对口蹄疫病毒Asia1/HeB株P1结构蛋白基因进行了扩增、克隆及序列测定.采用DNAStar Protean软件对P1蛋白的二级结构、可塑性、亲水性、表面可及性及抗原指数等参数进行分析,综合预测其B细胞表位分布.结果表明,FMDV Asia I/HeB株P1基因长2 199 bp,包含完整的开放阅读框,编码33个氨基酸,其中VP1长633 bp,编码211个氨基酸,VP2长654 bp,编码218个氨基酸,VP3长65 bp,编码219个氨基酸,VP4长255 bp,编码85个氨基酸.P1结构蛋白的二级结构较为复杂,含有较多的β片层结构和转角结构,VP1、VP2和VP3上均有多个区域为B细胞优势表位,VP4上也有少量的潜在B细胞表位.与已鉴定的B细胞表位相比较,该方法预测的结果有较高的准确度.为试验确定FMDV AsiaI/HeB株P1结构蛋白的B细胞表位和反向疫苗学设计提供了理论基础.
张中旺
,
张永光
,
王永录
,
潘丽
,
方玉珍
,
刘力宽
,
蒋守田
,
吕建亮
,
周鹏
,
张昱
,
张淑刚
,
杜进鑫
,
李正丰
. FMDV Asia1/HeB病毒株结构蛋白基因的克隆测序及B细胞抗原表位预测[J]. 华北农学报, 2009
, 24(4)
: 57
-63
.
DOI: 10.7668/hbnxb.2009.04.012
The DNA of P1 gene of Foo-t and-mouth disease virus Asia1/HeB was amplified and cloned, and then sequenced. Amino acid sequence of P1 on secondary structure, flexibility, hydrophilicity, accessibility and ant igenicity were analyzed using DNAStar Protean software,with the B cell epitopes to be predicted.The results showed that the P1 region of FMDV Asia1/HeB is 2 199 bp in length and codes for a polypeptide of 733 amino acids, including complete open reading frame. The structural protein of VP1,VP2,VP3,VP4 gene consists of 633, 654, 657, 255 bp and codes for 211, 218, 219, 85 amino acids respect ively. The secondary structure of P1 region was relatively complicated consisting of more B sheet regions and turn regions.There were predominant B cell epitopes in VP1,VP2, VP3 and a small amounts in VP4. Comparing with the epitopes that have been published, the predict results have a high reliability. This study would be helpful for identification of B cell epitopes for structural protein of FMDV Asia1/HeB strain using experimental methods and research of reverse vaccine of FMDV.
[1] Pereira H G.Foot-and-mouth Disease[M]//Gibbs E P J.Virus Diseases of Foot Animals.London:Academic Press Inc981:333-363.
[2] Eric B,Carmen M,Ruiz-Jarabo,et al.Foot-and-mouth Disease Virus Lacking the VP1 G-H loop:The Mutant Spectrum Uncovers Interactions among Antigenic Site for Fitness Gain[J].Virology,2001,288:192-202.
[3] Hoop J P,Wood K R.Prediction of protein antigenic determinants from amino acid sequences[J].Immunology981,78(6):3824.
[4] Kyte J,Doolittle R F.A Simple method for displaying hydropathic character of a protein[J].J Mol Biol983,57(1):105.
[5] Tsche H.Modern methods in protein and nucleic acid research[M].1th ed.New York:Walter de Gruger Berlin990,231.
[6] Welling G W,Weijer W J,Vander Z R,et al.Prediction of sequential antigenic regions in proteins[J].FEBS Lett98588(2):215.
[7] Karplus P A,Schultz G E.Prediction of chain flexibility in proteins[J].Immunology985,72(2):212.
[8] Gershoni J M,Stem B,Venisova G.Combinatorial libraries,epitope structure and the prediction of conformations[J].Immunol Today9978(5):108.
[9] 来鲁华.蛋白质的结构预测与分子设计[M].第1版.北京:北京大学出版社993:49.
[10] 吴玉章,朱锡华.一种病毒蛋白B细胞表位预测方法的建立[J].科学通报994,39(24):2275-2279.
[11] Doel T R.FMD vaccines[J].Virus Res,2003,91(1):81-99.
[12] Rob H M,Langeveld P M,Wim M M,et al.Synthetic peptide viccines:unexpected fullfillment of discarded Hope[J].Biologicals,2001,29(3-4):233-236.
[13] 吴玉章,刘茂昌,贾正才,等.HBV新型免疫原的设计、合成及免疫原性研究[J].第三军医大学学报,2000,22(10):919-923.
[14] Kolaskar A S,Kulkami Kale U.Prediction of three dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus[J].Virology999,261(1):31-42.