播期对不同品种大麦饲草及籽粒产量和品质的影响

陈晓东1,2,赵 斌1,2,王 瑞1,2,朱 斌1,2,季昌好1,2

(1.安徽省农业科学院 作物研究所,安徽 合肥 230031;2.安徽省农作物品质改良重点实验室,安徽 合肥 230031)

摘要:为探讨播期对不同品种大麦饲草及籽粒产量和品质的影响,设置4个播期(因素A),以4个多棱饲料大麦品种(因素B)为材料,比较分蘖期饲草及成熟期籽粒产量和品质的差异。结果表明,播期对饲草产量影响较大,对籽粒产量影响较小。早播能增加刈割次数,提高饲草产量,其中播期A1(9月30日)饲草鲜质量(12.44 t/hm2)和干质量(1.49 t/hm2)最高。品种间饲草及籽粒产量差异均显著。品种B2(皖饲啤14008)饲草鲜质量(10.51 t/hm2)和干质量(1.38 t/hm2)最高,籽粒产量(1.82 t/hm2)居第2位,品种B1(扬饲麦1号)籽粒产量最高(3.58 t/hm2),饲草鲜质量(9.00 t/hm2)和干质量(1.17 t/hm2)居第2位,两者均可作为饲草及籽粒兼用型品种。播期对饲草品质影响较大,对籽粒品质影响较小。播期间饲草品质除酸性洗涤木质素含量差异不显著,其他性状差异均显著,其中播期A2和A4相应性状值较高。品种间饲草品质基本无差异,参试材料均可用作优质饲草。品种间籽粒品质差异明显,其中品种B2蛋白质含量最高,品种B1淀粉含量最高,表明可以选择品种,改善饲料品质。播期与品种间互作对饲草产量有一定影响,对其他性状基本无影响。综合以上分析,冬麦区选用皖饲啤14008或扬饲麦1号,于9月30日播种,能实现优质饲草与籽粒兼收。

关键词:大麦;播期;饲草;籽粒;产量;品质

大麦(Hordeum vulagre L.)是优质饲料作物,除籽粒饲用外,可以利用其绿色植株生产青饲或青贮饲料,饲用品质好[1],利用方式灵活[2],正在世界范围内获得广泛应用[3-6]。大麦饲草产量与品质受刈割期[7-8]、刈割次数[9-10]、播种密度[6]及种植方式[5,11]等影响,在品种间也存在差异[12-14]。一些研究表明,分蘖期收获大麦饲草对后期生长影响不大,成熟期仍可收获籽粒[6,15],能实现饲草与籽粒兼收,但不同生态区差别大,生产技术难以统一。

本试验前期研究亦表明,我国冬麦区分蘖期刈割大麦虽能实现饲草与籽粒兼收,但适期播种下,越冬前大麦生长量有限,饲草产量难以提升[7,12]。然而,早播对大麦饲草及籽粒产量和品质的影响及品种间是否存在差异等,尚不清楚。为此,本研究以冬麦区4个多棱饲料大麦新品种为材料,设置4个播期,探讨播期对不同品种大麦饲草及籽粒产量和品质的影响,为更好地实现饲草与籽粒兼收提供技术支撑。

1 材料和方法

1.1 试验地概况

试验地位于安徽省农业科学院试验基地,北纬31°89′,东经117°25′,海拔19.8 m,四季分明,光照充足,雨量适中。大麦于10月下旬播种,次年5月中旬收获,生育期平均降水量411.6 mm,日平均气温11.2 ℃。试验地为壤土,前茬大豆,土壤pH值6.1,硝态氮、有效磷、速效钾含量分别是34.7,38.9,144.4 mg/kg。

1.2 试验材料

参试的4个多棱饲料大麦是冬麦区具代表性的大麦新品种,均具分蘖强、再生性好与抗倒伏等特点,适宜全株饲用。品种名称及来源地见表1,其中皖饲啤14008为自育大麦新品种。

1.3 试验设计

试验于2018-2019年实施,设播期(因素A)和品种(因素B)2个因素(表1)。刈割于分蘖期进行,刈割标准为大麦主茎叶长25 cm,留茬高度为2 cm,每次刈割后追施纯氮35 kg/hm2,拔节期停止刈割,成熟期收获籽粒。按每亩20万基本苗播种,田间采用随机区组设计,3次重复,小区面积2.5 m2,每小区5行,行长2.00 m,行距0.25 m,田间正常管理。

表1 参试大麦播期、品种名称、来源地及处理编号
Tab.1 Sowing dates,names,origins of barley varieties and treatment codes in this experiment

因素AFactor A播期(年-月-日)Sowing date因素BFactor B品种Variety来源地Origin处理TreatmentA12018-09-30B1扬饲麦1号 江苏 A1B1、A1B2、A1B3、A1B4A22018-10-10B2皖饲啤14008 安徽 A2B1、A2B2、A2B3、A2B4A32018-10-20B3保大麦14号 云南 A3B1、A3B2、A3B3、A3B4A42018-10-30B4川农饲麦5号 四川A4B1、A4B2、A4B3、A4B4

1.4 测定项目与方法

达刈割标准时,刈割小区测定大麦饲草鲜质量,再取样300 g于70 ℃烘箱烘干48 h,测定干鲜比,计算干质量。烘干样品磨粉后用于大麦饲草品质检测,指标包括粗蛋白、粗纤维、酸性洗涤纤维、中性洗涤纤维及酸性洗涤木质素,测定方法参见相关标准执行[16]。成熟后,每小区取10株考种,测定的籽粒产量指标包括株高、穗下节间长、穗长、单株穗数、穗粒数、千粒质量、单株粒质量及小区产量。籽粒蛋白质与淀粉含量使用Infratec TM 1241近红外谷物分析仪进行测定。

1.5 统计分析

试验数据处理分析采用SAS 8.1软件,按两因素互作模型对数据结果进行方差分析与多重比较。

2 结果与分析

2.1 大麦的刈割次数

播后材料达刈割标准时开始刈割,再生植株达刈割标准时进行重复刈割,进入拔节期停止刈割。播期为A1时,大麦可刈割3次;播期为A2与A3时,可刈割2次;播期为A4时,仅刈割1次。以A4适播期为对照,可见早播可以实现多次刈割。

2.2 大麦饲草产量的差异

播期、品种及两者间互作效应对大麦饲草鲜质量和干质量都产生影响,其中播期效应最大,品种效应其次,两者间互作效应较小(表2)。播期间大麦饲草鲜质量及干质量差异显著,由高到低依次为A1、A3、A2、A4,其中播期A1收获大麦饲草鲜质量(12.44 t/hm2)与干质量(1.49 t/hm2)最高,显著高于其他播期。品种间比较表明,品种B2鲜质量(10.51 t/hm2)和干质量(1.38 t/hm2)最高,显著高于其他品种;品种B1鲜质量(9.00 t/hm2)和干质量(1.17 t/hm2)其次,显著高于B3和B4,而B3与B4间差异不显著(表3)。

表2 大麦饲草及籽粒产量和品质的方差分析
Tab.2 Variance analysis of yield and quality of barley forage and grain

性状 Trait 变异来源Source of variation自由度df平方和SS均方MSF值 F value鲜质量因素A320.896.9685.95**Fresh weight因素B35.871.9624.16**A与B互作92.840.323.90*误差322.590.08干质量 因素A30.220.0757.09**Dry weight因素B30.090.0325.47**A与B互作90.040.0043.39**误差320.040.001粗蛋白含量 因素A 3431.58143.8628.9**Crude protein content因素B343.6514.552.92A与B互作924.542.720.55误差3279.654.98粗纤维含量 因素A336.8812.294.06*Crude fiber content因素B312.284.091.35A与B互作931.463.51.15误差3248.463.03酸性洗涤纤维含量 因素A372.3724.1217.46**Acid detergent fiber content因素B326.478.826.39*A与B互作96.940.770.56误差3222.111.38中性洗涤纤维含量因素A3153.5851.195.11*Neutral detergent fiber con-tent因素B320.486.830.68A与B互作946.865.210.52误差32160.2810.02酸性洗涤木质素含量因素A31.530.511.32Acid detergent lignin content因素B30.490.170.43A与B互作93.360.370.97误差326.160.39株高因素A37.972.650.07Plant height因素B33 390.041 130.0129.30**A与B互作987.039.670.25误差321 234.2238.57穗下节间长 因素A36.042.010.68Internode length below spike因素B3547.42182.4761.25**A与B互作943.744.861.63误差3295.332.98穗长因素A32.670.895.73**Spike length因素B360.9820.32130.84**A与B互作91.650.181.18误差324.970.16单株穗数 因素A33.371.126.14**Number of spike per plant因素B37.582.5313.82**A与B互作95.510.613.35**误差325.850.18

表2(续)

性状 Trait 变异来源Source of variation自由度df平方和SS均方MSF值 F value穗粒数因素A3169.9256.641.35Grain number per spike因素B33 098.441 032.8124.56**A与B互作9160.8117.870.42误差321 345.6842.05千粒质量 因素A349.7816.593.36Thousand kernel weight因素B31 937.42645.81130.69**A与B互作966.257.361.49误差32158.134.94单株粒质量因素A36.80 2.270.86Grain weight per plant因素B317.755.912.25*A与B互作927.083.011.14误差3284.162.63籽粒产量因素A30.010.0040.31Grain yield因素B32.470.8261.55**A与B互作90.120.010.99误差320.430.01籽粒蛋白质含量 因素A321.20 7.078.24**Grain protein content因素B 334.4911.50 13.40**A与B互作96.560.730.85误差3227.450.86淀粉含量因素A36.292.10 3.89*Starch content因素B333.3311.1120.61**A与B互作94.050.450.84误差3217.250.54

注:***分别表示在P<0.05和P<0.01水平上差异显著。

Note:* and**depict significant differences at 0.05 and 0.01 level,respectively.

表3 不同播期间与品种间大麦饲草鲜质量与干质量的差异
Tab.3 Comparison of differences in fresh
weight and dry weight of barley forage among
different sowing dates and varieties t/hm2

处理Treatment鲜质量Fresh weight干质量Dry weightA112.44±3.17a1.49±0.38aA27.57±1.86c0.91±0.22cA38.81±1.48b1.23±0.21bA45.12±0.85d0.82±0.14cB19.00±4.19b1.17±0.46bB210.51±3.52a1.38±0.35aB36.88±1.92c0.91±0.19cB47.56±2.19c1.00±0.25c

注:同列数据后不同小写字母表示在P<0.05水平上差异显著。表4-6同。

Note:Different lowercase letters following data within the same column show significant difference at 0.05 level. The same as Tab.4-6.

2.3 大麦饲草品质的差异

以各处理头茬大麦饲草为检测对象,比较播期和品种对饲草品质的影响。结果表明,播期效应较大,品种效应较小,两者间互作效应未对饲草品质产生影响(表2)。播期间,粗蛋白含量A2(304.5 g/kg)与A4(323.6 g/kg)显著高于A1(242.5 g/kg)与A3(241.3 g/kg);粗纤维含量A2(157.9 g/kg)与A4(151.6 g/kg)显著高于A1(130.5 g/kg)与A3(130.1 g/kg);酸性洗涤纤维含量A4(215.3 g/kg)显著高于其他播期,其次A2(196.1 g/kg)显著高于A1(182.6 g/kg)与A3(175.9 g/kg);中性洗涤纤维含量A4(407.8 g/kg)最高,与A1、A3差异显著;酸性洗涤木质素含量无显著差异。品种间,仅酸性洗涤纤维含量B1(178.3 g/kg)显著低于其他品种,其他性状则无显著差异(表4)。

2.4 大麦籽粒产量的差异

大麦籽粒产量及其相关性状受品种影响较大,播期影响较小,品种与播期间互作效应仅对单株穗数产生影响,对其他性状无影响(表2)。品种间,籽粒产量及其相关性状存在显著差异,其中品种B1产量最高(3.58 t/hm2),显著高于其他品种,品种B2产量其次(1.82 t/hm2),显著高于B3和B4,而B3与B4无显著差异。播期间,穗长、单株穗数和千粒质量存在一定差异,其他性状则无显著差异(表5)。

表4 不同播期间与品种间大麦饲草品质性状的差异
Tab.4 Comparison of differences in barley forage quality among different sowing dates and varieties g/kg

处理Treatment粗蛋白含量 Crude protein content粗纤维含量 Crude fiber content 酸性洗涤纤维含量Acid detergentfiber content 中性洗涤纤维含量Neutral detergentfiber content酸性洗涤木质素含量Acid detergentlignin content A1242.5±30.1b130.5±16.9b182.6±16.2c359.1±25.7b24.3±7.9aA2304.5±17.2a157.9±8.2a196.1±16.0b387.1±41.8ab19.5±5.3aA3241.3±20.6b130.1±10.9b175.9±11.0c353.5±16.8b23.5±5.3aA4323.6±22.1a151.6±29.1a215.3±12.4a407.8±23.7a25.3±4.9aB1288.0±39.2a142.3±20.3a178.3±17.3b369.8±37.4a23.3±7.6aB2271.9±53.3a136.3±26.2a191.0±17.7a369.9±38.2a23.3±3.5aB3268.8±37.8a152.9±10.2a199.0±21.2a389.3±33.3a21.3±8.2aB4273.3±43.0a147.8±21.6a201.6±19.6a378.6±34.5a24.8±4.5a

表5 不同播期间与品种间大麦籽粒产量及产量相关性状的差异
Tab.5 Comparison of differences in grain yield and its related traits among different sowing dates and varieties

处理Treatment株高/cmPlant height穗下节间长/cmInternode lengthbelow spike穗长/cmSpike length单株穗数Number ofspike per plant穗粒数Grain numberper spike千粒质量/gThousand kernelweight 单株粒质量/gGrain weightper plant产量/(t/hm2)Yield A170.26±10.66a28.18±4.80a4.73±1.09b3.96±1.04a44.36±8.90a38.65±7.29b6.57±1.81a2.03±1.05aA270.53±11.63a27.51±3.78a4.55±1.15b3.36±0.58b44.36±12.75a40.06±6.06ab5.94±2.27a1.97±1.05aA369.46±10.66a28.02±3.86a4.78±1.18b3.33±0.49b44.84±9.21a40.20±7.42ab5.83±1.03a2.15±1.13aA470.33±8.10a28.49±3.19a5.20±1.50a3.35±0.26b48.84±9.59a41.53±7.19a6.69±1.49a2.01±0.94aB183.04±4.29a33.60±1.79a4.11±0.28b4.08±0.90a55.56±5.61a31.12±1.89d7.08±1.93a3.58±0.50aB259.60±6.88c26.84±2.58b4.27±0.48b2.97±0.33c46.59±8.53b44.43±3.31b6.30±2.03ab1.82±0.51bB367.92±5.25b24.48±0.74c6.76±0.62a3.57±0.56b47.13±4.31b37.40±2.18c6.30±1.73ab1.44±0.35cB470.01±5.25b27.30±1.67b4.11±0.40b3.39±0.34b33.12±5.44c47.50±2.37a5.36±1.23b1.33±0.43c

2.5 大麦籽粒品质的差异

播期和品种影响大麦籽粒蛋白质和淀粉含量变化,其中品种效应较大,播期效应较小,而两者间互作效应未对其产生影响(表2)。品种间,B2蛋白含量最高(125.2 g/kg),显著高于其他品种,其次是B4(113.8 g/kg),显著高于B1和B3,而B1和B3间无显著差异;淀粉含量B1最高(556.8 g/kg),显著高于其他品种,其次是B3(543.8 g/kg),显著高于B2和B4,而B2和B4间无显著差异。播期间,A1蛋白质含量显著低于A2、A3和A4,淀粉含量则显著高于A3和A4,其他播期间蛋白质和淀粉含量无显著差异(表6)。

表6 不同播期间与品种间大麦籽粒品质性状的差异
Tab.6 Comparison of differences in grain quality traits
among different sowing dates and varieties g/kg

处理Treatment蛋白含量Protein content淀粉含量Starch contentA1101.3±13.1b548.8±12.6aA2114.3±12.8a544.6±11.9abA3113.5±11.9a541.2±10.7bA4119.3±12.0a539.3±9.1bB1105.9±11.8c556.8±8.9aB2125.2±12.4a534.6±7.1cB3103.4±11.3c543.8±8.6bB4113.8±9.1b538.8±6.7c

3 讨论与结论

3.1 播期与品种对大麦饲草及籽粒产量的影响

播期与品种影响作物饲草产量[17-19]。本研究播期对大麦饲草产量影响较大,但对籽粒产量影响较小。早播可增加刈割次数,收获更多饲草,如播期A1(9月30日)饲草产量最高,且不影响籽粒产量。品种间饲草及籽粒产量差异均显著,表明可以通过选择品种来提高饲草及籽粒产量。本研究品种B2(皖饲啤14008)饲草产量最高,籽粒产量居第2位,B1(扬饲麦1号)籽粒产量最高,饲草产量居第2位,两者均可作为饲草及籽粒兼用型品种,其中B2是自育的粮草双高型大麦新品种[20]。本研究播期与品种间互作对饲草产量有一定影响,但对籽粒产量无影响。因此,选择优良品种,提早播期,能实现饲草与籽粒兼收。

3.2 播期与品种对大麦饲草及籽粒品质的影响

本研究播期对大麦饲草品质影响较大,对籽粒品质影响较小。播期间饲草品质除酸性洗涤木质素含量外,其他性状存在显著差异,其中播期A2和A4相应性状值较高,可能与环境因素有关,有待进一步研究。品种间饲草品质基本无差异,但籽粒品质差异明显。与其他研究结果不同[21],本研究分蘖期各品种饲草品质相当,此阶段大麦茎叶柔嫩,营养丰富,所有品种粗蛋白含量都达25%以上,均可用作优质饲草。品种间籽粒品质差异明显,品种B2(皖饲啤14008)籽粒蛋白质含量最高,B1(扬饲麦1号)籽粒淀粉含量最高,表明可以结合需求选择品种,改善饲料品质。本研究播期与品种间互作未对饲草及籽粒品质产生影响。因此,选择品种,适当早播,可以兼顾饲草及籽粒品质。

基于本研究,综合饲草及籽粒产量和品质分析,冬麦区选用皖饲啤14008或扬饲麦1号,于9月30日播种,能达到优质饲草与籽粒兼收目标。

参考文献:

[1] 王勇生,王博,雷恒. 大麦的营养价值与提高其畜禽利用率的措施[J].中国饲料,2014(4):18-22. doi:10.15906/j.cnki.cn11-2975/s.2014.04.002.

Wang Y S,Wang B,Lei H. Nutritional values and measures for improving utilization ratio of barley[J].China Feed,2014(4):18-22.

[2] 季昌好,王瑞,陈晓东,赵斌,朱斌. 大麦绿植体饲用方法[J].大麦与谷类科学,2018,35(4):38-39,49. doi:10.14069/j.cnki.32-1769/s.2018.04.010.

Ji C H,Wang R,Chen X D,Zhao B,Zhu B. Introduction of various methods for using green barley plants as animal feed[J].Barley and Cereal Sciences,2018,35(4):38-39,49.

[3] Birhan M. Evaluation of barley green forage as animal feed intercropping with vetch in North Gondar Zone,Ethiopia [J].European Journal of Biological Sciences,2013,5(2):50-54. doi:10.5829/idosi.ejbs.2013.5.2.7320.

[4] Seymour M,England J H,Malik R,Rogers D,Sutherland A,Randell A. Effect of timing and height of defoliation on the grain yield of barley,wheat,oats and canola in Western Australia[J].Crop and Pasture Science,2015,66(4):287-300. doi:10.1071/cp13411.

[5] Mosebi P E,Matebesi-Ranthimo P A,Ntakatsane M P,Ratsele R. Forage potential of alfalfa with oats and barley in intercropping system[J].Asian Journal of Research in Agriculture and Forestry,2018,1(4):1-11. doi:10.9734/ajraf/2018/42731.

[6] Salama H S A. Dual purpose barley production in the Mediterranean climate:Effect of seeding rate and age at forage cutting[J].International Journal of Plant Production,2019,13(4):285-295. doi:10.1007/s42106-019-00054-8.

[7] 陈晓东,赵斌,季昌好,朱斌,王瑞. 刈割期对多棱饲料大麦饲草及籽粒产量与品质的影响[J].麦类作物学报,2017,37(3):409-413. doi:10.7606/j.issn.1009-1041.2017.03.19.

Chen X D,Zhao B,Ji C H,Zhu B,Wang R. Effect of defoliation timing on the yield and quality of six-row barley forage and grain[J].Journal of Triticeae Crops,2017,37(3):409-413.

[8] 陈晓东,赵斌,王瑞,季昌好. 不同刈割茬次与刈割时期对大麦饲草产量与品质的影响[J].中国农学通报,2015,31(12):36-39.

Chen X D,Zhao B,Wang R,Ji C H. Effects of different cuts and defoliation timing on the yield and quality of barley forage[J].Chinese Agricultural Science Bulletin,2015,31(12):36-39.

[9] 陈晓东,赵斌,季昌好,朱斌,王瑞. 大麦、小麦饲草产量与品质差异及适宜刈割次数研究[J].作物杂志,2017(3):81-84. doi:10.16035/j.issn.1001-7283.2017.03.015.

Chen X D,Zhao B,Ji C H,Zhu B,Wang R. Differences in forage yield and quality of barley and wheat with proper cutting frequency[J].Crops,2017(3):81-84.

[10] Jebbouj R,Yousfi B E. Barley yield losses due to defoliation of upper three leaves either healthy or infected at boot stage by Pyrenophora teres f. teres[J].European Journal of Plant Pathology,2009,125(2):303-315. doi:10.1007/s10658-009-9483-6.

[11] Raskin D,Wells M S,Grossman J M,Coulter J A,Sheaffer C C. Yield and economic potential of spring-planted,pea-barley forage in short-season corn double-crop systems[J].Agronomy Journal,2017,109(6):2486-2498. doi:10.2134/agronj2017.01.0029.

[12] Chen X D,Zhao B,Chen L,Wang R,Ji C H. Defoliation enhances green forage performance but inhibits grain yield in barley(Hordeum vulgare L.)[J].Experimental Agriculture,2016,52(3):391-404. doi:10.1017/s0014479715000162.

[13] 程云辉,董臣飞,张文洁,许能祥,丁成龙. 全株饲用大麦品系筛选及赤霉素对其产量的影响[J].草地学报,2016,24(5):1108-1113. doi:10.11733/j.issn.1007-0435.2016.05.027.

Cheng Y H,Dong C F,Zhang W J,Xu N X,Ding C L. Whole-crop forage barley(Hordeum vulgare L.)strain screening and the effects of gibberellic acid on yield[J].Acta Agrestia Sinica,2016,24(5):1108-1113.

[14] 刘丽英,王志军,尹强,孙林,成启明,范文强,刘亚红,贾玉山. 3种饲草不同配比的体外消化特性及组合效应分析[J].畜牧兽医学报,2017,48(6):1066-1075. doi:10.11843/j.issn.0366-6964.2017.06.011.

Liu L Y,Wang Z J,Yin Q,Sun L,Cheng Q M,Fan W Q,Liu Y H,Jia Y S. Research on the in vitro digestibility and associative effects of three forage with different proportion[J].Acta Veterinaria et Zootechnica Sinica,2017,48(6):1066-1075.

[15] El-Shatnawi M K,Al-Qurran L,Ereifej K,Saoub H. Management optimization of dual-purpose barley(Hordeum spontaneum C. Koch)for forage and seed yield[J].Journal of Range Management,2011,57(2):197-202. doi:10.2458/azu_jrm_v57i2_el-shatnawi.

[16] 中国标准出版社第一编辑室. 中国农业标准汇编-饲料检测方法卷[M].1版.北京:中国标准出版社,2010:10-60.

Editorial Office No. 1. The Assembly of China’s agricultural standard:method for feed detection [M].Version 1 Beijing:China Standards Press,2010:10-60.

[17] 李强,周道玮,张慧. 9种豆科饲草越冬性能对晚播期的响应[J].草业科学,2018,35(8):1899-1909. doi:10.11829/j.issn.1001-0629.2017-0541.

Li Q,Zhou D W,Zhang H. Responses of overwintering performance of nine legumes to a late sowing date[J].Pratacultural Science,2018,35(8):1899-1909.

[18] Mariotti M,Masoni A,Arduini I. Forage and grain yield of common buckwheat in Mediterranean conditions:Response to sowing time and irrigation[J].Crop and Pasture Science,2016,67(9):1000-1008. doi:10.1071/cp16091.

[19] Patel S B,Patel A G,Chavda J N,Patel M A. Effect of time of sowing and nitrogen levels on yield attributes,yield and quality parameters of Rabi forage maize(Zea mays L.)[J].International Journal of Chemical Studies,2017,5(3):868-871.

[20] 王瑞,季昌好,陈晓东,赵斌,朱斌. 粮草双高饲料大麦新品种皖饲啤14008选育与应用[J].大麦与谷类科学,2018,35(2):59-62. doi:10.14069/j.cnki.32-1769/s.2018.02.013.

Wang R,Ji C H,Chen X D,Zhao B,Zhu B. Breeding and application of the new barley variety Wansipi 14008 with a high-yielding ability in both grain and forage[J].Barley and Cereal Sciences,2018,35(2):59-62.

[21] Nair J,Beattie A D,Christensen D,Yu P Q,McAllister T,Damiran D,McKinnon J J. Effect of variety and stage of maturity at harvest on nutrient and neutral detergent fiber digestibility of forage barley grown in Western Canada[J].Canadian Journal of Animal Science,2018,98(2):299-310. doi:10.1139/cjas-2017-0060.

Effects of Sowing Dates on the Yield and Quality of Forage and Grain Among Different Barley Varieties

CHEN Xiaodong1,2,ZHAO Bin1,2,WANG Rui1,2,ZHU Bin1,2,JI Changhao1,2

(1.Crop Research Institute,Anhui Academy of Agricultural Sciences,Hefei 230031,China;2.Anhui Key Laboratory of Crop Quality Improvement,Hefei 230031,China)

Abstract To ascertain effects of sowing dates on the yield and quality of both forage and grain among different barley varieties,four sowing dates(factor A)were imposed on four six-row barley varieties(factor B)to compare the differences of yield and quality of tillering forage and mature grain. The results showed sowing dates had a greater impact on forage yield and less impact on grain yield. Early sowing accelerated cutting times and raised forage yield while the highest forage fresh weight(12.44 t/ha)and dry weight(1.49 t/ha)were obtained at sowing date A1(September 30). Significant differences were identified among varieties for both forage and grain yield. Variety B2(Wansipi 14008)achieved the highest forage fresh weight of 10.51 t/ha and dry weight of 1.38 t/ha,and the second highest grain yield of 1.82 t/ha. Variety B1(Yangsimai No.1)achieved the highest grain yield of 3.58 t/ha and the second highest forage fresh weight of 9.00 t/ha and dry weight of 1.17 t/ha. Thus variety B1 and B2 can be used for harvest of both forage and grain. Sowing dates had a greater effect on forage quality but less effect on grain quality. Forage quality traits excluding acid detergent lignin content varied significantly among sowing dates of which A2 and A4 had greater values for corresponding traits. No significant differences were found among varieties for forage quality traits,which can be used as elite forage crops. Differences of grain quality were significant among varieties of which B2 had the highest protein content and B1 had the highest starch content,implying selection of varieties can improve feed quality. Interaction of sowing dates and varieties had a certain effect on forage yield but little effect on other traits. Based on the above analyses,Wansipi 14008 and Yangsimai No.1 can be used and sowed on September 30 to achieve harvest of both elite forage and grain.

Key wordsBarley;Sowing date;Forage;Grain;Yield;Quality

收稿日期:2021-06-22

基金项目:安徽省自然科学基金项目(1908085MC92);现代农业产业技术体系建设专项资金(CARS-05)

作者简介:陈晓东(1981-),男,安徽肥东人,副研究员,博士,主要从事大麦、小麦遗传育种研究。

通讯作者:季昌好(1963-),男,安徽无为人,研究员,硕士,主要从事大麦、小麦遗传育种研究。

中图分类号:S512.01

文献标识码:A

文章编号:1000-7091(2021)增刊-0130-06

doi10.7668/hbnxb.20191902