A. The enigmatic LEA proteins and other hydrophilins[J]. Plant Physiology, 2008, 148(1):6-24.
[16] Wise M J. LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles[J]. BMC Bioinformatics, 2003,4: 52.
[17] 付桂,范伟,畅文军. 海马齿胚胎发育晚期丰富蛋白基因SpLea5 的克隆与表达分析[J]. 热带作物学报, 2011, 32(1):89-93.
[18] Grelet J,Benamar A,Teyssier E, et al. Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying[J]. Plant Physiology, 2005, 137:157-167.
[19] Liu Y,Wang L,Xing X, et al. ZmLEA3,a multifunctional group 3 LEA protein from maize ( Zea mays L.) , is involved in biotic and abiotic stresses[J]. Plant Cell Physiology,2013( published online) .