以西瓜品种8424和甜瓜品种甬甜3号作为接穗,以印度南瓜A(TLZ-B2-1-24,亲和)和印度南瓜B(Z079-1-2-17,不亲和)为砧木,配置瓜类异属间嫁接亲和/不亲和组合,利用SDS-PAGE技术,分析了瓜类异属间嫁接亲和组合(西瓜/印度南瓜A和甜瓜/印度南瓜A),以及嫁接不亲和组合(西瓜/印度南瓜B和甜瓜/印度南瓜B),在不同发育时期的全蛋白变化,分离分析了嫁接亲和/不亲和过程中产生的特异蛋白。结果表明:瓜类异属间嫁接亲和过程中,接穗(西瓜和甜瓜)组织蛋白和愈伤蛋白保持完整,砧木印度南瓜A的39 kDa愈伤特异蛋白在嫁接第10天后降解消失。瓜类异属间嫁接不亲和过程中,嫁接体的接穗部分出现了特异蛋白(西瓜36 kDa,甜瓜28 kDa)|砧木印度南瓜B在愈伤期间,自身组织严重降解,38 kDa的愈伤蛋白在嫁接体-印度南瓜B部分降解消失。这些由瓜类异属间嫁接亲和特性引起的接穗与砧木蛋白质谱带的变化结果,首次揭示了嫁接亲和特性在蛋白质水平上发生的作用机理。
The production of specific proteins duringgraft compatible/incompatible heterograft combination of cucurbitaceae was studied by SDS-PAGE electrophoresis. The seedlings of watermelon(Citrullus lanatus(Thunb.)) cultivar 8424 and melon(Cucumis melo L.) cultivar Yongtian No. 3 weregrafted onto the compatible rootstock of winter squash(Cucurbita maxima duch. ex lam) A(TLZ-B2-1-24) and incompatible rootstock winter squash B(Z079-1-2-17),to format the compatibility and incompatibility response of heterograft combination of watermelon/ winter squash A and melon/winter squash A,and watermelon/winter squash B and melon/winter squash B,respec-tively. The results showed as the follows:a decrease in a 39 kDa callus protein band at the winter squash A stock of the compatible union was observed during the 10 days aftergrafting,and the culls proteins of scion(watermelon and melon) were still kept. During the incompatible heterograft stage,two specific proteins(36 kDa for watermelon and 28 kDa for melon) were expressed in the scion,and the original protein of winter squash B were declined seriously and a 38 kDa callus protein were decreased. Those results presented here demonstrated the identification of the pro-teins related tograft compatibility/incompatibility response. These findings allow the assumption that molecular change mechanism takes place duringgraft formation in compatible/incompatible combinations for the first time.
[1] Pavloug C,Vakalonnakis D J,Ligoxigakis E K. Control of root and stem rot of cucumber,caused by F. oxysporum f. sp radicis cucumerinum,bygrafting onto resistant root-stocks[J]. Plant Disease,2002,86:379-382.
[2] 杨丽丽,郑伟. 设施蔬菜栽培连作障碍分析及综合防治[J]. 山西农业科学,2012,40(8):917-920,924.
[3] 石瑶,王利英,于海龙,等.嫁接对茄子栽培及田间抗逆性影响的研究[J]. 天津农业科学,2011,17(3): 101-103.
[4] 张艳玲,张洪玉,刘 琨,等. 不同嫁接方式对黄瓜双根嫁接苗成活率及生物学特性的影响[J]. 天津农业科学,2009,15(6):36-38.
[5] 王水霞,崔世茂,付崇毅,等. 高温逆境下嫁接辣椒耐热性的研究[J]. 华北农学报,2012,27(1):155-158.
[6] 周俊国,扈惠灵,赵润洲,等. 中国南瓜F1砧木对黄瓜嫁接苗生长的影响[J]. 华北农学报,2010,25(1):117-120.
[7] Jeffree C E,Yeoman M M. Development of intercelloar connections between opposing cells ingraft unlen [J]. New Phytil,1983,93:491.
[8] Ermel F F,Kervella J,Catesson A M,et al. Localizedgraft incompatibility in pear/quince(Pyrus communis/Cydonia oblonga) combinations:multivariate analysis of histologi-cal data from 5-month-oldgrafts[J]. Tree Physiol,1999,19(10):645-654.
[9] Fernandez-Garcia N,Carvajal M,Olmos E.graft union formation in tomato plants:peroxidase and catalase in-volvement[J]. Ann Bot,2004,93(1):53-60.
[10] 吴少辉,巫秀美,张成桂,等. SDS-聚丙烯酰胺凝胶电泳4种染色方法的比较研究 [J]. 安徽农业科学,2012,40(10):5763-5764,5770.
[11] 翁锦周,洪月云.植物热激转录因子在非生物逆境中的作用 [J]. 分子植物育种,2006,4(1):88-94.
[12] Pina A,Errea P. Influence ofgraft incompatibility ongene expression and enzymatic activity of UDP-glucose pyrophosphorylase[J]. Plant Science,2008,174:502-509.
[13] 肖桂山,杨世杰. 黄瓜同种异体嫁接组合形成过程中特异蛋白质的产生 [J]. 农业生物技术学报,1995,3 (2):32-37.
[14] Yeoman M M,Kilpatrickk D C,Miedzybrodzka M B,et al. Cellular interactions duringgraft formation in plants,a recognition phenomenon? [J]. Symposia of the Society for Experimental Biology XXXII,1978,32:139-160.
[15] Sabnis D D,Hart J W. Heterogeneity in phloem protein complements from different species [J]. Planta,1979,145:459-466.