利用盆栽试验研究了高温胁迫下丛枝菌根(AM)真菌对玉米生长、相对叶绿素含量、光合作用和叶绿素荧光的影响。结果表明,高温胁迫下,与非菌根玉米相比,菌根玉米具有效高的相对叶绿素含量。高温胁迫降低了所有玉米叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr),增加了叶片胞间CO2浓度(Ci)。但接种丛枝菌根真菌的玉米Pn、Gs和Tr高于不接种植株,而Ci低于不接种植株。高温胁迫下,玉米叶片初始荧光(Fo)升高,而可变荧光(Fv)、最大荧光(Fm)、最大光化学效率(Fm/Fv)和潜在光化学效率(Fv/Fo)均下降。40℃条件下,菌根玉米叶片Fm和Fv高于非菌根植株。在所有温度处理中,接种真菌的玉米叶片Fm/Fv和Fv/Fo均高于不接种植株。结果表明,AM真菌能够通过提高叶绿素含量,改善植物叶片叶绿素荧光和光合作用,来减缓高温胁迫对玉米植株造成的伤害,提高植株耐受高温的能力。
The effect of arbuscular mycorhizal(AM)fungusglomus etunicatum on characteristics of thegrowth,relative chlorophyll content,photosynthesis and chlorophyll fluorescence in maize(Zea mays L.)plants was studied in pot culture under high temperature stress. Under high temperature stress,mycorrhizal maize plants had higher rel-ative chlorophyll content compared to non-mycorrhizal plants. High temperature stress decreased the photosynthetic rate(Pn),stomatal conductance(Gs)and transpiration rate(Tr)of all maize plants,but increased the intercellular CO2concentration(Ci). The Pn,gs and Tr of mycorrhizal maize leaves were higher than those of non-mycorrhizal plants,and the Ci of mycorrhizal plants was lower than that of non-mycorrhizal plants. Under high temperature stress,the primary fluorescence(Fo)was increased,and maximal fluorescence(Fm),variable fluorescence(Fv),maximum photochemical efficiency(Fv/Fm)and potential photochemical efficiency(Fv/Fo)were decreased regard-less of mycorrhizal and non-mycorrhizal maize plants. Compared with non-mycorhizal plants,mycorrhizal plants had higher Fv/Fm and Fv/Fo at all temperature conditions,but Fv and Fm were higher only at 40℃ condition. The re-sults showed that AM fungi is capable of alleviating the damage caused by high temperature stress on maize plants by means of improve leaf chlorophyll content,photosynthesis and chlorophyll fluorescence,and enhancing the high temperature tolerance ability of maize plants.
[1] Wahid A,Gelani A M,Foolad M R. Heat tolerance in plants:an overview[J]. Environmental and Experimental Botany,2007,61:199-223.
[2] Martin P. Arbuscular mycorrhiza:the mother of plant root endosymbioses[J]. Nature Review Microbiology,2008,6: 763-775.
[3] Smith S E,Read D J. Mycorrhizal symbiosis 3rd edn[M]. London:Academic Press,2008.
[4] Aug R M. Water relations,drought and vesicular-arbuscu-lar mycorrhizal symbiosis[J]. Mycorrhiza,2001,11:3-42. 2 期陈笑莹等:高温胁迫下丛枝菌根真菌对玉米光合特性的影响 113
[5] Staddon P L,Heinemeyer A,Fitter A H. Mycorrhizas andglobal environmental change:research at different scales
[J]. Plant and Soil,2002,244:253-261.
[6] Martin C A,Stutz J C. Interactive effects of temperature and arbuscular mycorrhizal fungi ongrowth,P uptake and root respiration of Capsicum annuum L.[J]. Mycorrhiza,2004,14:241-244.
[7] Gavito M E,Olsson P A,Rouhier H,et al. Temperature constraints on thegrowth and functioning of root organ cultures with arbuscular mycorrhizal fungi[J]. New Phy-tologist,2005,168:179-188.
[8] Miransari M. Contribution of arbuscular mycorrhizal sym-biosis to plantgrowth under different types of soil stress
[J]. Plant Biology,2010,12:563-569.
[9] Zhu X C,Song F B,Xu H W. Influence of arbuscular my-corrhizae on lipid peroxidation and antioxidant enzyme ac-tivity of maize plants under temperature stress[J]. Mycor-rhiza,2010,20:325-332.
[10] Shrestha Y H,Ishii T,Kadoya K. Effect of vesicular-ar-buscular mycorrhizal fungi on thegrowth,photosynthe-sis,transpiration and the distribution of photosynthates of bearing Satsuma mandarin(citrus reticulata) trees[J]. Journal of the Japanese Society for Horticultural Sci-ence,1995,64:517-525.
[11] Aug R M,Moore J L,Sylvia D M,et al. Mycorrhizal pro-motion of host stomatal conductance in relation to irradi-ance and temperature[J]. Mycorrhiza,2004,14:85-92.
[12] Zhu X C,Song F B,Liu S Q,et al. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress[J]. Plant and Soil,2011,346:189-199.
[13] 唐婷,郑国伟,李唯奇.植物光合系统对高温胁迫的响应机制[J]. 中国生物化学与分子生物学报,2012,28(2):127-132.
[14] Phillips J M,Hayman D S. Improved procedure of clear-ing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society,1970,55:159-161.
[15] Heinemeyer A,Ridgway K P,Edwards E J,et al. Impact of soil warming and shading on colonization and commu-nity structure of arbuscular mycorrhizal fungi in roots of a nativegrassland community[J].global Change Biolo-gy,2004,10:52-64.
[16] Bendavid-Val R,Rabinowitch H D,Katan J,et al. Via-bility of VA-mycorrhizal fungi following soil solarization and fumigation[J]. Plant and Soil,1997,195:185-193.
[17] Charest C,Dalp Y,Brown A. The effect of vesicular-ar-buscular mycorrhizae and chilling on two hybrids of Zea mays L.[J]. Mycorrhiza,1993,4:89-92.
[18] Haugen L M,Smith S E. The effect of high temperature and fallow period on infection of mung bean and cashew roots by the vesicular-arbuscular mycorrhizal fungusglo-mus intraradices[J]. Plant and Soil,1992,145:71-80.
[19] 吴雪霞,陈建林,查丁石. 低温胁迫对茄子幼苗叶片光合特性的影响[J]. 华北农学报,2008,23(5):185-189.
[20] 吴韩英,寿森炎,朱祝军,等. 高温胁迫对甜椒光合作用和叶绿素荧光的影响[J]. 园艺学报,2001,28(6): 517-521.
[21] 孙宪芝,郑成淑,王秀峰. 高温胁迫对切花‘神马’光合作用与叶绿素荧光的影响[J]. 应用生态学报,2008,19(10):2149-2154.
[22] Farquharg D,Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology,1982,33:317-345.
[23] Bake N R. Chlorophyll fluorescence:a probe of photosyn-thesis et al[J]. Annual Review of Plant Biology,2008,59:89-113.
[24] Oukarroum A,Strasser R J,Schanskerg. Heat stress and the photosynthetic ecectron transport chain of the lichen Parmelina tiliacea(Hoffm. )Ach. In the dry and the wet state:differences and similarities with the heat stress re-sponse of higher plants[J]. Photosynthesis Research,2012,111:303-314.
[25] 汪炳良,徐敏,史庆华,等.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响[J].中国农业科学,2004,37(8):1245-1250.
[26] 张国民,王连敏,王立志,等. 苗期低温对玉米叶绿素 含量及生长发育的影响[J]. 黑龙江农业科学,2000 (1):10-12.
[27] 卢琼琼,宋新山,严登华. 高温胁迫对大豆幼苗生理特性的影响[J]. 河南师范大学学报:自然科学版,2012,40(1):112-115.