土壤调理剂对土壤理化性状及不结球白菜生理特性的影响

赵泓凯,张潇屹,曾慧云,邓婧涵,陈晓峰,宋丽芬

(中国农业大学 烟台研究院,土壤肥料学实验室,山东 烟台 264670)

摘要:旨为研究Phyto-CatTM土壤调理剂对土壤理化性状改良效果以及不结球白菜生理特性的影响,探索其对传统化肥的替代效果。以不结球白菜植株为试验对象,采用多因素单水平方法:研究只施加基肥(CK)、基肥+Phyto-CatTM土壤调理剂(T1)、基肥+常规施肥(T2)、基肥+常规施肥+Phyto-CatTM土壤调理剂(T3)4种处理对不结球白菜的生理特性和土壤理化性质及肥力水平的影响。结果表明,与CK处理相比,T1、T2、T3处理均可显著提高不结球白菜产量、叶绿素含量、叶片可溶性糖以及植株根系活力,其中3个处理各指标分别提升了11.5%~27.9%,9.8%~22.7%,7.8%~16.3%,12.4%~24.8%;与CK处理相比,T1处理使试验土壤的pH值、水稳性团聚体含量、田间持水量、土壤有机质、速效氮、速效磷、速效钾含量分别提高5.9%,5.3%,2.1%,18.42%,7.32%,29.89%,33.97%,而土壤容重却下降了9.5%。结果表明,Phyto-CatTM土壤调理剂对不结球白菜的生理特性及土壤性状改良效果明显。在不施化肥的条件下,其在修复土壤、提高作物产量方面作用明显,可在保证作物产量的前提下替代化肥施用,为农业无公害生产开辟了一条新的途径。

关键词:不结球白菜;土壤调理剂;土壤物理结构;土壤养分;植物经济性状

不结球白菜(Brassica rapa L.Chinensis Group)是全国各地广泛栽培的蔬菜品种,在南北蔬菜周年供应中占有重要地位。但是在不结球白菜种植过程中,农户往往为提高产量施用过量化肥,导致土壤酸化、退化、重金属污染和地下水体污染等一系列问题。这严重影响了叶菜产量与质量,成为制约农业可持续发展的重要因素之一[1-5]。因此,在实际生产中,如何改变叶菜种植过程中的施肥方式,进行土壤改良,加强土壤自身的调节能力显得尤为重要。施用土壤调理剂是修复退化土壤,清除土壤污染的重要举措[6-10]。近年来,随着肥料行业的不断发展,国内对于土壤调理剂在净化土壤方面中的应用研究日益增多[11-16],任晓磊[11]研究表明,以柠檬酸为主要成分的土壤调理剂能够降低土壤容重,提高田间持水量,进而增加青贮玉米(Zea mays L.)的产量;李彦强等[12]研究发现,以腐殖酸为主要原料的土壤调理剂,能够提高土壤水稳性团聚结构体和有机质的含量,有效改良了大棚内结构障碍性土壤;吴多基等[13]研究发现,以CaO为主要成分土壤调理剂配合化肥施用能减少土壤养分流失,实现红壤水稻田的持续高产;史蛟华等[14]研究发现,以改性高分子材料为主要成分的土壤调理剂可提高葡萄园土壤酶活性,改善葡萄园土壤质地,从而提升葡萄品质。左建等[15]研究发现,沸石类土壤调理剂可以提高土壤阳离子交换量,进而降低土壤碱化度和pH值,实现对碱化土壤的改良。蒋仁霞等[16]研究表明,水田施用以CaO为主要成分的土壤调理剂可以降低土壤中重金属镉的有效性,对镉污染水田的修复治理有良好的效果。目前,关于土壤调理剂对作物生长发育的研究多集中在花生(Arachis hypogaea)、小麦(Triticum aestivum L.)、水稻(Oryza sativa L.)、黄瓜(Cucumis sativus Linn.)、马铃薯(Solanum tuberosum L.)等作物上,研究发现土壤调理剂在提升作物株高、促进植株分枝和生根、提高作物产量和品质、减轻病虫害发生等方面具有重要作用[17-20]。当前,国内常用的土壤调理剂种类繁多,在实际生产中有一定的应用[21-22]。但是传统土壤调理剂对土壤自身肥力的释放作用并不显著,因此,施用时大多与化肥配施才能保证作物产量。而且传统土壤调理剂大多以基肥的形式输入到土壤中,这种施用方式导致其在实际应用过程中用量偏大、随雨水浇灌等过程淋失情况严重;且因其价格相对昂贵,故而在实际生产中难以广泛应用[23-27]。本试验将美国新型土壤调理剂Phyto-CatTM应用到国内叶菜类生产中,通过对比试验,研究不同处理对大田作物土壤理化性质的改良以及对土壤自身肥力的发掘能力,为Phyto-CatTM土壤调理剂在作物生产中的实际应用提供一条可行的途径。

1 材料和方法

1.1 试验地概况

试验于2020年9-11月在中国农业大学烟台研究院试验田(121.53°E,37.44°N)进行。试验地地势平坦、肥力均匀,土壤容重为1.48 g/cm3,土壤质地为黏壤土。耕层主要养分状况:有机质含量为11.7 g/kg,土壤碱解氮(N)含量为52.32 mg/kg,速效钾(K2O)含量为66.06 mg/kg,有效磷(P2O5)含量为9.81 mg/kg,pH值为5.78。

1.2 试验材料

供试不结球白菜品种为上海青,于2020年10月18日定植,株行距为10 cm×10 cm。供试土壤调理剂为美国Bio-organic公司提供的Phyto-CatTM,产品形态为液态溶液,其主要成分为酵母抽提物和非离子表面活性剂,其中含烷氧基聚乙烯氢氧基乙醇(CAS号:68131-40-8)9.0%,植物和矿物来源的生物有机催化剂酵母Ⅱ(CAS号:68876-77-7)水溶液91.0%。

1.3 试验设计

不结球白菜生长期间设4个处理,每个处理3次重复,每个处理小区面积40 m2(10 m×4 m),共12个小区,随机区组排列,整地前7 d按照22 500 kg/hm2用量于每小区施用腐熟的鸡粪有机肥(89.95 kg/小区),将试验田深翻、起垄、做畦、浇水、播种、覆土。在不结球白菜生长期(共42 d)内,将Phyto-CatTM稀释成百万分之二浓度,随不结球浇灌用水施入田间。具体试验设计见表1。

表1 田间所用试验材料及用量
Tab.1 Test materials and dosage used in the field

处理Treatments所用试验材料Test materials用量及方法Dosage and methodCK只施用腐熟鸡粪有机肥施用腐熟的鸡粪有机肥89.95 kg/小区T1施用腐熟鸡粪有机肥+Pytho-CatTM土壤调理剂按照CK标准施基肥后,将Phyto-CatTM土壤调理剂稀释1 000倍储存,定植后将储备液取出稀释500倍,于各小区每隔7 d浇灌1次,1次40 L。T2施用腐熟鸡粪有机肥+氮磷钾复合肥(15-15-15)按照CK标准施基肥后,于每个小区一次性施加3 kg氮磷钾复合肥。T3施用腐熟鸡粪有机肥+Pytho-CatTM土壤调理剂+氮磷钾复合肥(15-15-15)按照CK标准施基肥后,于各小区一次性施加3 kg氮磷钾复合肥;同时按T1处理标准施加Phyto-CatTM土壤调理剂。

1.4 测定项目与测定方法

1.4.1 不结球白菜产量与生理特性指标的测定 不结球白菜于2020年11月28日采收,采收时使用五点取样法在每个小区随机选取植株20棵用于指标测定。采收结束后按小区面积折算产量,并测定植株叶片可溶性糖含量、可溶性蛋白质含量、叶绿素含量与根系活力等植物生理特性指标。采用分光光度计法测定叶绿素的含量[28],采用酮比色法测植物可溶性糖含量[29],采用TTC还原法测定根系活力[30]

1.4.2 土壤理化性质的测定 按照“S”型路线选5个点,每点用土钻垂直取20 cm深的土样,共取土1 kg,按照NY/T 1121相关土壤测定标准进行土壤指标测定[31],测定项目包括土壤速效氮、磷、钾含量,有机质含量、pH值、水稳性团聚体含量、土壤容重、田间持水量等。

1.5 数据分析

采用Microsoft Office Excel 2016,SPSS 26.0对数据进行多重比较和显著性分析。

2 结果与分析

2.1 土壤物理结构的变化

水稳性团聚体含量高的土壤,内部含有多级大量的大小孔隙,团粒之间排列疏松。此类土壤的通气透水性较好,保水保肥能力强、耕性好。水稳性团聚体含量低的土壤,土壤总孔隙度小,主要是小的非活性孔隙,植物根系难穿扎;而结构体之间孔隙大,容易漏水漏肥[32]。由表2可知,施用Phyto-CatTM土壤调理剂可以显著提高试验田土的水稳性团聚体含量。常规施肥T2处理与CK处理的水稳性团聚体则无显著差异,T1、T3处理的土壤水稳性团聚体含量较CK处理分别显著提高5.3%,7.1%,且T1处理的水稳性团聚体含量与T3处理差异不显著。

由表2可知,施用Phyto-CatTM土壤调理剂可以降低试验田土壤容重并提高田间持水量,且调理剂与复合肥等比例施用与只施用Phyto-CatTM土壤调理剂处理的结果无显著差异。其中T1、T2和T3处理土壤容重较CK处理分别下降了9.5%,3.3%,12.1%,田间持水量分别上升了2.1%,0.5%,2.5%。3个处理试验田的黏壤土较CK处理孔隙小而多。Phyto-CatTM土壤调理剂使土体中优良团粒结构体含量增多则使土体的大孔隙增多,总孔隙度增大,相应的土壤容重会适当降低,田间持水量则会升高,土体将兼有蓄水通气和保水保肥双重作用[32-33]

表2 各处理土壤理化性质比较
Tab.2 Comparison of the physical and chemical properties of the treated soil

处理Treatments水稳性团聚体含量/(mg/g)Water stable aggregates content土壤容重/(g/cm3)Volume weight田间持水量/(mg/g)Field water holding capacitypH值pH valueCK150.8±0.19b1.48±0.01a301.5±0.06b5.78±0.06bT1158.8±0.19a1.34±0.03b307.8±0.08a6.12±0.07aT2152.3±0.20b1.43±0.02a303.1±0.07b5.67±0.06cT3161.6±0.22a1.30±0.03b309.2±0.09a5.83±0.08b

注:同列数据后不同小写字母表示不同处理间差异显著(P<0. 05)。表3-5同。

Note:Different lowercase letters within a column indicate significant difference(P<0. 05)among different treatments. The same as Tab.3-5.

复合化肥可使土壤酸化程度加重,而Phyto-CatTM土壤调理剂对酸性土壤有一定的改善效果,对复合化肥引起的pH值下降有显著抑制作用。其中,T2处理土壤pH值相较CK处理显著下降1.9%,T1处理土壤pH值较CK显著提高5.9%,T3处理的土壤pH值比CK处理微弱提升0.8%。

2.2 土壤养分的变化

由表3可知,施用Phyto-CatTM土壤调理剂能显著提高土壤碱解氮、有效磷、速效钾与有机质的含量。与CK相比,T1处理碱解氮、有效磷、速效钾和有机质的含量分别上升了7.32%,29.89%,33.97%,18.42%;T2处理碱解氮、有效磷和速效钾含量分别上升了13.04%,38.36%和6.41%,有机质含量下降0.44%;T3处理碱解氮、有效磷、速效钾、有机质含量分别上升19.87%,58.52%,36.73%,21.05%。综上分析,施用复合肥会造成田土化肥积累,而Phyto-CatTM土壤调理剂则可在不施肥的条件下增加土壤有机质的含量,活化土壤中氮磷钾元素,在改善土壤结构的同时,促进土壤对作物的营养供应。

表3 各处理土壤养分比较
Tab.3 Comparison of soil nutrients in each treatment

处理Treatments碱解氮含量/(mg/kg)Alkaline nitrogen content有效磷含量/(mg/kg)Available phosphorus content速效钾含量/(mg/kg)Available potassium content有机质含量/(mg/g)Organic matter contentCK51.63±1.13d10.27±0.13c68.6±1.26c11.4±0.02bT155.41±1.15c13.34±0.12bc91.9±1.23a13.5±0.03aT258.36±1.16b14.21±1.10b73.0±1.21bc11.3±0.03bT361.89±1.17a16.28±1.16a93.8±1.23a13.8±0.02a

2.3 作物产量变化

由表4可以看出,Phyto-CatTM土壤调理剂与复合肥均施用的T3处理的不结球白菜的产量最高,较CK提高27.9%,达到51 235.65 kg。T1处理对不结球白菜的增产效果十分显著,其增产效果显著高于T2处理,表明Phyto-CatTM土壤调理剂可以在保证产量的情况下替代化肥施用。T1处理不结球白菜产量达到49 292.1 kg/hm2,较CK提高23.1%。T2处理不结球白菜产量为45 267.6 kg/hm2,较CK提高11.5%。

表4 各处理不结球白菜的产量比较
Tab.4 Comparison of the yield of non-heading Chinese cabbage in each treatment

处理Treatments小区产量/kgYield重复ⅠRepeat Ⅰ重复ⅡRepeat Ⅱ重复ⅢRepeatⅢ平均Average比CK增加/%Increase range compared with CK产量/(kg/hm2)Yield CK159.84c159.28c161.15c160.09±4.13c-40 042.50±1 032.9cT1196.72a197.00a197.53ab197.07±1.77a23.149 292.10±442.65aT2180.76b181.56b180.62b180.98±2.18b11.545 267.60±545.25bT3204.68a205.16a204.64a204.84±1.24a27.951 235.65±310.20a

2.4 作物经济性状变化

由表5可知T1处理的各指标均显著高于CK处理,表明Phyto-CatTM土壤调理剂对上海青不结球白菜的经济性状提升效果极为显著。

表5 各处理不结球白菜的经济性状比较
Tab.5 Comparison of economic characteristics of non-heading Chinese cabbage in each treatment

处理Treatment株高/cmPlant height下胚轴粗/mmHypocotyl diameter 最大叶长/cmMaximum leaf length 最大叶宽/cmMaximum leaf width 地上部鲜质量/gFresh weight of shoot 地上部干质量/gDry weight of shootCK4.37±0.04c1.81±0.01c4.56±0.02c2.38±0.01c1.544 6±0.009 9c0.096 3±0.001 8cT15.15±0.07a2.31±0.05a5.95±0.06a3.25±0.05a2.059 5±0.024 9a0.131 0±0.003 8aT24.75±0.05b2.04±0.03b5.28±0.04b2.71±0.02b1.745 2±0.019 3b0.110 3±0.002 7bT35.07±0.06a2.25±0.04ab5.86±0.05a3.20±0.04a2.044 7±0.021 2a0.128 7±0.003 2a

2.5 作物生物学特性变化

由图1可知,T1、T3处理的不结球白菜叶绿素含量较CK分别显著提高18.9%,22.7%,而T2处理不结球白菜叶绿素含量提高并不显著,较CK仅提高9.8%。值得注意的是,在播种后14,28 d时T1处理的叶绿素含量显著高于T2处理,但在收获时二者差异并不显著。

不同小写字母表示不同处理间差异显著(P<0. 05)。图2-3同。
Different lowercase letters indicate significant difference(P<0. 05)
among different treatments.The same as Fig.2-3.

图1 各处理对叶片叶绿素含量影响
Fig.1 The effect of each treatment on
the chlorophyll content of leaves

由图2可知,在收获时T1处理不结球白菜叶片可溶性糖含量最高,较CK提高16.3%, T2处理与T3处理的叶片可溶性糖含量比CK提高了7.8%,8.4%,但提高效果并不显著。

图2 各处理对叶片可溶性糖含量的影响
Fig.2 The effect of each treatment on
the soluble sugar content of leaves

植物根系是活跃的吸收器官和合成器官,根的生长情况和活力水平直接影响地上部的生长和营养状况及产量水平。TTC还原量能表示脱氢酶活性,并作为根系活力的指标[34-35]。由图3可知,与CK相比,T1、T2、T3处理的不结球白菜根系活力分别上升18.6%,12.4%,24.8%。调理剂处理组根系活力远超CK,Phyto-CatTM可以提高不结球白菜植株的根系活力,且其提高能力大于氮磷钾复合肥(15-15-15)。

图3 各处理对根系活力的影响
Fig.3 Effects of each treatment on root vitality

3 讨论与结论

国内现行传统土壤调理剂对土壤起修复作用的同时,都存在的一定的问题与局限。有机物料类土壤调理剂含有大量的有机质,对于土壤养分补充有很好的作用,但其在实际应用中施用量很大才能够产生明显效果。天然矿石类土壤调理剂对土壤物理结构改良效果极佳,但是生产原料、运输方式、施用量等一系列问题限制了它的应用。无机固体废弃物类土壤调理剂自身含有一些重金属离子,有造成土壤二次污染的风险;高分子类土壤调理剂则大多成本较高,而且须考虑其是否容易降解[21,36-39]。Phyto-CatTM土壤调理剂与国内现行大宗土壤调理剂不同,它的成分是烷氧基聚乙烯氢氧基乙醇(非离子表面活性剂)和酵母抽提物的混合液,具有高效的生物催化的功能,在实际生产中用量小,效果明显,运输方便,且对土壤不会产生污染副作用[40-41];其对土壤的修复效率高,可以在不施用化肥的前提下,发挥土壤本身潜力,改善土壤物理结构,提高土壤养分,增加作物产量[40]。美国加州戴维斯分校为期2 a的研究表明,Phyto-CatTM土壤调理剂的使用对土壤改良,作物的生长、光合作用、吸水和产量的提高都有好处[41]。本研究以不结球白菜为试验对象也得到了相似的结论。

3.1 Phyto-CatTM土壤调理剂对土壤物理结构的改良效果

土壤团粒结构体是土壤结构的基本组成单位,土壤团粒结构体含量越多则土壤保水透气性能越优;土壤容重代表土壤密实程度,其数值过大意味着土壤板结,植物根系难以穿插。邵玉翠等[42]研究表明,使用7 500 kg/hm2的天然矿物改良剂能够降低土壤容重12.23%。吴淑芳等[43]研究表明,土地喷施1 200 L/hm2脲醛树脂可以使水稳性团聚体含量增加4.69%;土地拌施180 kg/hm2聚乙烯醇使土壤水稳性团聚体含量增加5.06%。可以看出,传统的土壤调理剂对土壤物理结构有一定的修复改善效果,但存在用量大,施用不便,效率低等问题。本试验结果表明,在不结球白菜浇水周期中,T1处理以2 mg/L的剂量率浇灌土壤,折合每公顷土壤仅需施用Phyto-CatTM土壤调理剂原液120 mL,即可使土壤团粒结构体含量上升5.3%,田间有效持水量上升2.1%,土壤容重下降9.5%。综上分析,Phyto-CatTM土壤调理剂施用剂量远远小于传统土壤调理剂,且其改良效率与传统土壤调理剂差异并不显著。

3.2 Phyto-CatTM土壤调理剂对土壤养分的影响

土壤速效氮磷钾和有机质的含量是判定土壤养分状况的重要指标。于跃跃等[44]研究发现,施用15 t/hm2的蚯蚓粪可以使土壤速效氮磷钾含量分别上升11.7%,31.9%,27.9%。戴黎等[22]研究发现,施用硅钙钾镁土壤调理剂1 125 kg/hm2可使土壤有机质含量上升4.6%、pH值上升0.11个单位。可见蚯蚓粪肥一定提高土壤养分的能力,但是也面临施用量巨大,生产运输不便的局限[21,45]。硅钙钾镁肥改良酸性土壤效果显著,但是其生产原料参差不齐一些劣质石膏,煤渣制成的硅钙镁肥容易造成土壤重金属中毒,土壤板结等问题[21,45]。本试验结果表明,T1处理Phyto-CatTM土壤调理剂可使土壤有机质,碱解氮、有效磷、速效钾、pH值分别提高18.42%,7.32%,22.89%,33.97%,5.9%。原因可能是Phyto-CatTM土壤调理剂有助于土壤水稳性团聚体形成,稳定土壤结构,提高土壤对吸附力,减少了肥料的淋失。Phyto-CatTM土壤调理剂引起土壤 pH 值升高,间接使土壤氧化还原电位降低。在还原环境下,土壤中还原出的Fe2+,Mn2+等离子会使一部分原先被土壤吸附的Na+、K+成为速效态,使土壤速效养分增加。

3.3 Phyto-CatTM土壤调理剂对植株的影响

赖长鸿等[46]研究表明,施加1 200 kg/hm2 有机物料类土壤调理剂施用量促进上海青根部生长,增加叶长和叶质量。曹艳等[47]研究表明,用以腐殖酸原粉、白云石为原料新型土壤调理剂与复合肥配施可以显著提高上海青的叶绿素含量和产量。本研究发现,与CK处理相比,单独施用Phyto-CatTM土壤调理剂的T1处理使不结球白菜产量、叶片叶绿素含量、叶片可溶性糖含量、根系活力分别提高23.1%,18.9%,16.3%,18.6%,其对上海青的增产与生理特性改良效果的效果优于常规施肥处理组T2,这说明单独施用Phyto-CatTM土壤调理剂可以在不施用化肥的条件下,发挥土壤本身的潜力,释放土体中被固定的养分,使作物提质增产。值得注意的是T3处理的上海青不结球白菜的各项经济性状指标均低于T1处理,其原因可能是,氮磷钾复合肥(15-15-15)与Phyto-CatTM土壤调理剂产生互作作用,影响了土壤调理剂正常发挥作用。

利用单因素多水平比较方法,探讨Phyto-CatTM土壤调理剂在中国大地的可推广性,主要得到以下结论:

在不结球白菜浇水周期中,以2 mg/L的剂量率浇灌土壤,折合每公顷土壤仅需施用Phyto-CatTM土壤调理剂原液120 mL可以显著提高土壤水稳性团聚体含量5.3%,土壤pH值5.9%,土壤有机质18.42%,碱解氮7.32%,速效钾33.97%,有效磷29.89%;Phyto-CatTM土壤调理剂处理组T1的土壤碱解氮和有效磷含量比单施肥料处理组T2低,其余指标均显著优于氮磷钾复合肥组,表明Phyto-CatTM土壤调理剂可以替代化肥施用,改善土壤理化性状。

Phyto-CatTM土壤调理剂施用量(120 mL/hm2)显著小于其他土壤调理剂,运输和储存方便,成本低廉,可以获得较好的产出比。因此,适宜对其做进一步研究,为解决国内化肥滥用、实现农业无公害生产开辟一条新的解决途径。

参考文献:

[1] 林建材,李艳红,曲日涛. 化肥滥用隐患及对策研究[J].安徽农学通报,2013,19(22):66-67,71.doi:10.16377/j.cnki.issn1007-7731.2013.22.032.

Lin J C,Li Y H,Qu R T. Hidden danger and countermeasures of fertilizer abuse[J].Anhui Agricultural Science Bulletin,2013,19(22):66-67,71.

[2] 李怡洁. 化肥、农药双减问题探析[J].南方农业,2019,13(5):174-175.doi:10.19415/j.cnki.1673-890x.2019.05.091.

Li Y J. Analysis on the double reduction of chemical fertilizers and pesticides[J].South China Agriculture,2019,13(5):174-175.

[3] 杨志通. 有效防控农业面污染确保农药化肥使用量负增长[J].现代农业研究,2020,26(8):34-35.doi:10.19704/j.cnki.xdnyyj.2020.08.015.

Yang Z T. Effectively prevent and control agricultural surface pollution to ensure negative growth in the use of pesticides and fertilizers[J].Modern Agriculture Research,2020,26(8):34-35.

[4] Vestberg M,Saari K,Kukkonen S,Hurme T. Mycotrophy of crops in rotation and soil amendment with peat influence the abundance and effectiveness of indigenous arbuscular mycorrhizal fungi in field soil[J].Mycorrhiza,2005,15(6):447-458.doi:10.1007/s00572-005-0349-2.

[5] 易杰祥,吕亮雪,刘国道. 土壤酸化和酸性土壤改良研究[J].华南热带农业大学学报,2006,12(1):23-28.doi:10.3969/j.issn.1674-7054.2006.01.005.

Yi J X,Lü L X,Liu G D. Research on soil acidification and acidic soil's melioration[J].Journal of South China University of Tropical Agriculture,2006,12(1):23-28.

[6] 李晨昱,卢树昌,王茜. 土壤调理剂在农业领域研究现状、问题及前景[J].北方园艺,2018(14):154-160.doi:10.11937/bfyy.20174706.

Li C Y,Lu S C,Wang X. Research status,problems and prospects on soil conditioners application in agricultural fields[J].Northern Horticulture,2018(14):154-160.

[7] 陈廷钦. 土壤调理剂及应用进展[J].云南大学学报(自然科学版),2011,33(S1):338-342.

Chen T Q. Classification of soil conditioner and its application progress[J].Journal of Yunnan University (Natural Sciences Edition),2011,33(S1):338-342.

[8] 孙蓟锋,王旭. 土壤调理剂的研究和应用进展[J].中国土壤与肥料,2013(1):1-7.

Sun J F,Wang X. Advance in research and application of soil conditioner[J].Soils and Fertilizers Sciences in China,2013(1):1-7.

[9] 陈义群,董元华. 土壤改良剂的研究与应用进展[J].生态环境,2008,17(3):1282-1289.doi:10.16258/j.cnki.1674-5906.2008.03.056.

Chen Y Q,Dong Y H. Progress of research and utilization of soil amendments[J].Ecology and Environment,2008,17(3):1282-1289.

[10] 周静,胡芹远,章力干,刘海龙,游来勇. 从供给侧改革思考我国肥料和土壤调理剂产业现状、问题与发展对策[J].中国科学院院刊,2017,32(10):1103-1110.doi:10.16418/j.issn.1000-3045.2017.10.008.

Zhou J,Hu Q Y,Zhang L G,Liu H L,You L Y. Key scientific problems and development countermeasures of fertilizer industry based on agricultural supply-side reform[J].Bulletin of Chinese Academy of Sciences,2017,32(10):1103-1110.

[11] 任晓磊. 新型土壤调理剂在滨海平原青贮玉米中的应用效果研究[D].保定:河北农业大学,2019.

Ren X L. Study on application effect of new soil conditioner in silage corn in coastal plain[D].Baoding:Hebei Agricultural University,2019.

[12] 李彦强,石称华,钱志红,丁振涛,秦彦林. 土壤调理剂对蔬菜大棚土壤的改良效果初探[J].上海农业科技,2020(6):127-129.

Li Y Q,Shi C H,Qian Z H,Ding Z T,Qin Y L. The effect of the soil conditioner on improving the soil in the vegetable greenhouses was initially explored[J].Shanghai Agricultural Science and Technology,2020(6):127-129.

[13] 吴多基,姚冬辉,魏宗强,吴建富. 化肥配施土壤调理剂对酸化红壤性水稻土改良效果研究[J].江西农业大学学报,2020,42(6):1277-1284.doi:10.13836/j.jjau.2020142.

Wu D J,Yao D H,Wei Z Q,Wu J F. A study on the effect of chemical fertilizer combined with soil conditioner on acidified red paddy soil[J].Acta Agriculturae Universitatis Jiangxiensis,2020,42(6):1277-1284.

[14] 史蛟华,陈宽,王晓丽,安梦洁,王开勇.土壤调理剂对盐碱地葡萄K+、Na+运移/分配及土壤理化性质的影响[J].新疆农业科学,2021,58(2):313-325.doi:10.6048/j.issn.1001-4330.2021.02.013.

Shi J H,Chen K,Wang X L.An M J,Wang K Y.Effects of soil conditioner on K+,Na+ migration/distribution and physical and chemical properties of saline-alkali land grape[J].Xinjiang Agricultural Sciences,2021,58(2):313-325.

[15] 左建,孔庆瑞. 沸石改良碱化土壤作用的初步研究[J].河北农业大学学报,1987,10(3):58-64.

Zuo J,Kong Q R. Research of zeolite improving alkalization soils[J].Journal of Agricultural University of Hebei,1987,10(3):58-64.

[16] 蒋仁霞,俞洞波,殷平,陈利球. 土壤调理剂在重金属(镉)污染水田修复治理上的应用效果研究[J].农业工程技术,2019,39(20):21-22.doi:10.16815/j.cnki.11-5436/s.2019.20.012.

Jiang R X,Yu D B,Yin P,Chen L Q. Study on the application effect of soil conditioner in the repair and treatment of paddy fields polluted by heavy metals(Cadmium)[J].Agricultural Engineering Technology,2019,39(20):21-22.

[17] 周先林,周勇,覃琴,胡成成,王龙,李璐,朱海勇. 土壤调理剂与有机肥配施对花生生长发育及产量的影响[J].花生学报,2019,48(2):57-60.doi:10.14001/j.issn.1002-4093.2019.02.009.

Zhou X L,Zhou Y,Qin Q,Hu C C,Wang L,Li L,Zhu H Y. Effects of combined application of soil conditioner and organic fertilizer on peanut growth and yield[J].Journal of Peanut Science,2019,48(2):57-60.

[18] 谢运河,纪雄辉,田发祥,吴家梅,官迪,魏维. 氮肥减量配施土壤调理剂对水稻产量及Cd含量的影响[J].华北农学报,2016,31(S1):415-420.

Xie Y H,Ji X H,Tian F X,Wu J M,Guan D,Wei W. Effect of nitrogen reduction combined with soil conditioners on yields and Cd contents of rice[J].Acta Agriculturae Boreali-Sinica,2016,31(S1):415-420.

[19] 翟建军. “加乐多”土壤调理剂对连作黄瓜生长的影响试验[J].安徽农学通报,2020,26(15):89-90.doi:10.16377/j.cnki.issn1007-7731.2020.15.039.

Zhai J J. The influence of "Galaldo" soil conditioner on the growth of cucumber[J].Anhui Agricultural Science Bulletin,2020,26(15):89-90.

[20] 崔保伟.土壤调理剂、有机肥对豫东黄潮土区马铃薯产量和品质的影响[J].河南农业科学,2020,49(12):47-53.doi:10.15933/j.cnki.1004-3268.2020.12.007.

Cui B W. Effect of application of soil conditioner and organic fertilizer on yield and quality of potatoes in yellow-tide soil region of eastern Henan[J].Journal of Henan Agricultural Sciences,2020,49(12):47-53.

[21] 尹万伟,黄本波,汪凤玲,阮长城,蔡晓宇. 土壤调理剂的研究现状与进展[J].磷肥与复肥,2019,34(2):19-23.doi:10.3969/j.issn.1007-6220.2019.02.008.

Yin W W,Huang B B,Wang F L,Ruan C C,Cai X Y. Research status and progress of soil conditioner[J].Phosphate & Compound Fertilizer,2019,34(2):19-23.

[22] 戴黎,杜延全,朱建强.几种土壤调理剂改良大棚种植草莓土壤的效果[J].中国土壤与肥料,2021(2):276-282.doi:10.11838/sfsc.1673-6257.20023.

Dai L,Du Y Q,Zhu J Q.Effects of several soil conditioners on improving the soil in greenhouse for strawberry plantation[J].Soils and Fertilizers Sciences in China,2021(2):276-282.

[23] 孙宇龙,王烨军,苏有健,张永利,罗毅,廖珺,廖万有,吴卫国. 茶园土壤调理剂的研究及应用现状[J].茶业通报,2019,41(3):125-130.doi:10.16015/j.cnki.jteabusiness.2019.0022.

Sun Y L,Wang Y J,Su Y J,Zhang Y L,Luo Y,Liao J,Liao W Y,Wu W G. Research and application status of the soil conditioning agent in the tea garden[J].Journal of Tea Business,2019,41(3):125-130.

[24] 陈成军. 土壤调理剂对小麦产量的影响[J].种业导刊,2020(6):34-36.

Chen C J. Effect of soil conditioning agents on wheat yield[J].Journal of Seed Industry Guide,2020(6):34-36.

[25] 张世昌,詹承贤,吴凌云. 土壤调理剂品种对茄子产量及土壤理化性状的影响[J].基层农技推广,2020,8(12):24-26.

Zhang S C,Zhan C X,Wu L Y. Effects of soil conditioners on eggplant yield and soil physical and chemical properties[J].Primary Agricultural Technology Extension,2020,8(12):24-26.

[26] 吴洪生,杨筱楠,周晓冬,孙波,秦江涛,刘晓利,满军,吴红兵,陈小青. 磷石膏专用复混肥缓解红壤花生连作障碍效果[J].土壤学报,2013,50(5):1006-1012.doi:10.11766/trxb201211280491.

Wu H S,Yang X N,Zhou X D,Sun B,Qin J T,Liu X L,Man J,Wu H B,Chen X Q. Effects of phosphogypsum-containing mixed fertilizer on peanut growth and restoration of soil fertility of continuous monocropping in red soil[J].Acta Pedologica Sinica,2013,50(5):1006-1012.

[27] 郑惠玲,武继承,韩伟锋,薛毅芳. 土壤调理剂与氮磷配施对花生产量和养分利用的影响[J].河南农业科学,2011,40(10):72-75.doi:10.15933/j.cnki.1004-3268.2011.10.029.

Zheng H L,Wu J C,Han W F,Xue Y F. Effects of combined soil conditioner,nitrogen and phosphorus on yield of peanut and nutrient utilization in sandy soil[J].Journal of Henan Agricultural Sciences,2011,40(10):72-75.

[28] 刘新. 植物生理学实验指导[M].北京:中国农业出版社,2015.

Liu X,Plant physiology laboratory guide[M].Beijing:China Agriculture Press,2015.

[29] 聂继云.果品及其制品质量安全检测营养品质和功能成分[M].北京:中国质检出版社,2017:168.

Nie J Y.Determining quality and safety of fruits and derived products[M].Beijing:China Quality and Standards Publishing&Media Co.,Ltd.,2017:168.

[30] 朱秀云,梁梦,马玉. 根系活力的测定(TTC法)实验综述报告[J].广东化工,2020,47(6):211-212.doi:10.3969/j.issn.1007-1865.2020.06.091.

Zhu X Y,Liang M,Ma Y. A review report on the experiments for the determination of root activity by TTC method[J].Guangdong Chemical Industry,2020,47(6):211-212.

[31] 中华人民共和国农业部. 土壤调理剂 效果试验和评价要求:NY/T 2271—2012[S].北京:中国农业出版社,2013.

The ministry of agriculture of the People′s Republic of China.Soil amendment-Regulations of efficiency experiment and assessment:NY/T2271—2012[S].Beijing:China Agriculture Press,2013.

[32] 吴礼树,土壤肥料学[M].北京:中国农业出版社,2020:75-77.

Wu L S.Soil and fertilizer science[M]Beijing:China Agriculture Press,2020.75-77.

[33] 祁迎春. 关中地区不同农业利用条件下表层土壤结构演变及对可持续发展的影响[D].杨凌:西北农林科技大学,2008.

Qi Y C. Topsoil structure evolution under different land-use and its effect on sustainable development of agriculture in central Shaanxi plain[D].Yangling:Northwest A & F University,2008.

[34] Tanaka J, Kiyoshi K, Kadokura T, Suzuki K I, Nakayama S. Elucidation of the enzyme involved in 2,3,5-triphenyl tetrazolium chloride (TTC) staining activity and the relationship between TTC staining activity and fermentation profiles in Saccharomyces cerevisiae[J].Journal of Bioscience and Bioengineering,2021,131(4):396-404.doi:10.1016/J.JBIOSC.2020.12.001

[35] 檀龙颜,吴依琳,马洪娜.TTC法测定金荞麦种子生活力条件的优化[J].中国民族民间医药,2021,30(1):26-30,37.

Tan L Y,Wu Y L,Ma H N. Optimization of seed vigor test conditions by TTC method in Fagopyrum dibotry[J].Chinese Journal of Ethnomedicine and Ethnopharmacy,2021,30(1):26-30,37.

[36] 陈杰,檀满枝,陈晶中,龚子同. 严重威胁可持续发展的土壤退化问题[J].地球科学进展,2002,17(5):720-728.doi:10.3321/j.issn:1001-8166.2002.05.014.

Chen J,Tan M Z,Chen J Z,Gong Z T. Soil degradation:A global problem of endangering sustainable development[J].Advance in Earth Sciences,2002,17(5):720-728.

[37] 周杰文,张发明,李海平,肖志新,段志超,周冀衡,范伟,张毅. 不同类型土壤调理剂对保山烟区酸化土壤改良效果研究[J].西南农业学报,2018,31(2):360-366.doi:10.16213/j.cnki.scjas.2018.2.024.

Zhou J W,Zhang F M,Li H P,Xiao Z X,Duan Z C,Zhou J H,Fan W,Zhang Y. Effects of different soil conditioners on acidifying soil improvement in Baoshan tobacco-growing area[J].Southwest China Journal of Agricultural Sciences,2018,31(2):360-366.

[38] 刘楠. 褐煤土壤调理剂与氮肥互作对盆栽番茄生长和品质的影响[D].太谷:山西农业大学,2019.

Liu N.Effects of interaction of lignite soil conditioner and nitrogen fertilizer on growth and quality of potted tomatoes[D].Taigu:Shanxi Agricultural University,2019.

[39] 周岩,武继承. 土壤改良剂的研究现状、问题与展望[J].河南农业科学,2010,39(8):152-155.doi:10.15933/j.cnki.1004-3268.2010.08.009.

Zhou Y,Wu J C.Current situation,problems and prospects of soil conditioner[J].Journal of Henan Agricultural Sciences,2010,39(8):152-155.

[40] Dale P,Hill J E. Composition for the treatment for municipal and industrial waste-water:US5879928[P].1999-03-09.

[41] S.Kaan Kurtural,Application of fractions of phyto-cat affects carbon partitioning of grapevine differentially in a hot climate[EB/OL].https://bio-organic.com/phyto-cat/,2020-11-15/2021-04-10.

[42] 邵玉翠,张余良,李悦,严晔端,安玉钗. 天然矿物改良剂在微咸水灌溉土壤中应用效果的研究[J].水土保持学报,2005,19(4):100-103.doi:10.13870/j.cnki.stbcxb.2005.04.024.

Shao Y C,Zhang Y L,Li Y,Yan Y D,An Y C. Study of effect on using natural minerals to improve soil in irrigating brackish water[J].Journal of Soil Water Conservation,2005,19(4):100-103.

[43] 吴淑芳,吴普特,冯浩. 高分子聚合物对土壤物理性质的影响研究[J].水土保持通报,2003,23(1):42-45.doi:10.13961/j.cnki.stbctb.2003.01.011.

Wu S F,Wu P T,Feng H. A study on influence of macromolecule polymers to soil physical properties[J].Bulletin of Soil and Water Conservation,2003,23(1):42-45.

[44] 于跃跃,王胜涛,金强,徐振同,秦晓娇,贾小红. 施用蚯蚓粪对草莓生长和土壤肥力的影响[J].中国农学通报,2014,30(7):219-223.

Yu Y Y,Wang S T,Jin Q,Xu Z T,Qin X J,Jia X H. Effect of vermicompost application on soil fertility improvement and strawberry growth[J].Chinese Agricultural Science Bulletin,2014,30(7):219-223.

[45] 白博文,刘善江,申俊峰,孙昊,吴荣. 土壤调理剂研发及应用研究进展[J].安徽农业科学,2021,49(3):14-18.

Bai B W,Liu S J,Shen J F,Sun H,Wu R.Research progress on the development and application of soil conditioners[J].Journal of Anhui Agricultural Sciences,2021,49(3):14-18.

[46] 赖长鸿,陈泽恩,谢敏杰,兰震,张峰. 土壤调理剂对土壤环境和作物产量的影响[J].磷肥与复肥,2018,33(1):23-25,46.doi:10.3969/j.issn.1007-6220.2018.01.009.

Lai C H,Chen Z E,Xie M J,Lan Z,Zhang F. Effects of soil conditioner on soil environment and crop yield[J].Phosphate & Compound Fertilizer,2018,33(1):23-25,46.

[47] 曹艳,于常海,郭景丽. 新型土壤调理剂施用量对上海青生长及土壤理化性质的影响[J].肥料与健康,2021,48(1):10-12,26.

Cao Y,Yu C H,Guo J L. Effect of application rate of new soil conditioner on growth of pakchoi(Brassica chinensis L.)and soil physical and chemical properties[J].Fertilizer & Health,2021,48(1):10-12,26.

The Effects of Soil Conditioner on the Soil Physicochemical Properties and Biological Characteristics of Non-Heading Chinese Cabbage

ZHAO Hongkai,ZHANG Xiaoyi,ZENG Huiyun,DENG Jinghan,CHEN Xiaofeng,SONG Lifen

(Laboratory of Soil and Fertilizer Science,Yantai Institute of China Agricultural University,Yantai 264670,China)

Abstract It was conducted to research the effect of Phyto-CatTM soil conditioner on the physiological and chemical properties of the soil and the physiological characteristics of non-bearing cabbage,and to explore its effectiveness as an alternative to traditional chemical fertilizers.We take non-heading Chinese cabbage plants as the test object,and adopt a multi-factor single-level method to study the effects of four treatments:study basal fertilizer(CK),basal fertilizer+Phyto-CatTM soil conditioner(T1),basal fertilizer+conventional fertilization(T2),basal fertilizer+conventional fertilization+The effects of four treatments with Phyto-CatTM soil conditioner(T3)on the physiological characteristics of non-heading Chinese cabbage,soil physical and chemical properties and fertility levels.The results indicated that compared with CK treatment,T1,T2 and T3 treatments could significantly increased the yield,chlorophyll content,leaf soluble sugar and root activity(tetrazole reduction intensity)of non-heading cabbage.Three processing each index had respectively increased by 11.5%-27.9%,9.8%-22.7%,7.8%-16.3%,12.4%-24.8%;compared with CK treatment;T1 treatment made the test soil pH,water-stable aggregate content,field water holding capacity,soil organic matter,available nitrogen,available phosphorus,and available potassium content increase by 5.9%,5.3%,2.1%,18.42%,7.32%,29.89% and 33.97%;Respectively,soil bulk density decreased by 9.5%.The research results indicated that the application of Phyto-CatTM soil conditioner had a significant effect on the physiological characteristics and soil properties of non-heading Chinese cabbage. Under the condition of applying no chemical fertilizer,Phyto-catTM soil conditioner played an obvious role in improving soil properties and increasing crop yield. It could replace chemical fertilizer application on the premise of ensuring crop yield,and open up a new way for pollution-free agricultural production.

Key words Non-heading Chinese cabbage;Soil conditioner;Soil physical structure;Soil nutrients;Plant economic traits

收稿日期:2021-05-22

基金项目:山东省农业农村厅“山东省农业重大应用技术创新项目”(SD2019NJ009);烟台市教育局“山东省烟台市校地融合发展项目”(2019XDRHXMXK25);中国农业大学“中国农业大学本科生URP项目”(U20193009);中国农业大学烟台研究院“中国农业大学烟台研究院课题”(YT201905)

作者简介:赵泓凯(2000-),男,山东青岛人,主要从事土壤肥料研究。

通讯作者:

陈晓峰(1979-),男,山东烟台人,讲师,博士,主要从事设施农业研究。

宋丽芬(1971-),女,山东烟台人,副教授,硕士,主要从事土壤肥料研究。

中图分类号:S156.01

文献标识码:A

文章编号:1000-7091(2021)增刊-0312-08

doi10.7668/hbnxb.20192366