论文

养分胁迫对威优916生育后期根系衰老影响的蛋白质组学分析

  • 邵彩虹 ,
  • 李瑶 ,
  • 钱银飞 ,
  • 邱才飞 ,
  • 彭春瑞 ,
  • 刘光荣 ,
  • 谢金水
展开
  • 江西省农业科学院 土壤肥料与资源环境研究所, 国家红壤改良工程技术研究中心, 江西 南昌 330200
邵彩虹(1978-),女,安徽泗县人,助理研究员,博士,主要从事作物生理与分子生态学研究。

收稿日期: 2013-01-19

  网络出版日期: 2014-10-14

基金资助

国家科技支撑计划(2011BAD16B04);江西省自然科学基金(20114BAB214010)

Proteomics Analysis of Rice Root Senescence under Nutrient Stress Condition during Late Development Stage

  • SHAO Cai-hong ,
  • LI Yao ,
  • QIAN Yin-fei ,
  • QIU Cai-fei ,
  • PENG Chun-rui ,
  • LIUguang-rong ,
  • XIE Jin-shui
Expand
  • Soil and Fertilizer Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, National Engineering and Technology Research Center for Red Soil Improvement, Nanchang 330200, China

Received date: 2013-01-19

  Online published: 2014-10-14

摘要

采用蛋白质组学分析技术,对养分胁迫下杂交水稻威优916根系蛋白质组差异表达进行研究,以揭示养分胁迫对水稻生育后期根系衰老影响的分子机理。根系蛋白质经双向电泳分析及差异检测,获得了23个发生差异表达蛋白质,经串联质谱分析(ESI-Q MS/MS),17个蛋白质功能得到鉴定,包括2个呼吸代谢相关蛋白质、7个根系生长发育相关蛋白质、6个逆境相关蛋白质及2个未知功能蛋白质。差异表达蛋白质功能分析结果表明:最初的养分胁迫能够刺激根系的分化生长|但持续的养分胁迫诱导根系大量逆境应答蛋白质上调表达,呼吸代谢减弱,根系生长发育受阻,木质化程度增加,根系衰老加剧。

本文引用格式

邵彩虹 , 李瑶 , 钱银飞 , 邱才飞 , 彭春瑞 , 刘光荣 , 谢金水 . 养分胁迫对威优916生育后期根系衰老影响的蛋白质组学分析[J]. 华北农学报, 2013 , 28(2) : 12 -19 . DOI: 10.3969/j.issn.1000-7091.2013.02.003

Abstract

In order to reveal the molecular senescence mechanism of rice root with nutrient deficiency during filling stage,the proteins expression profile of root in hybrid rice Weiyou 916 were investigated by using the ap-proach of proteomics. Proteins were extracted from rice roots and separated by two-dimensionalgel electrophoresis,then 23 differential expression proteins were obtained,among which 17 proteins involved respiration(2 proteins),root development(7 proteins),stress response(6 proteins) and hypothetical protein(2 proteins) were identified by ESI-Q MS/MS. The 17 proteins' functions were analyzed and results showed that:rice roots had fast development andgrowth at early nutrient deficiency. Long-term nutrient deficiency resulted in the accumulation of stress response proteins,weak respiration,slowgrowth and high lignification in rice root,which led to the senescence of root.

参考文献

[1] 王彦荣,华泽田,陈温福,等.粳稻根系与叶片早衰的 关系及其对籽粒灌浆的影响[J].作物学报,2003,29 (6):892-898.
[2] 许乃霞,杨益花.抽穗后水稻根系活力与地上部叶片 衰老及净光合速率相关性的研究[J].安徽农业科学,2009,37(5):1919-1921.
[3] 许凤英,马均,王贺正,等.强化栽培条件下水稻的 根系特征及其与产量形成的关系[J]. 杂交水稻,2003,18(4):61-65.
[4] 吴伟明,王一平,赵 航,等. 水稻不定根的穿鞘生长 现象及其与叶片衰老的关系[J].中国农业科学,2005,38(3):474-479.
[5] 李木英,石庆华,谭雪明.水稻根系营养吸收特性及其与干物质生产和稻米品质关系的研究[J].江西农业大学学报,1996,18(4):376-382.
[6] 梁建生,张建华.杂交水稻叶片的若干生理指标与根系伤流液强度的关系[J]. 江苏农学院学报,1995,14 (4):25-30.
[7] 蔡永萍,左震东,杨其光.杂交稻开花后根系活力与旗 叶衰老和产量形成的关系[J]. 中国农学通报,1998,14(3):17-20.
[8] 朱虹霞,郭士伟,王荣富.杂交水稻早衰的研究进展
[J].安徽农业科学,2009,37(5):1945-1947.
[9] 郑圣先,聂军,戴平安,等.控释氮肥对杂交水稻生 育后期根系形态生理特征和衰老的影响[J].植物营养与肥料学报,2006,12(2):188-194.
[10] 叶春升,罗奇祥,张福群,等.肥料不同施用方式对水 稻早衰的影响[J].江西农业学报,2006,18(4):1-5.
[11] Peng X X,Peng S B. Degradation of ribulose-1,5-bi-sphosphate carboxylase/oxygenase in naturally senesc-ing rice leaves[J]. Acta Phytophysiologica Sinica,2000,26(1):46-52.
[12] Su K K,Iijima M,Yamanchi A,et al. Changes with aging in the activities of succnic dehydrogenase and peroxidase in rice seminal root system[J]. Japanese Journal of Crop Science,1996,65(2):309-314.
[13] 陈信波,廖爱君,罗泽民. 大穗型水稻生育后期叶片和根系生理的特性[J]. 生命科学研究,1999,3(3): 250-255.
[14] 邵彩虹,钱银飞,唐秀英,等.养分胁迫对水稻籽粒灌 浆充实影响的蛋白质组学研究[J]. 中国水稻科学,2012,16(3):267-274.
[15] 谢金水,邵彩虹,唐秀英,等.养分胁迫对籽粒灌浆期 水稻叶片衰老影响的蛋白质组学分析[J]. 中国水稻 科学,2011,25(2):143-149.
[16] 谢金水,邵彩虹,唐秀英,等. 养分胁迫对威优 916 生 育后期叶鞘衰老影响的蛋白质组学分析[J]. 华北农学报,2011,26(1):118-124.
[17] Wang X C,Li X F,Li Y X. A modified coomassie bril-liant blue staining method at nanogram sensitivity com-patible with proteomic analysis[J]. Biotechnology Let-ters,2007,29:1599-1603.
[18] 夏其昌,曾 嵘.蛋白质化学与蛋白质组学[M]. 北京:科学出版社,2004:278.
[19] 王经源,陈舒奕,梁义元,等. ISO-DALT 双向电泳方法的优化与改进[]. 福建农林大学学报,2006,35(6): 187-190.
[20] 邵彩虹,谢金水,黄永兰,等. 孕穗期水稻不同功能叶 的发育蛋白质组学分析[J]. 中国水稻科学,2009,23 (5):456-462.
[21] 邹琦. 植物生理学实验指导[M]. 北京:中国农业出版社,2000,149.
[22] Studart-Guimar es C,Fait A,Nunes-Nesi A,et al. Re-duced expression of succinyl-Coenzyme a ligase can be compensated for by up-regulation of the γ-Aminobutyrate shunt in illuminated tomato leaves[J]. Plant Physiolo-gy,2007,145(3):626-639.
[23] 李雄彪,张金忠. 半纤维素的化学结构和生理功能
[J]. 植物学通报,1994,11(1):27-33.
[24] 薛业敏,卢晨,毛忠贵,等. 阿拉伯糖苷酶基因的克 隆、表达及表达产物的酶稳定性[J]. 中国农业大学学报,2003,8(5):9-13.
[25] Kanwarpal S D,Suresh C T,Peter M R. A reversiblygly-cosylated polypeptide(RGP1) possibly involved in plant cell wall synthesis:Purification,gene cloning,and trans-Golgi localization[J]. Plant Biology,1997,94:7679-7684.
[26] Gupta A,Kumar P H,Dineshkumar T K,et al. Crystal structure of Rv2118c:an adoMet-dependent methyltrans-2 期 邵彩虹等: 养分胁迫对威优916生育后期根系衰老影响的蛋白质组学分析 19 ferase from mycobacterium tuberculosis H37Rv[J]. Journal of Molecular Biology,2001,312(2):381-391.
[27] 欧阳文石,赵开军,冯兰香.植物中几丁质酶的作用
[J].生物学通报,2002,37(6):3-14.
[28] 吕 刚,纪 青,展 永,等. 驱动蛋白及其研究进展
[J]. 现代物理知识,2002,14(5):16-20.
[29] Mills E N C,Jenkins J,Marigheto N,et al. Allergens of the cupin superfamily[J]. Biochemical Society Transac-tions,2002,30(6):925-929.
[30] Carpiita N C. Structure and biogenesis of the cell walls ofgrasses[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:445-476.
[31] Kim H J,Triplett B A. Cotton fibergermin-like protein. 1. molecular cloning andgene expression[J]. Planta,2004,218(4):516-524.
[32] Xanier-Filho J. The biological roles of serine and cyste-ine proteinase inhibitors in plants[J]. Revista Brasileira de Fisiologia Vegetal,1992,4(1):1-8.
[33] Beopoulos A,Mrozoya Z,Thevenieau F,et al. Control of lipid accumulation in the yeast Yarrowia lipolytica[J]. Applied and Environmental Microbiology,2008,74 (24):7779-7789.
[34] Gardocki M E,Jani N,Lopes J M. Phosphatidylinositol biosynthesis:biochemistry and regulation[J]. Biochimi-ca et Biophysica Acta,2005,1735(2):89-100.
[35] Athenstaedt K,Damug. Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae[J]. Journal of Bacteriology,1997,l79(24):7611-7616.
[36] Larsson C,Paohlman I L,Ansell R,et al. The importance of theglycerol 3-phosphate shuttle during aerobicgrowth of Saccharomyces cerevisiae[J]. Yeast,1998,14(4): 347-357.
[37] Boy-Marcotte E,Lagenielg,Perrot M,et al. The heat shock response in yeast:differential regulations and con-tributions of the Msn2p/Msn4p and Hsf1P regulons[J]. Molecular Microbiology,1999,33(2):274-283.
[38] Panadero J,Pallotti C,Rodriguez-Vargas S,et a1. A downshift in temperature activates the high osmolarityglycerol(HOG)pathway,which determines freeze toler-ance in Saccharomyces cerevisiae[J]. The Journal of Biological Chemistry,2006,281(2):4638-4645.
[39] Lee J,Godon C,Lagnielg,et al. Yapl and Skn7 control two specia1ized oxidative stress response regulons in yeast[J]. The Journal of Biological Chemistry,1999,274 (23):16040-16046.
[40] Mittler R. Oxidative stress,antioxidants and stress toler-ance[J]. Trends in Plant Science,2002,7(9):405-410.
[41] Rouhier N,Jacquot J P. Plant peroxiredoxins:alternative hydroperoxide scavenging enzymes[J]. Photosynth Re-search,2002,74(3):259-268.
[42] Haslekas C,Stacy R A,Nygaard V,et al. The expression of a peroxiredoxin antioxidantgene,AtPer1,in arabidop-sis thaliana is seed-specific and related to dormancy
[J]. Plant Molecular Biology,1998,36(6):833-845.
[43] Choi Y O,Cheong N E,Lee K O,et al. Cloning and ex-pression of a new isotype of the peroxiredoxingene of Chinese cabbage and its comparison to 2Cys-peroxiredoxin isolated from the same plant[J]. Biochemistry Biophysics Research Communication,1999,258(3):768-771.
[44] Horling F,Konig J,Dietz K J. Type II peroxiredoxin C,a member of the peroxiredoxin family of Arabidopsis thali-ana:its expression and activity in comparison with other peroxiredoxins[J]. Plant Physiology and Biochemixtry,2002,40(6-8):491-499.
[45] 李晓玲,赵欣欣. 植物基因组中的反转录转座子[J]. 长春工业大学学报:自然科学版,2004,4(4):21-24.
[46] 唐益苗,马有志.植物反转录转座子及其在功能基因 组学中的应用[J].植物遗传资源学报,2005,6(2): 221-225.
[47] 石凤敏,云锦凤,赵 彦,等.蒙古冰草基因组类反转录转座子基因同源序列的克隆与序列分析[J]. 华北农学报,2010,25(6):52-56.
[48] Beguiristain T,Grandbastien M A,Puigdomenech P,et al. Three Tntl subfamilies show diferent stress-associat-ed patterns of expression in tobacco:consequences for retrotransposon,control and evolutionin plants[J]. Plant Physiology,2001,127:212-221.
[49] Rashkova S,Karam S E,Pardue M L. Element-specific localization of Drosophila retrotransposongag proteins occurs in both nucleus and cytoplasm[J]. Proceedings of the National Academy of Sciences,2002,99:3621-3626.
[50] Van Dmme E J M,Barre A,Rouge P,et al. Cytoplasmic/ nuclear plant lectins:a new story[J]. Trends in Plant Science,2004,9:484-489.
[51] Van Damme E J M,Lannoo N,Fouquaert E,et al. The i-dentification of inducible cytoplasmic/nuclear carbohy-drate-binding proteins urges to develop novel concepts a-bout the role of plant lectins[J].glycoconjugate Jour-nal,2004,20:449-460.
[52] 吕桂云,郭绍贵,张海英,等.西瓜与枯萎病菌非亲和互作的表达序列标签分析[J]. 中国农业科学,2010,43(9):1883-1894.
[53] Kong Z S,Li M N,Yang W Q,et al. A ovel nuclear-lo-calized CCCH-Type zinc finger protein,OsDOS,is in-volved in delaying leaf senescence in rice[J]. Plant Physiology,2006,141(4):1376-1388.
文章导航

/