为阐明高渗透压甘油激酶在链格孢菌中的功能,通过遗传学手段,构建了细极链格孢菌(Alternaria tenuissima)cDNA酵母表达文库,并对其进行筛选而获得细极链格孢菌高渗透压甘油蛋白激酶AtHOG1基因,该基因全长1 539 bp,编码355个氨基酸.AtHog1p含有MAPK保守的激酶激活区域"TGY",与来源于烟曲霉(Aspergillus fumigatus)AfOsm1p(XP-7524)、稻瘟菌(M.grisea)MG01822(XP-3389)及酿酒酵母(S.cerevisiae)ScHog1p(AAB7558)高度同源,相似性分别为94%,90%和80%.在高渗环境下,AtHOG1基因与ScHOG1基因功能相同.链格孢菌中存在HOG通路信号途径,AtHOG1基因可能与链格孢菌的逆境适应性调节密切相关.
冯飞
,
纪春艳
,
杨秀芬
,
曾洪梅
,
邱德文
. 细极链格孢菌Hog1 MAPK(酵母)同源基因AtHOG1的克隆与功能分析[J]. 华北农学报, 2009
, 24(4)
: 74
-79
.
DOI: 10.7668/hbnxb.2009.04.015
An Alternaria tenuissima cDNA expression library was constructed. The MAP kinase HOG1 was isolated from the Alternaria tenuissima cDNA expression library,designated as AtHOG1. It had a size of 1 539 bases in length,en2 coded a protein of 355 amino acids. The AtHog1p contained the conserved TGYactivation loop found in the stress2activat2 ed protein kinase subgroup of MAPKs and its amino acid sequence showed 94 %,90 % and 80 % identities with AfOsm1p (XP2752664)of Aspergillus f umigatus,Mg01822 (XP2363896)of Magnaporthe grisea and ScHog1p (AAB67558)of Sac2 charomyces cerevisiae, respectively. AtHOG1 cDNA sequences could complement the functions of S. cerevisiae ScHOG1 genes in sodium chloride tolerance,suggesting a functional HOGpathway exists in A. tenuissima,AtHOG1 gene was in2 volved in the stress adaptation regulation of A. tenuissima.
[1] 阮海华,李西川,兰蓓,等.高渗透压甘油信号转导途径[J].细胞生物学杂志,2006,8:651-655.
[2] Dickman M B,Yarden O.Serine/threonine protein kinases and phosphatases in filamentious fungi[J].Fungal Genetics and Biology999,26(2):99-117.
[3] Schaeffer H J,Webber M J.Mitogen-activated protein kinases:specific messages from ubiquitous messengers[J].Mol Cell Biol9999(9):2435-2444.
[4] Xu J R.MAP kinases in fungal pathogens Fungal[J].Genetics and Biology,2000,31(9):137-152.
[5] Jonak C,Okr sz L,Bogre L,et al.Complexity,cross-talk and integration of plant MAP kinase signaling[J].Cur Opin Plant Biol,2002,5(5):415-424.
[6] Saito H,Tatebayashi K.Regulation of the osmoregulatory HOG MAPK cascade in yeast[J].J Biochem (Tokyo),200436(3):267-272.
[7] Hohmann S.Osmotic stress signaling and osmoadaptation in yeasts[J].Microbiol Mol Biol Rev,2002,66(2):300-372.
[8] Kim Y K,Kawano T,Li D X,et al.A mitogen-activated protein kinase required for induction of cytokinesis and appressorium formation by host signals in the conidia of Colletotrichum gloeosporioides[J].The Plant Cell,20002(8):1331-1343.
[9] Takano Y,Kikuchi T,Kubo Y,et al.The Collectotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis[J].Molecular Plant-Microbe Interaction,20003(4):374-383.
[10] Xue C Y,Park G,Choi W,et al.Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus[J].The Plant Cell,20024(9):2107-2119.
[11] Delgado-Jarana J,Sousa S,Redondo J,et al.Characterization of the stress response in Trichoderma harzianum:Role of HOG kinase and cAMP pathways[C].7th European Conference on Fungal Genetics Copenhagen,2004:17-20,April:103.
[12] Lugauskas A,Prosychevas I,Levinskaite L,et al.Physical and chemical aspects of long-term bio-deterioration of some polymers and composites[J].Environmental Toxicology,20049(4):318-328.
[13] Nierman W C,Pain A,Anderson M J,et al.Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus[J].Nature,2005,438(7071):1151-1156.
[14] Dean R A,Talbot N J,Ebbole D J,et al.The genome sequence of the rice blast fungus Magnaporthe grisea.Nature,2005,434(7036):980-986.
[15] Johnston M,Hillier L,Riles L,et al.The nucleotide sequence of Saccharomyces cerevisiae chromosome XII[J].Nature997,387 (6632):87-90.
[16] Hanks S K,Hunter T.The eukaryotic protein kinase superfamily:Kinase (catalytic)domain structure and classification based on phylgenetic analysis[M]// Hardie D C,Hands S K.In The Protein Kinase Facts Book pp.Academic Press,London.1995:7-47.
[17] Gustin M C,Jacobus A,Alexander M,et al.MAP kinase pathways in the yeast Saccharomyces cerevisiae[J].Microbiology and Molecular Biology Reviews998,62(4):1264-1300.
[18] Zhang Y,Lamm R,Pillonel C,et al.Osmoregulation and fungicide resistance:the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue[J].Applied and Environmental Microbiology,2002,68(2):532-538.
[19] JoséC S,Monge R A,Pérez-Díaz R,et al.The mitogen-activated protein kinase homolog HOG1 gene control glycerol accumulation in the pathogenic fungus Candida albicans[J].Journal of Bacteriology99678(19):5850-5852.
[20] Dixon K P,Xu J R,Smirnoff N,et al.Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea[J].The Plant Cell9991(10):2045-2058.
[21] Kojima K,Takano Y,Yoshimi A,et al.Fungicide activity through activation of a fungal signaling pathway[J].Molecular Microbiology,2004,53(6):1785-1796.
[22] Bahn Y,Kojima K,Cox G,et al.Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans[J].Mol Biol Cell,20056(5):2285-2300.
[23] Kruppa M,Calderone R.Two-component signal transduction in human fungal pathogens[J].FEMS Yeast Res,2006,6(2):149-159.
[24] Monge R,Roman E,Nombela C,et al.The MAP kinase signal transduction network in Candida albicans[J].Microbiol,200652(4):905-912.
[25] Alonso-Monge R,Navarro G F,Molero G,et al.Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans[J].Journal of Bacteriology99981(10):3085-3068.