论文

大豆异黄酮生物合成途径中IFS1基因表达分析

  • 练云 ,
  • 李海朝 ,
  • 王树峰 ,
  • 武永康 ,
  • 李金英 ,
  • 雷晨芳 ,
  • 卢为国
展开
  • 河南省农业科学院经济作物研究所国家大豆改良中心郑州分中心农业部黄淮海油料作物重点实验室, 河南郑州 450002
练 云(1978- ),女,河南永城人,助理研究员,博士,主要从事人豆转基因育种研究。

收稿日期: 2013-04-17

  修回日期: 2013-04-17

  网络出版日期: 2014-10-14

基金资助

转基因生物新品种培育重大专项(2011ZX08004-003);国家“863”项目(2012AA101106)

Expression Analysis of IFSI Gene in Isoflavonoids Pathway in Soybean

  • Lian Yun ,
  • LI Haichao ,
  • Wang Shufeng ,
  • Wu Yongkang ,
  • Li Jinying ,
  • Lei Chenfang ,
  • Lu Weiguo
Expand
  • Zhengzhou Subcenter of National Soybean Improvement Center,Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture,Institute of Industrial Crops,Henan Academy of Agricultural Sciences, Zhengzhou 450002,China

Received date: 2013-04-17

  Revised date: 2013-04-17

  Online published: 2014-10-14

摘要

在异黄酮合成途径中,异黄酮合酶(Isoflavone synthase,IFS)基因起着重要作用,为此,分析了IFS1基因(IFS基因的同源基因之一)在大豆中的表达特点。组织表达分析表明,IFS1基因在根、茎、叶、花、籽粒、豆荚和胚中均有表达,其中在较嫩的组织(萌发7 d的豆苗根、茎、叶)中表达量较高,在较老的组织(生长70 d的豆苗根、茎、叶)中表达量较低,在开花后25,45 d的籽粒和豆荚及花中表达量也较低,而在成熟胚中IFS1基因表达量较高,推测该基因在胚形成早期就已经完成了大豆异黄酮的积聚过程。不同非生物胁迫的诱导表达分析表明,IFS1基因不同程度地受IAA、ABA、PEG、NaCl、低温和创伤胁迫诱导表达,表明该基因参与了大豆的逆境应答。

本文引用格式

练云 , 李海朝 , 王树峰 , 武永康 , 李金英 , 雷晨芳 , 卢为国 . 大豆异黄酮生物合成途径中IFS1基因表达分析[J]. 华北农学报, 2013 , 28(3) : 25 -29 . DOI: 10.3969/j.issn.1000-7091.2013.03.005

Abstract

Previous studies have shown that isoflavone synthase (IFS) encode key enzymes in the isoflavonoids pathway in Soybean.There are two IFS homologues IFS1 and IFS2 in Soybean,The expression level of IFS1 gene in different tissues will be quantified by fluorescence quantitative PCR. The results revealed that the transcripts were widely distributed in all the tested tissues.IFS1 gene showed the higher expression level in the tender organs: root,stem, leaf germinating 7 days than that in the older organs: roots,stems,leaves growing 70 days. Expression level in seeds at 25 days and 45 days post anthesis were also lower,while with higher content in the mature embryo,suggesting that IFS1 gene has finished the Soybean isoflavone accumulation process in the early embryo formation.Further,the analysis of expression induced by abiotic treatments indicated that the genes were differentially regulated under IAA,ABA,PEG,NaCl,cold and wounding treatments. It will provide more knowledges on isoflavone biosynthesis and resistance to abiotic stress in Soybean.

参考文献

[1] Watanabe S,Uesugi S,Kikuchi Y.Isofiavones for prevention of cancer,cardiovascular diseases,gynecological problems and possible immune potentiation [J].Biomed Pharmacother,2002,56(6):302-312.
[2] Rochfor S,Panozzo J.Phytochemicals for health, the role of pulses[J].J Agric Food Chem,2007,55(20):7981-7994.
[3] Wang Y,Chen S,Yu O. Metabolic engineering of flavonoids in plants and microorganisms[J].Appl Microbiol Biotechnol,2011,91:949-956.
[4] 赵珺,黄玉珍,刘冰许. 大豆功能因子对小鼠生理性能的影响[J].河南农业科学,2010(3):103-105.
[5] Kosslak R M,Bohlool B B. Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side [J].Plant Physiolo,1984,75(1):125-130.
[6] Zhang J,Subramanian S,Stacey G,et al, Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti[J].The Plant Journal, 2009, 57(1):171-183.
[7] Reid D E,Ferguson B J,Hayashi S,et al.Molecular mechanisms controlling legume autoregulation of nodulation[J].Ann Bot,2011,108(5):789-795.
[8] Mortier V,Fenta B A,Martens C, et al. Search for nodulation- related CLE genes in the genome of Glycine max[J].J Exp Bot, 2011: 62(8):2571-2583.
[9] 韩粉霞,丁安林,孙君明. 高异黄酮含量大豆新品种中豆27 的选育及配套栽培技术[J]. 华北农学报, 2002 17(增刊:111-114
[10] Jung W,Yu O,Lau S M, et al.Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes [J]. Nat Biotechnol,2000(18):208-212.
[11] Pregelj L,McLanders J R,Gresshoff P M,et al. Transcription profiling of the isoflavone phenylpropanoid pathway in soybean in response to Bradyrhizobium japonicum inoculation [J].Functional Plant Biology,2010, 38(1):13-24.
[12] 张卓,王丕武,付永平,等. 大豆查尔酮异构酶基因的克隆及粟酒裂殖酵母表达载体的构建[J].河南农业科学, 2010(11):23-26.
[13] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T) ) method[J].Methods,2001,25:402-408.
[14] Berger M,Rasolohery C A,Cazalis R,et al. Isoflavone accumulation kinetics in soybean seed cotyledons and hypocotyls: Distinct pathways and genetic controls [J].Crop Science, 2008, 48( 2):700-708.
[15] Kim J A,Chung I M. Change in isofiavone concentration of soybean ( Glycine max L.) seeds at different growth stages [J].J Sci Food Agric, 2007, 87(3):496-503.
[16] Dhaubhadel S,Gijzen M,Moy P, et al. Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isofiavonoid synthesis in soybean seeds[J]. Plant Physiol,2007,143(1):326-338.
[17] Graham T L. Flavonoid and isofiavonoid distribution in developing soybean seedling tissues and in seed and root exudates[J]. Plant Physiol, 1991, 95(2):594-603.
[18] Dixon R A. Natural products and plant disease resistance[J]. Nature, 2001, 411:843-847.
[19] Dixon R A,Paiva N L. Stress-induced phenylpropanoid metabolism[J]. Plant Cell, 1995,7:1085-1097.

[20] Cheng H,Yang H,Zhang D, et al. Polymorphisms of soybean isofiavone synthase and flavanone 3-hydroxylase genes are associated with soybean mosaic virus resistance[J]. Mol Breeding, 2010,25(1):13-24.
[21] Cheng H,Yu O,Yu D Y. Polymorphisms of IFS1 and IFS2 gene are associated with isofiavone concentrations in soybeanseeds [J].Plant Science, 2008, 175: 505 -512.
文章导航

/