绥农14是集优质、高产、抗病、广适应性于一身的大豆优良品种,对绥农14系谱亲本进行分子和表型的遗传基础解析,为有目的地选择杂交亲本拓宽遗传基础提供理论指导。利用包含有生长性状、产量性状、品质性状、抗逆性状、固氮性状在内的50个表型性状和550个微卫星位点对绥农14系谱亲本进行分析。550个SSR位点共检测出等位变异1 494个,平均每个SSR位点的等位变异为2.716 4,平均PIC值为0.445 0,其中30个多态性高的位点可作为评价大豆种质资源遗传多样性的重要位点;连锁群C1的多态性位点比例最高为0.961 5,连锁群A2的保守片断最多为11个,构建绥农14系谱亲本的指纹图谱最少需2个位点。50个表型性状共检测到等位变异255个,每个位点的平均等位变异为5.1个,平均PIC值为0.683 2,主成分分析结果表明,6个主成分的累积贡献率在80.1%以上,分析每个主成分的组成发现,产量性状、生长性状,品质性状、抗逆性状、固氮性状在分析大豆种质资源遗传多样性时均具有重要的作用,进行每一类性状的主成分分析,选出重要性状作为大豆综合性状考察的主要指标。基于SSR的UP-GMA聚类结果与基于农艺数据的UPGMA聚类结果的相关系数仅为0.393 0,2种聚类方法都只能在一定程度上揭示品种间的亲缘关系,因此,在进行种质资源遗传多样性研究时应将分子数据分析与表型性状解析相结合。
Suinong 14 is the typical elite cultivaR including high-quality,high yield,disease Resistance and wide adaptability. Analysising the moleculaR and phenotypic genetic basis of Suinong 14 pedigRee,pRovide the theoRetical guidance in puRposely chosing hybRid paRent to bRoaden the genetic basis. In the cuRRent ReseaRch,50 agRonomic tRaits and 550 SSR maRkeRs weRe chosen and analyzed. AccoRding to natuRe of eveRy tRait, the 50 agRicultuRal tRaits weRe adivided into 6 gRoups,gRowth tRaits,yield tRaits,quality tRaits, Resistance tRaits. In total 1 494 alleles weRe detected in 550 SSR maRkeRs with an aveRage allele numbeR of 2. 716 4 peR locus,The aveRage of PIC is 0. 445 0,of which 30 high polymoRphic loci can be chosed as impoRtant locis to evaluate the genetic diveRsity of soybean geRmplasm ResouRces; LG C1 has the highest pRopoRtion of polymoRphic loci of 0. 961 5,LG A2 has the moRe conseRvative fRagment up to 11. At least two SSR loci weRe needed to discRiminate Suinong 14 fRom its pedigRee. In total 255 alleles weRe detected in 50 phenotypic with an aveRage allele numbeR of 5. 100 peR locus,The aveRage of PIC is 0. 683 2. PRincipal component analysis ( PCA) Result showed that the cumulative contRibute of 6 pRincipal components foR 50 agRonomic tRaits was above 80. 1%,Analysis of the composition of each pRiciple component show that eveRy tRaits have an impoRtant Role in the compRehensive study of genetic diveRsity of soybean geRmplasm. Some impoRtant tRaits of soybean weRe selected as key index in soybean study. The CoRRelation between SSR clusteR and agRonomic tRaits clusteR basing on UPGMA is 0. 393 0, the Result indicated that the two kinds of clusteRing methods can only Reveal some Relationship among the species at a ceRtain extent,Thus the optimal stRategy combined SSR data and agRonomic tRaits is necessaRy foR genetic diveRsity analysis of soybean geRmplasm.
[1] 贾继增. 应用植物基因组学的理论与方法开发我国丰 富的作物种质资源[J]. 中国农业科技导报,1999,1 ( 2) : 41 - 45.
[2] 周延清. DNA 分子标记技术在植物研究中的应用
[M]. 北京: 化学工业出版社, 2005, 200 - 201.
[3] 王彪,邱丽娟. 大豆SSR 技术研究进展[J]. 植物学 通报, 2002, 19( 1) : 44 - 48.
[4] Akkaya M S, et al. LengthpolymoRphismofsimplesequenceR epeatsinsoybean[J]. Genetics, 1992, 132: 1131 - 1139.
[5] MoRgante M,et al. GeneticmappingandvaRiabilityofsevensi mplesequencesRepeatlociinsoybean [J]. Genome,1994, 37: 763 - 769.
[6] Maughan P J, et al. MicRosatelliteandamplifiedsequencelen gthpolymoRphismsincultivatedandwildsoybean[J]. Genome, 1995, 38: 715 - 7238.
[7] 许占友,邱丽娟,常汝镇,等. 利用SSR 标记鉴定大豆 种质[J]. 中国农业科学, 1999, 32( 增刊) : 40 - 48.
[8] Diwan N,CRegan P B. Automated sizing of fluoRescent-labeled simple sequence Repeat( SSR) maRkeRs to assay genetic vaRiation in soybean[J]. TheoR Appl Genet,1997, 95: 723 - 733.
[9] NaRvel J M,FehR W R,Chu W C, et al. Simple sequence Repeat diveRsity among soybean plant intRoductions and elite genotypes[J]. CRop Sci, 2000, 40: 1452 - 1458.
[10] BRown-GuediRa G L,Thompson J A,Nelson R L, et al. Evaluation of genetic diveRsity of soybean intRoductions and NoRth AmeRican ancestoRs using RAPD and SSR maRkeRs[J]. CRop Sci, 2000, 40: 815 - 823.
[11] Abe J,Xu D H,Suzuki Y,et al. Soybean geRmplasm pools in Asia Revealed by nucleaR SSRs[J]. TheoR Appl Genet, 2003, 106: 445 - 453.
[12] 崔艳华,邱丽娟,常汝镇,等. 黄淮夏大豆( G. max) 初 选核心种质代表性检测[J]. 作物学报,2004,30( 3) 284 - 288.
[13] Lixia Wang,Rongxia Guan,Liu Zhangxiong, et al. Genetic diveRsity of Chinese cultivated Soybean Revealed by SSR maRkeRs[J]. CRop Science, 2006, 46: 1032 - 1038.
[14] 王彪,常汝镇,陶莉,等. 分析中国栽培大豆遗传 多样性所需SSR 引物的数目[J],分子植物育种, 2003,1 ( 1) ; 82 - 88.
[15] 谢华,常汝镇,曹永生,等. 利用秋大豆( Glycine max ( L. ) MeRR) 筛选核心位点的研究[J]. 中国农业科学, 2003, 36( 4) : 306 - 366.
[16] 王丽霞. 中国栽培大豆遗传多样性分析与核心种质 构建[J]. 北京: 中国农业科学院, 2005.
[17] 陈维元,吕德昌,姜成喜,等. 绥农号大豆血缘关系分 析[J]. 黑龙江农业科学, 2004( 4) : 9 - 12.
[18] 胡喜平. 合丰号大豆品种系谱分析[J]. 大豆科学, 2002,2 ( 21) : 131 - 134.
[19] 中国农业科学院作物品种资源研究所主编. 中国大 豆品种资源目录( 续编一、二) [M]. 北京: 中国农业 出版社, 1990, 1996.
[20] 崔章林,盖钧镒,Thomase E,等. 中国大豆育成品种及 其系谱分析( 1923 ~ 1995) [M]. 北京: 中国农业出版 社, 1998: 23 - 39.
[21] 盖钧镒,赵团结,崔章林,等. 我国1923 ~ 1995 年育成 的651 个大豆品种的遗传基础[J]. 中国农业科学, 1998, 31( 5) : 35 - 43.
[22] 盖钧镒,崔章林. 中国大豆育成品种的亲本分析[J]. 南京农业大学学报, 1994, 17( 3) : 19 - 23.
[23] 秦君,陈维元,关荣霞,等. 国外种质对拓宽中国大 豆优良品种遗传基础的SSR 标记分析[J]. 科学通 报, 2006, 51( 6) : 686 - 692.
[24] 王金陵,杨庆凯,吴宗璞. 中国东北大豆[D]. 哈尔滨: 黑龙江科学技术出版社, 1999, 263 - 266.
[25] 关荣霞,常汝镇,邱丽娟. 用于分析的大豆的快速提 取[J]. 大豆科学, 2003, 21( 1) : 73 - 74.
[26] 李莹,王志,李原萍. 山西省大豆品种资源研究
[J]. 山西农业科学, 2012, 40( 7) : 791 - 795.
[27] 权月伟,李喜焕,常刘锁,等. 大豆耐低钾种质资源筛 选研究[J]. 华北农学报, 2011, 26( 增刊) : 51 - 55.
[28] 崔艳华,邱丽娟,常汝镇,等. 黄淮夏大豆( G. max) 初 选核心种质代表性检测[J]. 作物学报, 2004, 30( 3) : 284 - 288.
[29] 张小虎,刘学义. 大豆品种资源抗旱性鉴定指标及方 法[J]. 山西农业科学, 2011, 39( 2) : 106 - 108, 112.
[30] 崔艳华,邱丽娟,常汝镇,等. 黄淮夏大豆遗传多样性 分析[J]. 中国农业科学, 2004, 37( 1) : 15 - 22.