强还原灭菌条件下添加橘皮对土壤性状与酶活性的影响

樊娅萍,陈芳玲,贺苗苗,王倡宪

(黑龙江大学 现代农业与生态环境学院,农业资源与环境安全重点实验室,黑龙江 哈尔滨 150080)

摘要:探究土壤强还原灭菌条件下添加橘皮对土壤理化性状与酶活性的影响,为我国丰富的橘皮资源在农业生产中的有效利用提供理论依据。以橘皮为有机物料,采用土培试验的方法,橘皮添加量共设置3个水平(0,0.25%,0.50%),在土壤水达饱和后覆膜,室温灭菌40 d,研究了添加橘皮后土壤理化性状及相关酶活性的变化,并对土壤理化性状与酶活性进行了相关性分析。结果表明:与灭菌前相比,灭菌处理的土壤碱解氮、速效磷与有机质含量均显著增加,pH值显著上升;灭菌条件下,橘皮添加量为0.25%处理的土壤碱解氮、速效磷及有机质含量分别为无橘皮处理的1.10,1.22,1.11倍。此外,与灭菌前相比,土壤脲酶与磷酸酶活性也显著增强,灭菌条件下,橘皮添加量为0.25%处理的脲酶活性与0.50%处理的土壤磷酸酶活性分别为无橘皮处理的1.69,1.46倍。灭菌前,土壤脲酶活性与pH值呈显著负相关,灭菌后,脲酶活性与pH值转变为正相关关系,同时,添加橘皮处理的土壤脲酶活性与有机质也呈正相关,橘皮添加量为0.50%处理的土壤磷酸酶活性与速效磷含量呈显著正相关。因此,土壤强还原灭菌条件下,橘皮添加量为0.25%可显著改善土壤碱解氮与速效磷水平,而橘皮添加量为0.50%的土壤pH值显著上升,速效钾含量显著提高。土壤强还原灭菌时添加橘皮对提高土壤肥力是有益的。

关键词:橘皮;强还原灭菌;土壤理化性状;酶活性;相关性

强还原灭菌法(Reductive soil disinfestation,RSD)是一种皆具广谱,高效、便捷、环保等诸多优点的土壤灭菌方法。该方法中,因有机物料的理化性质和降解性能不同,导致淹水后所创造的土壤环境存在较大差异,最终直接影响了灭菌效果[1-5]。有研究表明,对土壤进行RSD处理时,添加水稻秸秆、甘蔗渣、菜粕、米糠、烟梗对土壤理化性状的影响明显不同,其中添加烟梗可使土壤速效钾与有机质含量显著提高,添加菜粕则显著提高了土壤速效氮、有机质、全氮含量及过氧化氢酶和脲酶活性[6]。以紫花苜蓿为有机物料对土壤进行强还原灭菌处理后,土壤pH值升高,同时,灭菌土壤上配施968生物菌肥可降低番茄茎基腐病与黄瓜枯萎病的发病率[7];此外,紫花苜蓿为有机物料还可在短期内有效改良设施蔬菜退化土壤,显著提高土壤pH值[8]

作为世界第一大水果的柑橘是仅次于小麦和玉米的第三大贸易农产品[9],柑橘皮中富含果胶、矿质等多种营养[10],同时还可以从中提取精油、橙皮苷、多酚等生物活性物质[11]。柑橘皮资源在农业生产中具有极大的应用价值与开发潜力[12-13]。据统计,我国每年产生柑橘皮渣高达1 000万t以上[14],但是,三分之二的皮渣被废弃或填埋,不仅造成资源的浪费,还对环境造成了威胁[15]

鉴于此,本研究利用柑橘皮渣作为有机物料对供试土壤进行强还原灭菌处理,探究土壤理化性状及土壤酶活性的变化,以期为农业生产中有效利用柑橘皮渣资源提供理论依据和技术支持。

1 材料和方法

1.1 试验材料

供试土壤:土壤为农田黑土,风干过筛,测定其基本理化性状如下:碱解氮198.71 mg/kg,速效磷106.46 mg/kg,速效钾90.74 mg/kg,有机质22.88 g/kg,pH值7.16。

供试有机物料:柑橘皮渣,自然风干,粉碎过0.84 mm孔径筛。

土培试验盆钵:(上口径:10.5 cm,下口径:6.5 cm,高:9.5 cm)。

1.2 试验设计

橘皮添加量共设3个水平:①不添加橘皮(CK1);②RSD处理时添加橘皮量为土质量的0.25%,(0.25%);③RSD处理时添加橘皮量为土质量的0.50%(0.50%),每处理6盆。

1.3 试验方法

土样进行RSD处理时,每盆装风干土400 g,依据试验设计分别添加有机物料1 g(0.25%)、2 g(0.50%),装盆前将有机物料与土壤充分混匀,灌水使土壤水分达饱和状态,覆膜,室温培养40 d。土培试验结束后,各处理随机取样,一部分土样风干,磨细、过筛,测定土壤碱解氮、速效磷、速效钾、有机质、pH值,另一部分样品用于测定土壤脲酶、蔗糖酶、磷酸酶活性。

1.4 测定项目及方法

土壤有机质、碱解氮、速效磷含量、pH值分别采用K2Cr2O7容量法、碱解扩散法、钼锑抗比色法、电位法测定[16];速效钾采用比浊法[17]测定;土壤脲酶活性采用扩散法测定;蔗糖酶活性采用3,5-二硝基水杨酸比色法测定;磷酸酶活性采用磷酸苯二钠比色法测定[18]

1.5 试验数据处理

试验数据应用SPSS 25.0软件进行单因素方差分析与相关分析,采用LSD法进行多重比较,测定指标间的相关性以皮尔逊相关系数表示,显著水平取0.05(P≤0.05)。

2 结果与分析

2.1 强还原灭菌处理对土壤理化性状的影响

以橘皮为有机物料对土壤进行RSD处理后其理化性状见表1,由表可知,强还原灭菌处理后,土壤有机质,碱解氮与速效磷含量都显著高于灭菌前。所有处理中,以橘皮添加量为0.25%处理的土壤碱解氮与速效磷含量为最高,其中,无橘皮处理,橘皮添加量为0.25%处理与0.50%处理的土壤碱解氮含量分别为灭菌前处理的1.21,1.33,1.25倍,相应处理的土壤速效磷含量分别为灭菌前处理的1.74,2.13,1.83倍。同时,在RSD处理条件下,橘皮添加量为0.25%处理的土壤碱解氮与速效磷含量分别是无橘皮处理的1.10,1.22倍。经RSD处理后只有橘皮添加量为0.50%处理的土壤速效钾含量显著高于灭菌前。

表1 强还原灭菌对土壤理化性状的影响
Tab.1 The effects of RSD on soil physical and chemical properties

处理Treatments碱解氮/(mg/kg)Alkaline hydrolysable nitrogen速效磷/(mg/kg)Available phosphorus速效钾/(mg/kg)Available potassium有机质/(g/kg)Organic matterpH值pH valueCK198.71±1.20d106.46±5.11c90.75±1.62b22.88±1.88c7.17±0.02dCK1240.68±1.21c185.03±5.04b101.41±10.10b26.98±0.76b7.53±0.01c0.25%263.72±2.00a 226.49±10.47a 113.49±13.01b 29.83±0.25ab7.57±0.02b0.50%247.66±2.22b195.14±5.00b175.30±6.66a30.85±0.25a7.66±0.01a

注:表中CK、CK1、0.25%、0.50%分别表示灭菌前、无橘皮添加的RSD处理、橘皮添加量为0.25%的RSD处理、橘皮添加量为0.50%的RSD处理;表中数值为4次重复测定的均值±标准误;同列不同字母表示差异显著,相同字母表示差异不显著。表2同。

Note:CK,CK1,0.25% and 0.50% represent before RSD,without citrus peels in RSD,adding 0.25% citrus peels in RSD and adding 0.50% citrus peels in RSD respectively;the values are means of four replicates ±s;Significant difference(LSD,P≤0.05)is indicated by different letters within the same columns.The same as Tab.2.

土壤有机质是评价土壤肥力高低的一个重要指标,与土壤生产力息息相关。与灭菌前相比,添加橘皮对土壤进行强还原灭菌处理可显著提高有机质含量,且土壤有机质含量随橘皮添加量的增加而增加,但橘皮添加量为0.25%处理与0.50%处理间无显著差异,其中,橘皮添加量为0.25%处理的土壤有机质含量分别是灭菌前与无橘皮灭菌处理的1.30,1.11倍。土壤pH值不仅是衡量土壤酸碱度的一个直观指标,而且是影响土壤酶活性的一个重要因素。与有机质的变化相似,土壤经过强还原灭菌后pH值都显著提高,且随着橘皮添加量的增加而不断上升,橘皮添加量为0.50%时土壤pH值达最高,较灭菌前升高0.49个pH值单位。

2.2 强还原灭菌处理对土壤酶活性的影响

土壤经RSD处理后,除蔗糖酶外,脲酶与磷酸酶活性较灭菌前均显著增强(表2)。与碱解氮的变化相似,灭菌处理后土壤脲酶活性以橘皮添加量为0.25%处理最高,此时的酶活性分别为灭菌前与无橘皮处理的 8.07,1.69倍。灭菌后土壤磷酸酶活性随橘皮添加量的增加而增强,其中,无橘皮处理与橘皮添加量为0.25%处理与0.50%处理的土壤磷酸酶活性分别为灭菌前的2.27,2.43倍,且橘皮添加量为0.50%处理的土壤磷酸酶活性是无橘皮灭菌处理的1.46倍。

表2 强还原灭菌对土壤酶活性的影响
Tab.2 The effects of RSD on soil enzyme activities

处理Treatments脲酶活性/(mg/(g·d))Urease activity蔗糖酶/葡萄糖/(mg/(g·d))Invertase activity磷酸酶活性/(mg/(g·d))Phosphatase activityCK0.18±0.01c33.01±1.69a0.059±0.000dCK10.86±0.02b 24.95±0.40bc0.135±0.005c0.25%1.45±0.09a27.97±2.65b0.144±0.002b0.50%1.02±0.06b21.47±0.47c0.197±0.003a

与灭菌前相比,土壤蔗糖酶活性在强还原灭菌后都显著降低,橘皮添加量为0.25%处理与0.50%处理的土壤蔗糖酶活性与无橘皮处理间差异不显著。

2.3 土壤理化性状与酶活性相关性分析

RSD处理前后土壤理化性状与酶活性的相关性分析见表3,4,由表3可知,灭菌前,土壤脲酶活性与pH呈显著负相关,相关系数为0.973。土壤脲酶活性与有机质在灭菌前与无橘皮灭菌条件下均呈负相关,橘皮添加量增加至0.25%和0.50%时,二者转变为正相关,但相关性未达到显著水平。灭菌前,土壤磷酸酶活性与速效磷呈负相关,RSD处理后二者呈正相关,且橘皮添加量为0.50%时,相关性达显著水平,相关系数为0.982;此外,无橘皮灭菌条件下,土壤磷酸酶活性与速效钾也呈显著正相关。土壤经RSD处理,橘皮添加量为0.5%时土壤蔗糖酶活性与pH呈负相关,相关系数为0.645。

表3 灭菌前与无橘皮处理条件下土壤理化性状与酶活性相关性
Tab.3 Correlation between physical and chemical properties and enzyme activities
of soil before RSD and without citrus peels in RSD

相关性Correlation有机质Organic matter碱解氮Alkaline hydrolysable nitrogen速效磷Available phosphorus速效钾Available potassiumpH值pH vaule脲酶活性Urease activity蔗糖酶活性Invertase activity磷酸酶活性Phosphatase activity有机质 Organic matter10.9430.238-0.0040.538-0.3960.2570.529碱解氮 Alkaline hydrolysable nitrogen0.60910.070-0.2650.258-0.082-0.0750.614速效磷 Available phosphorus-0.1390.34310.8910.159-0.2960.387-0.682速效钾 Available potassium0.0500.2640.94410.359-0.5410.665-0.730pH值 pH vaule-0.309-0.7850.1190.3181-0.973*0.9120.350脲酶活性 Urease activity-0.272-0.5850.4200.5980.9491-0.982*-0.132蔗糖酶活性 Invertase activity-0.5040.2560.8620.653-0.0930.1591-0.080磷酸酶活性 Phosphatase activity0.2140.5470.9380.951*0.0180.3270.6701

注:右上三角和左下三角中的数值分别表示灭菌前与无橘皮添加的RSD处理土壤理化性状与酶活性的相关系数;*.在 0.05 水平上相关性显著。表4同。

Note:The values in the upper right triangle and the lower left triangle respectively represent the correlation coefficient between the physical and chemical properties and enzyme activities of soil before RSD and without citrus peels in RSD;*.Significant correlation at the level of 0.05.The same as Tab.4.

表4 橘皮添加量为0.25%与0.50%处理土壤理化性状与酶活性相关性
Tab.4 Correlation between physical and chemical properties and enzyme activities of soil for the treatments
of adding 0.25% citrus peels in RSD and adding 0.50% citrus peels in RSD

相关性Correlation有机质Organic matter碱解氮Alkaline hydrolysable nitrogen速效磷Available phosphorus速效钾Available potassiumpH值pH value脲酶活性Urease activity蔗糖酶活性Invertase activity磷酸酶活性Phosphatase activity有机质 Organic matter10.322-0.366-0.784-0.2590.174-0.939-0.895碱解氮 Alkaline hydrolysable nitrogen0.2571-0.724-0.782-0.676-0.553-0.126-0.710速效磷 Available phosphorus0.5480.30610.463-0.002-0.1550.0280.625速效钾 Available potassium-0.9450.059-0.54010.7510.4250.7100.946pH值 pH value-0.0700.9460.1100.38110.9060.3400.497脲酶活性 Urease activity0.1780.889-0.1260.1460.8701-0.0670.117蔗糖酶活性 Invertase activity0.782-0.3760.179-0.909-0.645-0.30010.750磷酸酶活性 Phosphatase activity0.6080.1510.982*-0.649-0.070-0.2580.3351

注:右上三角和左下三角中的数值分别表示橘皮添加量分别为0.25%和 0.50%处理的土壤理化性状与酶活性的相关系数。

Note:The values in the upper right triangle and the lower left triangle respectively represent the correlation coefficient between physical and chemical properties and enzyme activities of soil added 0.25% citrus peels in RSD and added 0.50% citrus peels in RSD.

3 讨论与结论

已有的研究表明,RSD法对土壤质量及作物产量会产生诸多积极的影响[6,19-20]。其中,有机物料的种类是影响其效果的重要因素之一[1]。本研究中,创新性地选用橘皮为有机物料,土壤经RSD处理后,碱解氮、速效磷与有机质含量均显著增加,pH值显著上升;同时,土壤脲酶与磷酸酶活性也显著提高。以其他有机物料对土壤进行强还原灭菌处理也有类似的结论。以水稻秸秆为有机物料对土壤进行RSD处理,15 d后,土壤有机质、碱解氮、速效磷、速效钾含量以及pH值都比RSD处理前显著增加,且随着秸秆量的增多有机质含量和pH值也增加[21]。此外,以麦秸为有机物料对土壤进行淹水处理时发现,强还原条件下速效磷含量也显著增加[22]。分析认为,RSD处理后土壤速效磷的增加主要有三方面原因,首先,强还原条件有利于土壤闭蓄态磷表面胶膜的分解,进而将其包被的磷酸盐释放;其次,土壤pH值升高可以在一定程度上减少磷的吸附与固定。最后,土壤速效磷含量的增加还与还原条件下有机酸的产生有关。有研究证实,以麦麸为有机物料对土壤进行强还原灭菌,可以检测到乙酸和丁酸产生,且随着处理时间的延长,2种酸的含量呈现持续增加的趋势,后期乙酸的含量高于丁酸[23]。有机物的厌氧分解主要经历水解酸化、产氢产乙酸、产甲烷3个阶段,而乙酸、丙酸和丁酸是这一过程中产生的代表性有机酸,且丁酸和丙酸则先要在产氢产乙酸菌作用下转化为乙酸。结合本研究,土壤强还原过程中产生的有机酸与难溶性磷酸盐组分中的Fe3+、Al3+、Ca2+螯合,将释放,从而提高了磷的有效性。本研究中,以橘皮为有机物料对土壤进行强还原灭菌处理过程中有机酸种类及含量的变化有待进一步深入研究。

强还原后土壤有机质含量显著增加与柑橘皮中丰富的碳水化合物是密不可分的,柑橘皮富含果胶与纤维素,其中,果胶含量约占其干质量的 20%~30%[24]。橘皮的分解为土壤提供了大量有机质[25]。本研究中经RSD处理的土壤pH值显著升高,这可能与厌氧条件下某些易还原物质的转化有关。相关研究表明,对土壤进行RSD处理时,强还原条件会刺激反硝化微生物的生长,有利于反硝化作用的进行,硝态氮被还原时消耗大量H+,导致土壤pH值显著上升[26]。另外,在水稻土、红壤和砖红壤中添加紫云英,土壤淹水处理后风干土的pH值上升,研究认为干湿交替引起的pH值变化与还原条件下铁锰氧化物被还原需要消耗H+有关[27]。本试验中速效钾含量随橘皮量的增加而增加,这与橘皮中富含钾[10]有关。

土壤酶在养分的生物循环、腐殖质的合成和分解过程中发挥着重要作用[28]。研究表明,土壤脲酶和碱性磷酸酶的活性可用作评价土壤肥力的指标,且对磷酸酶活性影响最大的是土壤全氮,其次是速效磷,对脲酶活性影响最大的则是土壤有机质,其次是碱解氮[29]。湿地土壤上的研究也证实,有机质是影响土壤脲酶活性最主要的因素[30]。本研究中,RSD处理后,橘皮添加量分别为0.25%与0.50%处理的土壤脲酶活性与有机质含量呈正相关,而无橘皮处理时两者则呈负相关,由此说明土壤脲酶活性的增强有赖于有机质含量的增加,而橘皮的添加使二者的相关性变大;此外,RSD处理可使土壤温度升高[31],而脲酶活性与温度有关,低温条件下脲酶活性较弱[32],所以土壤温度升高是脲酶活性增强的第2个原因。在玉米上施用生物有机肥并配施氮肥后,土壤碱性磷酸酶活性与土壤速效磷、速效钾含量呈显著正相关,而土壤蔗糖酶活性与各养分指标间相关性未达到显著水平[33]。本试验中,RSD处理后土壤磷酸酶活性与速效磷含量均呈正相关,其中橘皮添加量为0.50%处理时二者的相关性达显著水平,无橘皮处理的土壤磷酸酶活性与速效钾含量也呈显著正相关;此外,本试验中RSD处理后土壤蔗糖酶活性显著降低,这可能与土壤微生物数量和pH值变化有关。土壤蔗糖酶活性依赖于土壤微生物数量与土壤呼吸强度。有研究表明,土壤蔗糖酶活性与土壤微生物量碳呈显著正相关[34];而RSD创造的厌氧条件能杀灭好氧微生物,且厌氧菌分解有机物不彻底,在短期内产生大量有机酸,杀灭部分土壤微生物,从而降低土壤微生物多样性以及土壤中可培养放线菌和真菌的数量[35];另外,土壤蔗糖酶活性会因介质pH降低而增强[32]。因此,RSD处理pH值显著升高极大地抑制了蔗糖酶的活性。

以橘皮为有机物料对土壤进行RSD处理,可显著提高土壤速效养分含量及有机质水平,同时使土壤pH值显著升高。以橘皮为有机物料对土壤进行RSD处理,土壤脲酶与磷酸酶活性显著增强,有利于土壤中养分的转化。以橘皮为有机物料对土壤进行RSD处理,橘皮添加量为0.25%可显著提高土壤碱解氮与速效磷含量,并提高氮磷转化相关酶活性;橘皮添加量为0.50%可显著提高土壤速效钾含量,且pH值明显上升。

综上所述,以橘皮为有机物料对土壤进行RSD处理,多方面综合作用的结果使土壤理化性状显著改善,土壤肥力明显提高,由此可见,采用强还原灭菌技术改良土壤质量时,橘皮资源具有极大的利用潜力。

参考文献:

[1] 朱文娟,王小国. 强还原土壤灭菌研究进展[J].土壤,2020,52(2):223-233. doi:10.13758/j.cnki.tr.2020.02.002.

Zhu W J,Wang X G. Advances in method of reductive soil disinfestation[J].Soils,2020,52(2):223-233.

[2] 蔡祖聪,张金波,黄新琦,朱同彬,温腾. 强还原土壤灭菌防控作物土传病的应用研究[J].土壤学报,2015,52(3):469-476. doi:10.11766/trxb201411040554.

Cai Z C,Zhang J B,Huang X Q,Zhu T B,Wen T. Application of reductive soil disinfestation to suppress soil-borne pathogens[J].Acta Pedologica Sinica,2015,52(3):469-476.

[3] Momma N,Kobara Y,Uematsu S,Kita N,Shinmura A. Development of biological soil disinfestations in Japan[J].Applied Microbiology and Biotechnology,2013,97(9):3801-3809. doi:10.1007/s00253-013-4826-9.

[4] 刘亮亮,崔慧灵,孔继婕,张金波,蔡祖聪,黄新琦. 强还原处理所使用有机物料与其杀菌效果的相互关系[J].植物保护,2017,43(2):73-81.doi:10.3969/j.issn.0529-1542.2017.02.012.

Liu L L,Cui H L,Kong J J,Zhang J B,Cai Z C,Huang X Q. Relationships between different types of organic matters and disinfestation effects during reductive soil disinfestation[J].Plant Protection,2017,43(2):73-81.

[5] 朱同彬,孙盼盼,党琦,张金波,蔡祖聪. 淹水添加有机物料改良退化设施蔬菜地土壤[J].土壤学报,2014,51(2):335-341. doi:10.11766 /trxb201305060217.

Zhu T B,Sun P P,Dang Q,Zhang J B,Cai Z C. Improvement of degraded greenhouse vegetable soil by flooding and/or amending organic materials[J].Acta Pedologica Sinica,2014,51(2):335-341.

[6] 刘亚男,贺广生,韦建玉,贾海江,黄崇峻,蔡一霞,蔡昆争,潘伯桂,王维. 厌氧消毒对植烟土壤质量及细菌群落结构的影响[J].中国烟草科学,2019,40(3):39-46. doi:10.13496/j.issn.1007-5119.2019.03.006.

Liu Y N,He G S,Wei J Y,Jia H J,Huang C J,Cai Y X,Cai K Z,Pan B G,Wang W. Effects of anaerobic soil disinfection on the quality and bacterial community of tobacco-growing soils[J].Chinese Tobacco Science,2019,40(3):39-46.

[7] 郭晨曦,周桂芳,陈碧华,郭卫丽,蔡祖聪,黄新琦,王广印. 强还原土壤灭菌法(RSD)对大棚连续三茬蔬菜生长、产量和病虫害的影响[J].河南农业科学,2020,49(11):98-109.doi:10.15933/j.cnki.1004-3268.2020. 11.013

Guo C X,Zhou G F,Chen B H,Guo W L,Cai Z C,Huang X Q,Wang G Y. Effect of reductive soil disinfestation on growth,yield,diseases and insect pests of three continuous cultivation vegetables in plastic greenhouse[J].Journal of Henan Agricultural Sciences,2020,49(11):98-109.

[8] 朱同彬,孟天竹,张金波,蔡祖聪. 强还原方法对退化设施蔬菜地土壤的修复[J].应用生态学报,2013,24(9):2619-2624.doi:10.13287/j.1001-9332.2013.0512.

Zhu T B,Meng T Z,Zhang J B,Cai Z C. Effects of strong reductive approach on remediation of degraded facility vegetable soil[J].Chinese Journal of Applied Ecology,2013,24(9):2619-2624.

[9] 吴园. 中国柑橘种植业技术效率评估及影响因素分析[J].中国农业资源与区划,2018,39(9):94-102. doi:10.7621/cjarrp.1005-9121.20180913.

Wu Y. Technical efficiency evaluation and influencing factors analysis of Citrus planting in China[J].Chinese Journal of Agricultural Resources and Regional Planning,2018,39(9):94-102.

[10] Lobo M G,Dorta E. Utilization and management of horticultural waste[EB/OL].2019,639-666.

[11] Putnik P,Bursac′ Kovacˇevic′ D,Režek Jambrak A,Barba F J,Cravotto G,Binello A,Lorenzo J M,Shpigelman A. Innovative green and novel strategies for the extraction of bioactive added value compounds from citrus wastes-A review[J].Molecules,2017,22(5):680.doi:10.3390/molecules22050680.

[12] Cano M E,García-Martín A,Ladero M,Lesur D,Pilard S,Kovensky J. A simple procedure to obtain a medium-size oligogalacturonic acids fraction from orange peel and apple pomace wastes[J].Food Chemistry,2021,346(15):128909.doi:10.1016/j.foodchem.2020.128909.

[13] Bombino G,Denisi P,Fortugno D,Tamburino V,Zimbone S M. Land spreading of solar-dried citrus peel to control runoff and soil erosion[J].WIT Transactions on Ecology and the Environment,2010,140:145-154.doi:10.2495/WM100141.

[14] 易甜,崔文文,王明锐,姚晶晶. 锦橙皮渣膳食纤维微粉化及其功能特性分析[J].食品科学,2019,40(10):8-14. doi:10.7506/spkx1002-6630-20180615-330.

Yi T,Cui W W,Wang M R,Yao J J. Functional and structural properties of micronized dietary fiber powder extracted from peel and pomace of Jincheng sweet oranges(Citrus sinensis(L.)osbeck cv. Jincheng)[J].Food Science,2019,40(10):8-14.

[15] Xiao L,Ye F Y,Zhou Y,Zhao G H. Utilization of pomelo peels to manufacture value-added products:A review[J].Food Chemistry,2021,351:129247.doi:10.1016/j.foodchem.2021.129247.

[16] 鲍士旦. 土壤农化分析[M].3版. 北京:中国农业出版社,2000.

Bao S D. Soil and agriculture chemistry analysis[J].The 3rd Edition. Beijing:Agricultural Press of China,2000.

[17] 那淑芝,杨贵明.四苯硼钠测定土壤速效钾比浊条件的改进[J].土壤肥料,1991(4):41-42.

Na S Z,Yang G M. Improvement of conditions for determination of soil available potassium turbidimetry by sodium tetraphenylboron[J].Soil and Fertilizer Sciences in China,1991(4):41-42.

[18] 关松荫,张德生,张志明.土壤酶及其研究法[M].北京:农业出版社,1986.

Guan S Y,Zhang D S,Zhang Z M. Soil enzymes research methods[M].Beijing:Agricultural Press,1986.

[19] 陈士勇,杨艳菊,黄帅,陆钰婷,王娟娟,单玉华,刘国栋,张海鹏. 强还原处理对西瓜连作土壤性质及西瓜产量的影响[J].扬州大学学报(农业与生命科学版),2019,40(5):103-109.doi:10.16872/j.cnki.1671-4652.2019.05.018.

Chen S Y,Yang Y J,Huang S,Lu Y T,Wang J J,Shan Y H,Liu G D,Zhang H P. Effects of reductive soil disinfestation(RSD)on continuous cropping soil properties and watermelon yield[J].Journal of Yangzhou University(Agricultural and Life Science Edition),2019,40(5):103-109.

[20] 夏青,罗晨,曾粮斌,张金波,蔡祖聪,赵军. 强还原土壤处理对再植龙牙百合生长不利因子的消减作用[J].土壤学报,2022,59(1):183-193.doi:10.11766/trxb202007220410.

Xia Q,Luo C,Zeng L B,Zhang J B,Cai Z C,Zhao J. Effect of reductive soil disinfestation mitigating adverse factors for growth of replanted Longya Lily(Lilium brownii var. viridulum)[J].Acta Pedologica Sinica,2022,59(1):183-193.

[21] 曹明,张雪彬,陶凯,杨小锋,柯用春. 强还原条件下秸秆还田量对南繁水稻土土壤肥力和微生物数量的影响[J].热带农业科学,2019,39(10):95-99. doi:10.12008/j.issn.1009-2196.2019.10.016.

Cao M,Zhang X B,Tao K,Yang X F,Ke Y C. Effect of amount of paddy straw forced incorporated into paddy field on soil fertility and number of microorganisms in paddy soil in winter[J].Chinese Journal of Tropical Agriculture,2019,39(10):95-99.

[22] 顾志光,马艳,安霞,王光飞,孙迪,王秋君. 麦秸淹水处理对连作土壤性状和辣椒疫病田间防控效果的影响[J].农业环境科学学报,2014,33(9):1762-1769. doi:10.11654/jaes.2014.09.014.

Gu Z G,Ma Y,An X,Wang G F,Sun D,Wang Q J. Effects of wheat straw with flooding on soil properties and Phytophthora blight control in continuous chili pepper cropping field[J].Journal of Agro-Environment Science,2014,33(9):1762-1769.

[23] Momma N,Yamamoto K,Simandi P,Shishido M. Role of organic acids in the mechanisms of biological soil disinfestation(BSD)[J].Journal of General Plant Pathology,2006,72(4):247-252.doi:10.1007/s10327-006-0274-z.

[24] Pourbafrani M,Forgcs G,Horvth I S,Niklasson C,Taherzadeh M J. Production of biofuels,limonene and pectin from Citrus wastes[J].Bioresource Technology,2010,101(11):4246-4250.doi:10.1016/j.biortech.2010.01.077.

[25] Sharma K,Mahato N,Cho M H,Lee Y R. Converting Citrus wastes into value-added products:Economic and environmently friendly approaches[J].Nutrition ,2017,34:29-46. doi:10.1016/j.nut.2016.09.006.

[26] 王宝英,李金泽,黄新琦,张金波,蔡祖聪,赵军. 土壤强还原处理对连作芥蓝产量、微生物数量及活性的影响[J].土壤,2019,51(2):316-323. doi:10.13758/j.cnki.tr.2019.02.015.

Wang B Y,Li J Z,Huang X Q,Zhang J B,Cai Z C,Zhao J. Effects of reductive soil disinfestation on yield,population and activity of microorganisms in continuously cropped soils of Chinese kale[J].Soils,2019,51(2):316-323.

[27] 朱玉祥,马良,朱黎明,钱宏,谢荣林. 氧化还原条件下有机物料对酸性土壤pH、铁形态和铜吸附解吸的影响[J].中国土壤与肥料,2011(5):65-68. doi:10.3969/j.issn.1673-6257.2011.05.013.

Zhu Y X,Ma L,Zhu L M,Qian H,Xie R L. Effect of organic material incorporation on pH,iron species and adsorption and desorption of copper in acid soils under redox conditon[J].Soils and Fertilizers Sciences in China,2011(5):65-68.

[28] 关松荫. 土壤酶与土壤肥力[J].土壤通报,1980,11(6):41-44.doi:10.19336/j.cnki.trtb.1980.06.014.

Guan S Y. Soil enzymes and soil fertility[J].Chinese Journal of Soil Science,1980,11(6):41-44.

[29] 邱莉萍,刘军,王益权,孙慧敏,和文祥. 土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报,2004,10(3):277-280. doi:10.3321/j.issn:1008-505X.2004.03.011.

Qiu L P,Liu J,Wang Y Q,Sun H M,He W X. Research on relationship between soil enzyme activities and soil fertility[J].Journal of Plant Nutrition and Fertilizers,2004,10(3):277-280.

[30] 刘艳,侯龙鱼,崔晓东,马风云,邢尚军. 黄河三角洲冲积平原湿地土壤尿酶活性与养分通径分析[J].华中农业大学学报,2007,26(3):327-329. doi:10.3321/j.issn:1000-2421.2007.03.013.

Liu Y,Hou L Y,Cui X D,Ma F Y,Xing S J. Path analysis between soil urease activity and nutrient contents of natural wetland in Yellow River Delta[J].Journal of Huazhong Agricultural University,2007,26(3):327-329.

[31] 伍朝荣,黄飞,高阳,毛一航,蔡昆争. 土壤生物消毒对土壤改良、青枯菌抑菌及番茄生长的影响[J].中国生态农业学报,2017,25(8):1173-1180. doi:10.13930/j.cnki.cjea.170029.

Wu C R,Huang F,Gao Y,Mao Y H,Cai K Z. Effect of biological disinfestation on soil improvement,Ralstonia solanacearum suppression and tomato growth[J].Chinese Journal of Eco-Agriculture,2017,25(8):1173-1180.

[32] 刘晨阳,高成林,赵玥,唐玲玲,邹季,许永华. 农田栽参土壤改良中肥料对土壤元素及酶活性的影响[J].生态科学,2021,40(2):40-47.doi:10.14108/j.cnki.1008-8873.2021.02.006.

Liu C Y,Gao C L,Zhao Y,Tang L L,Zou J,Xu Y H. Effects of fertilizer on soil elements and enzyme activities in improvement soil of Panax ginseng planted in farmland[J].Ecological Science,2021,40(2):40-47.

[33] 张奇,张振华,卢信. 生物有机肥施用对黄泛冲积区贫瘠土壤养分、酶和微生物多样性的影响[J].江苏农业学报,2020,36(2):325-335.doi:10.3969/j.issn.1000-4440.2020.02.011.

Zhang Q,Zhang Z H,Lu X. Effects of bioorganic fertilizer application on nutrient,enzyme activity,microbial diversity of the barren soil in Yellow River alluvial areas[J].Jiangsu Journal of Agricultural Sciences,2020,36(2):325-335.

[34] 于秀丽. 莫莫格湿地土壤微生物量碳动态及与酶活性的关系[J].东北林业大学学报,2020,48(4):59-63. doi:10.3969/j.issn.1000-5382.2020.04.011.

Yu X L. Interactions between soil microbial biomass carbon and soil enzyme activities in momoge national nature Re-serve[J].Journal of Northeast Forestry University,2020,48(4):59-63.

[35] 黄新琦,温腾,孟磊,张金波,朱同彬,蔡祖聪. 土壤快速强烈还原对于尖孢镰刀菌的抑制作用[J].生态学报,2014,34(16):4526-4534.doi:10.5846/stxb201212261872.

Huang X Q,Wen T,Meng L,Zhang J B,Zhu T B,Cai Z C. The inhibitory effect of quickly and intensively reductive soil on Fusarium oxysporum[J].Acta Ecologica Sinica,2014,34(16):4526-4534.

Effects of Citrus Peels Addition on Soil Properties and Enzyme Activities under the Reductive Soil Disinfestation Conditions

FAN Yaping,CHEN Fangling,HE Miaomiao,WANG Changxian

(College of Modern Agriculture and Ecological Environment,Heilongjiang University,Key Laboratory of Agricultural Resources Utilization and Environmental Security,Harbin 150080,China)

Abstract The effects of citrus peels addition on soil physical and chemical properties and enzyme activities were explored under the condition of reductive soil disinfestation,so as to provide theoretical basis for effective utilization of abundant citrus peels resources in agricultural production. A soil culture experiment was conducted and citrus peels was selected as organic material in reductive soil disinfestation. Three citrus peels addition levels(0,0.25%,0.50%)were designed,and the soil mixed with citrus peels were covered with film after the water content reaches saturation. Kept it for 40 days at room temperature. The changes of soil physical and chemical properties and related enzyme activities were studied,and the correlation between soil physical and chemical properties and enzyme activities was analyzed. The results showed that compared with pre-sterilization,the contents of alkaline hydrolysable nitrogen,available phosphorus and organic matter of sterilized soil increased significantly,and the pH value increased significantly. Under the condition of RSD,the contents of alkali hydrolyzed nitrogen,available phosphorus and organic matter of soil treated with 0.25% citrus peels application were 1.10,1.22,1.11 times of those treated without citrus peel application respectively. In addition,soil urease and phosphatase activities were significantly enhanced compared with those before RSD. Under the condition of RSD,the urease activities of the treatment adding 0.25% citrus peels and phosphatase activities of the treatment adding 0.50% citrus peels were 1.69,1.46 times of those without citrus peels respectively. Before RSD,urease activity was significantly negatively correlated with pH,however,after RSD,urease activity and pH changed into a positive correlation. Meanwhile,urease activity was also positively correlated with the organic matter contents of soil added citrus peels and phosphatase activity of soil added 0.50% citrus peels could significantly positively correlated with the content of available phosphorus. Therefore,adding 0.25% citrus peels could significantly improve the soil alkali hydrolyzed nitrogen and available phosphorus level,while the pH and available potassium significantly increased by adding 0.50% citrus peels could significantly increase the soil pH and enhance the soil potassium supply level,meanwhile,it promoted the accumulation of soil organic matter on some degree. It is beneficial to improve soil fertility by adding citrus peels,when soil was reductive disinfested.

Key words Citrus peels;Reductive soil disinfestation;Soil physical and chemical properties;Enzyme activities;Correlation

收稿日期:2021-07-24

基金项目:黑龙江省教育厅科学技术研究面上项目(12511403)

作者简介:樊娅萍(1999-),女,云南宣威人,在读硕士,主要从事农业资源利用研究。

通讯作者:王倡宪(1974-),女,内蒙古包头人,副教授,博士,硕士生导师,主要从事农业资源利用与植物病理教学与科研工作。

中图分类号:S38

文献标识码:A

文章编号:1000-7091(2021)增刊-0253-07

doi10.7668/hbnxb.20192536