玉米矮秆突变体K718d的遗传鉴定

董 丽1,石海春1,2,赵长云2,余学杰1,2,柯永培1,2

(1.四川农业大学 农学院,四川 温江 611130;2.四川正红生物技术有限责任公司,四川 双流 610213)

摘要:发掘新的玉米矮秆资源,并研究其遗传特性,可为玉米矮化育种提供新的物质基础。以自然突变获得的矮秆突变体K718d和野生型K718为材料,比较表型差异和对外源激素的敏感性;K718d与5个高秆自交系组配正反交F1、BC1、BC2 和F2 群体,分析矮秆性状的遗传模式,通过BSA-SSR标记法定位矮秆基因,用等位杂交法鉴定基因的等位性。结果表明,与K718相比,K718d株高、穗位高、节间数和节间长度分别降低48.23%,75.57%,30.83%和65.92%,穗长缩短28.57%,产量降低36.44%,差异均达极显著水平;突变体K718d对GA3和IAA均不敏感。2个生态点试验结果,正反交F1均为高秆;BC1和F2 群体高矮秆植株分离比例分别符合1∶1和3∶1,BC2 群体为高秆,表明K718d株高由1对隐性细胞核基因控制。将矮秆基因d718定位于1号染色体SSR 标记umc2569 和umc1278之间,遗传距离分别为1.0,2.5 cM,是一个br1等位基因。该结果为d718的进一步精细定位和克隆奠定了基础。

关键词:玉米;矮秆突变体K718d;遗传模式;SSR标记;基因定位;激素敏感性

在玉米生产中,高秆品种易倒伏,通常造成严重的减产;而矮秆玉米经济系数高,抗倒伏能力强,光能利用率高,利于密植高产。目前,已被定位的矮秆单基因有60多个(http://www.maizegdb.org/),包括隐性单基因br1br2d1d2d3等,显性单基因D8D9D11Dt等,其中br2[1]d3[2]D8[3]D9[4]Dt[5]等基因已被克隆;分布于10条染色体上,已定位的控制玉米株高的QTL位点300余个(http://www.maizegdb.org/),但目前玉米中能够被应用的矮秆资源有限,遗传多样性低,主要集中于br2[6]。因此,为发掘新的玉米矮秆种质资源,并了解其遗传特性,对推动玉米矮化育种具有重要意义。本研究中,以自然突变所获得的矮秆突变体K718d为主要材料,研究其农艺经济性状表现和对外源激素敏感性;通过遗传交配设计,分析该矮秆性状的遗传模式,并初步定位该矮秆基因,为之后基因的精细定位、克隆及育种中的利用提供参考依据。

1 材料和方法

1.1 供试材料

野生型K718;矮秆突变体K718d(P1);5个高秆测验自交系(P2):K1208、Q3、Ly118、Na2和K338;以及K718d与测验自交系组配的正反交F1、BC1、BC2、F2等群体。5个已知矮秆基因材料114F(br2)、110K(br1)、301(cr1)、K15d(br2突变体)、K123d(br2突变体)与K718d杂交配制的F1组合。所有材料均由四川正红生物技术有限责任公司(简称公司)提供。

1.2 试验设计

1.2.1 K718d与K718形态差异比较 于2019年在公司双流区育种基地种植K718d与K718,选取其中30个有代表性的单株,对株高、穗位高等主要农艺性状进行考察;各小区中收获有代表性的10个果穗,考察主要经济性状。用t测验检测性状差异显著性,并对植株和果穗拍照对比。

1.2.2 K718d激素敏感性研究 选取K718d与K718种子浸种催芽,播于发芽盒,随机区组设计,3次重复,5个浓度处理,每处理25株,于两叶一心期用0,25,50,75,100 μg/mL的GA3和IAA溶液隔1 d浇灌1次,20 d后测量苗高及第一叶鞘长度;内源激素GA3测定参照徐敏等[7]方法测定。测定结果进行方差分析和多重比较分析(Excel 2010,Spss 20.0)。

1.2.3 K718d矮秆性状遗传模式分析 试验于四川崇州和雅安两生态地进行。各种植正反交F1群体84粒,BC1、BC2群体各168粒,F2群体各420粒。进行分离群体的株高鉴定,χ2检验株高分离比例,并确定遗传模式。

1.2.4 K718d矮化基因定位 定位群体为K718d×Ly118 F2,于四川崇州育种基地播种2 184粒。单株编号挂牌,调查记录高、矮植株。采用BSA-SSR法[8]进行基因定位。从定位群体中选取极高、极矮株各20株,提取DNA后等量混合,用于构建高、矮秆基因池。选取458对SSR引物于亲本K718d和Ly118间和高、矮基因池间筛选出多态性引物后,在定位群体中的所有矮秆单株间进行扩增。DNA提取用2×CTAB法,PCR体系为25 μL,用3%琼脂糖凝胶对扩增产物进行电泳检测,采用MAPMAKER 3.0、MAPDraw V2.1[9]软件进行连锁分析及遗传图谱的绘制。

1.2.5 K718d矮秆基因等位性鉴定 K718d与5个已知矮秆基因材料组配F1,并种植于公司海南陵水基地,各组合种植28粒,成熟期间观察F1株高表现,确定基因等位关系。

2 结果与分析

2.1 K718d与K718主要性状比较

K718与K718d形态对比见图1。K718d植株和穗位矮化,基部节间缩短,节间数减少,果穗变短。K718d与K718果穗均结实较好,筒型、籽粒半马齿型,但K718籽粒略长,K718d籽粒略宽。

K718d与K718主要性状差异列于表1。与K718相比,K718d生育期显著延长,株高、穗位高、节间数和节间长度分别减少48.23%,75.57%,30.83%和65.92%,差异均达极显著水平;K718d穗粗增加8.31%,穗行数和百粒质量差异不显著,但穗长和行粒数分别极显著降低28.57%,28.47%,导致单株产量极显著降低36.44%。

表1 K718d与K718主要农艺和经济性状比较
Tab.1 Comparisons of the main agronomic and economic traits between the K718d and K718

性状 Trait K718dK718K718d vs K718/%播种-吐丝/d Planting-silking70.40±0.62Aa60.20±0.65Ab+16.94株高/cm Plant height99.90±9.42Aa193.00±14.41Bb-48.23穗位高/cm Ear height10.50±2.92Aa42.99±7.15Bb-75.57节间数No.of internode8.30±0.67Aa12.00±0.42Bb-30.83节间长度/cm Internode length5.10±0.25Aa14.90±0.58Bb-65.92穗长/cm Ear length9.50±0.80Aa13.30±1.02Bb-28.57穗粗/cm Ear diameter4.04±0.18Aa3.73±0.16Ab+8.31穗行数Ear rows12.80±0.97Aa14.90±1.34Aa-14.09行粒数Kernels per row19.60±2.59Aa27.40±3.09Bb-28.47百粒质量/g 100-kernel weight26.40±0.73Aa24.30±0.95Aa+8.64单株产量/g Yield per plant42.60±1.67Aa67.02±5.34Bb-36.44

注:不同小写字母表示在P=0.05水平差异显著;不同大写字母表示在P=0.01水平差异显著。表2-3同。

Note:Different lowercase means significantly difference at P=0.05;different capital letter means significantly difference at P=0.01. The same as Tab.2-3.

A.植株 Bar=15 cm;B.茎秆 Bar=20 cm;
C.节间 Bar=3 cm;D.果穗 Bar=3 cm;E.籽粒 Bar=1 cm。
A.Plants bar=15 cm;B.Stem bar=20 cm;C.Internode bar=3 cm;
D.Ear bar=3 cm;E.Kernel bar=1 cm.

图1 K718与K718d植株、茎秆、节间、果穗和籽粒对比
Fig.1 Comparisons of plants,stem,internode,
ears and kernels between the K718 and K718d

2.2 突变体K718d对GA3和IAA的敏感性

经2种外源激素处理后方差分析结果,除内源GA3在材料间差异不显著外,其余性状在材料间和浓度间差异均达极显著水平,材料与浓度互作间差异不显著。K718d与K718比较,低浓度GA3处理下第一叶鞘长度差异不显著,高浓度下差异极显著,而各浓度处理苗高均达极显著差异,但内源赤霉素含量(以鲜质量计)差异不显著(表2);不同IAA浓度处理,2个材料间第一叶鞘长度和苗高均达极显著差异(表3)。2种激素处理,均不能使突变体苗高恢复至野生型水平,说明该突变体对GA3和IAA不敏感,但K718d能够正常合成赤霉素,且转运GA3途径正常。

表2 K718d和K718第一叶鞘长度、苗高、内源赤霉素含量的多重比较 (GA3)
Tab.2 Multiple comparisons of the first sheath length,seeding height,
concentrations of endogenous GA3 between K718d and K718

浓度/(μg/mL)Concentration第一叶鞘长/cmThe first sheath length苗高/cmSeedling height内源赤霉素浓度/(ng/g)Concentrations of endogenous GA3K718dK718K718dK718K718dK71804.33±0.40Aa5.37±0.26Aa15.1±0.57Bb17.07±0.75Aa331.40±14.70Aa314.48±21.04Aa255.43±0.46Aa6.00±0.16Aa17.1±0.41Bb19.50±0.14Aa555.51±6.62Aa514.41±13.54Aa504.07±0.05Bb7.07±0.05Aa18.9±0.16Bb20.93±0.24Aa868.01±11.47Aa864.51±15.67Aa754.00±0.05Bb7.57±0.05Aa17.6±0.22Bb19.13±0.12Aa972.93±8.37Aa979.32±13.09Aa1004.10±0.16Bb6.20±0.14Aa16.6±0.36Bb18.07±0.05Aa1 173.82±37.22Aa1 236.44±18.66Aa

表3 K718d和K718第一叶鞘长度和苗高的多重比较(IAA)
Tab.3 Multiple comparisons of the first sheath length and seeding height between k718d and K718(IAA)

浓度/(μg/mL)Concentration第一叶鞘长/cmThe first sheath length苗高/cmSeedling heightK718dK718K718dK71804.00±0.08Bb5.43±0.05Aa11.40±0.16Bb18.50±0.08Aa254.07±0.05Bb5.47±0.17Aa11.53±0.05Bb19.37±0.12Aa504.07±0.09Bb5.67±0.09Aa11.53±0.05Bb19.60±0.08Aa754.00±0.08Bb5.67±0.17Aa11.57±0.05Bb19.70±0.14Aa1004.10±0.16Bb5.77±0.12Aa10.63±0.09Bb19.17±0.09Aa

2.3 突变体K718d株高遗传模式

2.3.1 正反交F1群体株高表现 将K718d配制的5个正反交群体平均株高列于表4。所有正反交F1在两试验点均表现为高秆,经t检验正反交F1群体平均株高差异不显著,初步说明株高无细胞质效应。

表4 正反交F1群体株高
Tab.4 Plant height of reciprocal F1 populations

组合Combinations地点Location测验种/cmTesters正交/cmOrthogonal cross反交/cmReciprocal crosst值t valueK718d×K1208崇州216.29±14.23233.51±8.28222.41±10.070.93雅安219.04±22.77229.65±15.760.98K718d×QⅢ崇州200.47±14.99232.07±8.49215.88±9.970.99雅安224.47±12.87234.86±14.810.97K718d×Na2崇州216.71±12.28229.56±10.05236.28±12.390.99雅安238.65±11.28236.70±11.810.99K718d×LY118崇州209.82±14.23227.66±10.39236.54±10.200.99雅安237.71±15.76236.89±12.920.97K718d×K338崇州194.47±15.79209.01±9.19213.59±9.890.98雅安234.83±25.98219.95±14.860.93

2.3.2 回交群体株高分离比例 以K718d为回交亲本构建的BC1回交群体,在两生态点高秆与矮秆植株分离比例经卡方检验均符合1∶1(表5);而以5个测验种为回交亲本的BC2回交群体在两试验点均表现为高秆,表明K718d矮秆性状可能由1对隐性核基因控制。

表5 BC1分离群体株高χ2检验
Tab.5 The χ2 test of plant height of BC1 segregation populations

组合Combinations地点Location高秆株数No.of height plants矮秆株数No.of dwarf plants实际比例Practical ratio理论比例Theoretical ratioχ2(K718d×K1208)×K718d崇州42371.14∶11∶10.13雅安39301.30∶11∶10.04(K718d×QⅢ)×K718d崇州49401.23∶11∶10.08雅安49431.14∶11∶10.13(K718d×Ly118)×K718d崇州51511.00∶11∶10.25雅安49401.23∶11∶10.08(K718d×Na2)×K718d崇州57481.19∶11∶10.10雅安45341.32∶11∶10.03(K718d×K338)×K718d崇州50580.86∶11∶10.41雅安33281.18∶11∶10.10

2.3.3 F2群体株高分离比例 在2个生态点所有F2群体高秆与矮秆植株分离比例,经卡方测验都符合3∶1,进一步证明K718d的矮秆性状由1对隐性核基因控制(表6)。

表6 F2分离群体株高χ2检验
Tab.6 The χ2 test of plant height of F2 segregation populations

组合Combinations地点Location高秆株数No.of height plants矮秆株数No.of dwarf plants实际比例Practical ratio理论比例Theoretical ratioχ2K718d×K1208崇州147502.94∶13∶10.10雅安168602.80∶13∶10.16K718d×QⅢ崇州158513.10∶13∶10.05雅安164612.69∶13∶10.22K718d×Na2崇州155562.77∶13∶10.18雅安63222.86∶13∶10.13K718d×K338崇州143433.33∶13∶10.01雅安145502.90∶13∶10.12K718d×LY118崇州8403012.79∶13∶10.17雅安141502.82∶13∶10.15

综上所述,K718d与5个测验系组配的正反交F1在崇州和雅安两地均表现为高秆,其正反交组合株高差异不显著,无细胞质效应,受环境影响较小;K718d与F1构建的BC1群体高矮秆植株分离比符合1∶1,5个测验系与F1构建的BC2群体都表现为高秆,F2群体高矮秆植株分离比符合3∶1,表明K718d矮秆性状受一对细胞核隐性基因控制,暂将其命名为d718

2.4 矮秆基因d718定位

定位群体为K718d×Ly118 F2,选取458对均匀覆盖于玉米10条染色体上的SSR引物,在双亲之间筛选出了170对多态性较好的引物后,继续在高、矮秆基因池间筛选,筛出1对多态性引物umc1446;以该引物为参考,继续合成1号染色体Bin1.06~1.09区段的45对引物进行多态性筛选,筛选出了6对多态性引物,至此共筛选出7对多态性引物(表7)。图2为7对多态性引物在F2群体高、矮秆基因池间的扩增结果。

表7 7对SSR引物序列信息
Tab.7 The sequence information of 7 pairs of SSR primers

引物Primer正向引物(5′-3′)Forward sequence反向引物(5′-3′)Reverse sequence umc2560TAATGCATGGGACGAGTAGGTTTTTACAACAGTTCTACACCCCGTCCTumc2569TAGCTGGAGTATGTCGTCTTGGTGGTGACACCCTAGCCCTCTTAGACAbnlg1556ACCGACCTAAGCTATGGGCTCCGGTTATAAACACAGCCGTumc1128TCAATTTTGAGCTATCACTTTCCGATTGGTTCCATTGGTTTTGTTGATumc1278GTCGGAGGATGATCCCCTATCTATTGCCATAGTACATGTCCGTCATTCumc1446GCGCTGCTGCTTCTTAAATTATCTGATGAGACCACCTACAAGTTCGCTumc1991GAAATTGATGCAATTCACCCTGATATTGAATTGCGTGATGCAAGAGTA

D.高秆基因池;d.矮秆基因池。
D.High stalk gene pools;d.Dwarf gene pools.

图2 7对多态性SSR引物在高矮秆基因池间的扩增结果
Fig.2 Amplified results of 7 polymorphism SSR primers between high and dwarf gene pools

用上述7对引物在K718d×Ly118的F2群体的316个矮秆单株分别进行PCR扩增,用3%琼脂糖凝胶进行扩增产物的电泳检测。用上述作图软件进行扩增结果连锁分析后,绘制出遗传连锁图谱。最终将该矮秆基因d718,初步定位于玉米1号染色体长臂上,位于SSR分子标记umc1128与umc1278之间,遗传距离分别为1.0,2.5 cM(图3)。

图3 矮秆基因d718遗传连锁图谱
Fig.3 Genetic linkage map of dwarf gene d718

2.5 d718基因的等位性鉴定

由于矮秆基因d718在染色体上与br1(1.07)、br2(1.06)等已知矮秆基因相近,有必要对该基因进行等位性鉴定。K718d与5个矮秆测验系组配的F1群体株高统计发现,除K718d×110K株高表现为矮秆外,其他组合均表现为高秆(表8)。在5个矮秆测验系中,已知110K为br1材料,301为cr1材料,其余3个均为br2突变体,试验结果只有K718d与110K杂交F1群体植株为矮秆,由此表明d718br1的等位基因。

表8 F1群体株高
Tab.8 Plant height of F1 populations

组合Combinations总株数No.oftotal plants高秆株数No.ofheight plants矮秆株数No. ofdwarf plants等位性AllelismK718d×114F18180不等位K718d×110K28028 等位K718d×30122220不等位K718d×K15d21210不等位K718d×K123d23230不等位

3 讨论与结论

3.1 矮秆突变体K718d表型特征

玉米茎秆节间数减少,节间长度变短可以造成株高的矮化,植物内源激素通过促进、抑制或改变生理活动,调控植物生长发育进程,参与植物株高建成[10-12]。前人研究表明,突变体A2节间数减少,节间长度缩短,dm676节间极显著缩短,从而导致植株矮化[13-14]br1类矮秆突变体节间显著缩短,平均单株产量只有野生型的2/3[15],且br1对GA3不敏感,而突变体523333[16]、d0掖(478)、d0(齐319)和d0(PH4CV)[17]对GA3敏感。

本研究发现,与野生型K718比较,K718d节间数减少近1/3,节间长度缩短近2/3,株高降低近1/2,平均单株产量降低36.44%,但穗粗增加8.31%,可用来改良玉米品种株高和穗型等性状,具有一定的应用价值。经不同浓度的GA3和IAA处理发现,该突变体为赤霉素与生长素钝感型,与矮秆突变体br1br2相似,但赤霉素合成及转运途径正常。推测造成突变体K718d矮化的原因,可能是植株生长过程中某一特定时期激素合成或运输有关,有待进一步研究。

3.2 矮秆突变体K718d株高遗传特性

现有研究发现,玉米株高分为单基因遗传和多基因遗传2种模式,其中单基因遗传又分为显性和隐性2种[18-19]。王立静等[20]和戚洪源等[21]利用矮秆突变体与普通玉米自交系构建F1、BC和F2群体的方法,分析明确了矮生性状的遗传模式。王益军等[22]发现了来自玉米自交系Mo17的一个显性矮秆突变基因D*-10,并采用 SSR分子标记技术,将该基因定位在玉米2号染色体上。王立静等[20]把121C(D8)和502C(D9)的花粉授予玉米矮秆显性突变体52333,取30株F1的花粉授予高秆自交系Lx9801,根据后代高矮秆植株分离比例,确定了DtD8D9为非等位基因。

本研究用K718d与5个高秆自交系组配正反交F1、BC1、BC2和F2群体,分析矮秆性状的遗传模式,结果发现,K718d矮秆性状由1对隐性核基因控制;并利用BSA-SSR分子标记技术,将矮秆基因d718定位于1号染色体长臂上,位于分子标记umc1128与umc1278之间,遗传距离分别为1.0,2.5 cM;等位性鉴定发现,K718d与110K(br1)组配的F1群体株高表现为矮秆,表明d718br1等位。后续将进一步对d718进行精细定位和克隆等研究,为育种应用提供技术支撑。

参考文献:

[1] Multani D S,Briggs S P,Chamberlin M A,Blakeslee J J,Murphy A S,Johal G S.Loss of an MDR transporter in compact stalks of maize br2 and Sorghum dw3 mutants[J].Science,2003,302(5642):81-84.doi:10.1126/science.1086072.

[2] Winkler R G,Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gib-berellin biosynthesis[J].The Plant Cell,1995,7(8):1307-1317.doi:10.1105/tpc.7.8.1307.

[3] Peng J R,Richards D E,Hartley N M,Murphy G P,Devos K M,Flintham J E,Beales J,Fish L J,Worland A J,Pelica F,Sudhakar D,Christou P,Snape J W,Gale M D,Harberd N P.Green revolution′genes encode mutant gibberellin response modulators[J].Nature,1999,400(6741):256-261.doi:10.1038/22307.

[4] Lawit S J,Wych H M,Xu D P,Kundu S M,Tomes D T.Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development[J].Plant and Cell Physiology,2010,51(11):1854-1868.doi:10.1093/pcp/pcq153.

[5] 王立静.玉米矮秆基因Dt和坏死基因nec-t的图位克隆与功能分析[D].泰安:山东农业大学,2012.doi:10.7666/d.d224451.

Wang L J.Map-based cloning and functional analysis of dwarf gene Dt and necrotic gene nec-t in maize[D].Taian:Shandong Agricultural University,2012.

[6] 何川,郑祖平,谢树果,李钟,刘代惠.隐性单基因br-2玉米矮生系的选育[J].中国农业科学,2009,42(8):2978-2981.doi:10.3864/j.issn.0578-1752.2009.08.042.

He C,Zheng Z P,Xie S G,Li Z,Liu D H.Breeding of the maize monogenic br-2 dwarf lines[J].Scientia Agricultura Sinica,2009,42(8):2978-2981.

[7] 徐敏,石海春,余学杰,谭义川,柯永川,赵长云,柯永培.一个玉米矮秆突变体K123d的遗传鉴定[J].植物遗传资源学报,2017,18(1):155-163.doi:10.13430/j.cnki.jpgr.2017.01.020.

Xu M,Shi H C,Yu X J,Tan Y C,Ke Y C,Zhao C Y,Ke Y P.Genetic identification of A dwarf mutant K123d in maize(Zea mays L.)[J].Journal of Plant Genetic Resources,2017,18(1):155-163.

[8] Michelmore R W,Paran I,Kesseli R V.Identification of markers linked to disease-resistance genes by bulked segregant analysis:A rapid method to detect markers in specific genomic regions by using segregating populations[J].Proceedings of the National Academy of Sciences of the United States of America,1991,88(21):9828-9832.doi:10.1073/pnas.88.21.9828.

[9] 刘仁虎,孟金陵.MapDraw、在 Excel 中绘制遗传连锁图的宏[J].遗传,2003,25(3):317- 321.doi:10.16288/j.yczz.2003.03.017.

Liu R H,Meng J L.MapDraw:a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data[J].Hereditas,2003,25(3):317-321.

[10] Wang L,Mu C,Du M W,Chen Y,Tian X L,Zhang M C,Li Z H.The effect of mepiquat chloride on elongation of cotton(Gossypium hirsutum L.)internode is associated with low concentration of gibberellic acid[J].Plant Science,2014,225:15-23.doi:10.1016/j.plantsci.2014.05.005.

[11] Srinivasan C,Liu Z R,Scorza R.Ectopic expression of class 1 KNOX genes induce adventitious shoot regeneration and alter growth and development of tobacco(Nicotiana tabacum L)and European plum(Prunus domestica L)[J].Plant Cell Reports,2011,30(4):655-664.doi:10.1007/s00299-010-0993-7.

[12] Agehara S,Leskovar D I.Age-dependent effectiveness of exogenous abscisic acid in height control of bell pepper and transplants[J].Scientia Horticulturae, 2014,175:193-200.doi:10.1016/j.scienta.2014.05.025.

[13] 董春林,翟广谦,张正,杨睿,张明义,张彦琴,杨丽莉,常建忠.玉米矮秆突变体A2的表型鉴定及转录组分析[J].玉米科学,2019,27(4):52-57.doi:10.13597/j.cnki.maize.science.20190408.

Dong C L,Zhai G Q,Zhang Z,Yang R,Zhang M Y,Zhang Y Q,Yang L L,Chang J Z.Phenotypic characterization and transcriptome analysis of maize dwraf mutant A2[J].Journal of Maize Sciences,2019,27(4):52-57.

[14] 邱正高,杨华,袁亮,张亚勤,张采波,汤玲,荣廷昭,曹墨菊.一份新选玉米矮秆突变体的鉴定与遗传分析[J].华北农学报,2015,30(6):112-118.doi:10.7668/hbnxb.2015.06.017.

Qiu Z G,Yang H,Yuan L,Zhang Y Q,Zhang C B,Tang L,Rong T Z,Cao M J.Identification and genetic analysis of a new dwarf mutant in maize[J].Acta Agriculturae Boreali-Sinica,2015,30(6):112-118.

[15] Oh M H,Sun J D,Oh D H,Zielinski R E,Clouse S D,Huber S C.Enhancing Arabidopsis leaf growth by engineering the BRASSINOSTEROID INSENSITIVE1 receptor kinase[J].Plant Physiology,2011,157(1):120-131.doi:10.1104/pp.111.182741.

[16] 张素梅.玉米株高突变体的遗传分析和初步基因定位[D].泰安:山东农业大学,2008.doi:10.7666/d.y1374584.

Zhang S M.Genetic analysis and preliminary gene mapping of a plant height mutant in maize[D].Taian:Shandong Agricultural University,2008.

[17] 王武全,曹本高,员海燕.玉米矮秆突变体的激素敏感性分析[J].西北农林科技大学学报(自然科学版),2017,45(8):51-55.doi:10.13207/j.cnki.jnwafu.2017.08.008.

Wang W Q,Cao B G,Yun H Y.Hormone sensitivity of a dwarf mutant of maize[J].Journal of Northwest A&F University (Natural Science Edition),2017,45(8):51-55.

[18] 李钟,郑祖平,张国清,何川.矮生玉米自交系的选育和利用[J].玉米科学,2006,14(1):76-78.doi:10.3969/j.issn.1005-0906.2006.01.023.

Li Z,Zheng Z P,Zhang G Q,He C.Breeding and application on the inbred line of dwarf maize[J].Journal of Maize Sciences,2006,14(1):76-78.

[19] 李忠南,王克伟,王越人,邬生辉,李光发.玉米品种先玉335的血缘系谱及主要农艺性状遗传分析[J].玉米科学,2018,26(3):32-39.doi:10.13597/j.cnki.maize.science.20180307.

Li Z N,Wang K W,Wang Y R,Wu S H,Li G F.Genetic analysis on pedigree and agronomic characters of maize variety Xianyu 335[J].Journal of Maize Sciences,2018,26(3):32-39.

[20] 王立静,哈丽旦,张素梅,徐春花,刘保申.新的玉米矮秆突变基因的鉴定与遗传分析[J].华北农学报,2008,23(5):23-25.doi:10.7668/hbnxb.2008.05.005.

Wang L J,Ha L D,Zhang S M,Xu C H,Liu B S.Identification and genetic analysis of a new dwarf mutant gene in maize[J].Acta Agriculturae Boreali-Sinica,2008,23(5):23-25.

[21] 戚洪源,李卫华,付志远,丁冬,胡彦民,汤继华.玉米隐性矮秆突变体的遗传分析与初步定位[J].河南农业大学学报,2013,47(3):245-249.doi:10.3969/j.issn.1000-2340.2013.03.003.

Qi H Y,Li W H,Fu Z Y,Ding D,Hu Y M,Tang J H.Genetic analysis and linkage mapping of a recessive dwarf mutant in maize[J].Journal of Henan Agricultural University,2013,47(3):245-249.

[22] 王益军,苗楠,施亚婷,邓德祥,卞云龙.一份玉米显性矮秆突变体的遗传分析[J].华北农学报,2010,25(5):90-93.doi:10.7668/hbnxb.2010.05.019.

Wang Y J,Miao N,Shi Y T,Deng D X,Bian Y L.Genetic analysis of a dominant dwarf mutant in maize[J].Acta Agriculturae Boreali-Sinica,2010,25(5):90-93.

Genetic Identification of Maize Dwarf Mutant K718d

DONG Li1,SHI Haichun1,2,ZHAO Changyun2,YU Xuejie1,2,KE Yongpei1,2

(1.College of Agronomy,Sichuan Agricultural University,Wenjiang 611130,China;2.Sichuan Zhenghong Bio Co.Ltd.,Shuangliu 610213,China)

Abstract In order to explore new maize dwarf resources and study their genetic characteristics to provide a new material basis for maize dwarf breeding.The dwarf mutant K718d obtained from spontaneous mutation,and the wild-type K718 were used as materials to compare their phenotypic differences and the sensitivities to exogenous hormones;the genetic model of dwarf trait was analyzed based on the reciprocal F1,BC1,BC2 and F2 populations obtained from K718d mated with 5 high stalk inbred lines,the dwarf gene was mapped by BSA-SSR marker method,and the gene alleles were identified by allelic hybridization.The results showed that the plant height,ear height,number of internodes and internode length of K718d were reduced by 48.23%,75.57%,30.83% and 65.92% respectively compared with that of K718,and ear length was shortened by 28.57%,the yield was reduced by 36.44%,the differences reached extremely significant levels;the mutant K718d was not sensitive to GA3 and IAA.According to the experimental results of the two ecological sites,the reciprocal F1 populations were high stalks;the separation ratios of high plants and dwarf plants in the BC1 and F2 populations were accorded with 1∶1 and 3∶1 respectively,but the BC2 populations were high stalks;which indicated that the plant height of K718d was controlled by one pairs of recessive nuclear genes.The dwarf gene d718 was located between the SSR markers umc2569 and umc1278 on chromosome 1,and the genetic distances were 1.0,2.5 cM respectively,which was a br1 allele.The results lay the foundation for the further fine mapping and cloning of d718.

Key words Maize;Dwarf mutant K718d;Genetic model;SSR marker;Gene mapping;Hormone sensitivity

收稿日期:2021-09-12

基金项目:四川省重点研发项目(2021YFYZ0017);四川省科技支撑计划项目(2019YFN0012;2016NYZ0006);成都市重点研发支撑计划项目(2021-YF05-00527-SN)

作者简介:董 丽(1994-),女,甘肃临洮人,硕士,主要从事玉米遗传育种研究。

通讯作者:柯永培(1963-),男,四川内江人,教授,博士,博士生导师,主要从事玉米遗传育种研究。

中图分类号:S513.03

文献标识码:A

文章编号:1000-7091(2021)06-0071-07

doi10.7668/hbnxb.20192425