化肥减量配施生物有机肥对松花菜养分吸收及产量的影响

李 菊1,高程斐1,马 宁1,王舒亚1,罗石磊1,吕 剑1,冯 致1,胡琳莉1,肖雪梅1,2,郁继华1,2

(1.甘肃农业大学 园艺学院,甘肃 兰州 730070;2.甘肃省干旱生境作物学重点实验室,甘肃 兰州 730070)

摘要:为明确西北高原松花菜生产区化肥减量、高产、稳产的最佳施肥方式。以力禾青梗100天松花菜为试材,共设6个施肥处理,分别为不施肥(CK1)、当地常规施肥(CK2)、化肥减量30%平衡施肥(T1)、化肥减量30%平衡施肥+生物有机肥3 000(T2),6 000(T3),12 000 kg/hm2(T4)。与CK2处理相比,T1处理松花菜经济产量降低3.8%,磷肥利用率由3.7%提高至11.4%;T2、T3、T4处理经济产量分别显著提高了9.5%,11.3%,18.8%,且干物质及养分积累量、花球中养分分配比例均提高。与CK2相比,T2、T3、T4处理成熟期干物质积累量分别增加0.5%,8.3%,7.2%,氮素积累量分别提高9.1%,19.7%,19.1%,磷素积累量分别提高3.1%,12.1%,11.9%,钾素积累量分别提高2.4%,11.2%,10.9%,其中T3和T4处理均达到显著差异水平(P<0.05);此外,相比CK2处理,化肥减量配施生物有机肥明显提高磷、钾肥利用率,T3、T4处理磷肥利用率从3.7%分别增加到26.0%,25.9%,钾肥利用率从43.5%分别增加到73.4%,72.9%。化肥减量30%配施适量的生物有机肥能够促进松花菜养分的吸收积累及合理分配,提高肥料利用率,进而增加产量。

关键词:松花菜;化肥减量;生物有机肥;养分吸收与分配;产量

在蔬菜产业的快速发展过程中,农户为了获得高产,创造更大的经济效益,盲目地提高化肥的施用量,且多凭借经验粗放式施肥,而未根据作物需肥特性平衡施肥[1],过度和不合理的施用化肥,导致肥料利用率降低,蔬菜品质下降,引起土壤板结、使土壤有效肥力和理化性状降低,同时也污染了生态环境[2-4]。因此,寻求合理的化肥减量替代技术,对减轻环境污染、保证蔬菜高产优质具有重要意义。

前人研究表明,化肥减量配施有机肥或生物有机肥是增加蔬菜产量,促进植株养分吸收与分配,提高产品品质和肥料利用率的有效措施[5-7]。如Ibukunoluwa等[8]在甘蓝试验中发现,增施有机肥可提高甘蓝产量和土壤有机质、氮、磷、钾等养分含量。同样,余高等[9]研究证实,生物有机肥替代50%的化肥是促进辣椒增产提质的有效措施之一。平衡施肥又称测土配方施肥,是以土壤和肥料田间试验为基础,根据蔬菜或作物的需肥规律、土壤供肥性能与肥料效应,在合理施用有机肥的前提下,提出氮、磷、钾及其他元素等养分的适宜施用比例 [10]。在关于大葱、樱桃的研究中,平衡施肥可以增加作物产量,提高作物品质和肥料利用率[11-12]。近年来,生物有机肥配施与平衡施肥相结合的施肥措施也在一些作物上被应用。张迎春[13]对莴笋的研究发现,在常规施肥总量的基础上化肥减量20%,平衡施肥并配施6 000 kg/hm2生物有机肥,是实现莴笋养分高效管理、肥料合理利用的科学施肥方式。李杰等[14]研究了化肥减量配施生物有机肥对花椰菜产量、品质等影响。

兰州市榆中县因其独特的地理、气候条件,是高原夏菜的主产区。松花菜作为主要的高原夏菜之一,其2018年的种植面积已达0.67万hm2,成为当地农民脱贫增收的主产业,但在松花菜栽培过程中化肥过量及施用不合理现象尤为突出,关于松花菜平衡施肥的研究还未见报道,因此,本试验以力禾青梗100天松花菜为研究材料,设置化肥减量30%平衡施肥和配施不同量生物有机肥处理,研究不同施肥处理对松花菜养分吸收分配及产量的影响,以期为西北高原松花菜生产建立科学合理的施肥模式提供理论依据。

1 材料和方法

1.1 试验地概况与材料

试验地位于兰州市榆中县清水驿乡稠泥河村高原夏菜种植基地(35°87′N,104°23′E),该地区属于温带大陆性气候,四季分明,水热同季;平均海拔1 790 m,年平均气温6.6 ℃;年降水量300~400 mm,蒸发量1 343.1 mm,无霜期150 d左右。试验田土壤类型为黄绵土,0~20 cm耕层土壤有机质含量12.08 g/kg,全氮1.01 g/kg,全磷1.3 g/kg,全钾7.41 g/kg,碱解氮75.43 mg/kg,速效磷 97.66 mg/kg,速效钾 138.44 mg/kg,pH值7.85。

供试材料:松花菜(Brassica oleracea var. botrytis L.)品种为力禾青梗100天,中晚熟,植株生长势旺盛,梗枝青绿,花球洁白松大,耐寒性好,抗病高产。生物有机肥由甘肃绿能瑞奇生物技术有限公司制造,每克有效活菌数在0.2亿个以上,养分含量为N(1.60%)、P2O5(0.52%)、K2O(1.11%),有机质含量40% 以上,腐植酸含量25% 以上。

1.2 试验设计

采用随机区组设计,共设6个处理:不施肥(CK1)、常规施肥(CK2)、化肥减量30%平衡施肥(T1)、化肥减量30%平衡施肥+3 000 kg/hm2生物有机肥(T2)、化肥减量30%平衡施肥+6 000 kg/hm2生物有机肥(T3)、化肥减量30%平衡施肥+12 000 kg/hm2生物有机肥(T4),每个处理3个小区,小区面积为31.5 m2(4.5 m×7.0 m)。采用平畦覆膜大小行的栽培模式,三角形定植,株距60 cm,大行距60 cm,小行距50 cm。

松花菜种植采用一年两茬(早春茬和秋延茬)高效栽培模式,本试验为秋茬,2019年6月29日定植,2019年9月10日采收。生物有机肥于春季定植前一次性施入,并深翻混匀;试验中各平衡施肥处理肥料施用量及比例是基于土壤养分平衡法的理论,根据松花菜对养分的需求特性和土壤的供肥能力确定的。每生产1 000 kg松花菜需要N、P2O5、K2O分别为 5.1,1.1,4.8 kg,设定目标产量为3 300 kg,计算获得氮磷钾的施用量。与当地常规施肥量相比,化肥总量减少30%,其中N增施34.0%,P2O5减施82.4%,K2O减施23%。各处理具体施肥量如表1所示。

表1 不同处理施肥量
Tab.1 Fertilization amounts under different treatments kg/hm2

处理Treatment养分总量Total content of nutrients化肥养分Fertilizer nutrient生物有机肥养分Bio-organic fertilizerNP2O5K2ONP2O5K2OCK10000000CK2810.0291375144000T1567.039066111000T2663.9390661114815.633.3T3760.8390661119631.266.6T4954.63906611119262.4133.2

1.3 测定指标及方法

分别于松花菜的幼苗期(定植后15 d)、莲座期(定植后30 d)、现蕾期(定植后56 d)、花球膨大期(定植后66 d)和成熟期(定植后71 d)5个生育时期取样。

1.3.1 植株形态 每小区随机选取5株松花菜,分别测定植株的株高、茎粗、叶片数、株幅,其中株高用钢卷尺测量从地面处至顶端生长点的距离;茎粗用游标卡尺测量根茎连结点向上1 cm处直径;叶片数统计植株上横径大于5 cm的叶片数目;株幅用钢卷尺测量植株展开最远的2片叶直径和与之垂直叶片的直径,计算其投影面积。

1.3.2 植株干物质及养分含量 每个小区随机选取3株松花菜,整株挖出,按根、茎、叶、花球将其分开,称量其鲜质量,然后置于烘箱105 ℃杀青 30 min,80 ℃烘至质量恒定,分别测定各器官的干质量。

采用H2SO4-H2O2湿氏消解法进行植株氮磷钾元素的前处理,全氮含量的测定采用凯氏定氮法,全磷含量采用钼锑抗比色法测定,全钾含量采用火焰光度计法测定[15]

肥料利用率[16-17]计算公式如下:

氮(磷、钾)肥利用率(%)=(施肥区作物吸收氮(磷、钾)量-不施肥区作物吸收氮(磷、钾)量)/氮(磷、钾)肥投入量×100。

1.3.3 产量及其构成因素 待松花菜花球达到采收标准后,每小区选取20株,测生物产量与经济产量,再换算为每公顷产量;同时每个小区随机选取15株松花菜,分别测定花球横径、花球纵径、叶片数等指标。

1.4 数据处理与分析

所有试验数据采用SPSS 22.0进行单因素方差分析,并用Duncan′s新复极差法进行多重比较(P<0.05),用Excel 2019进行数据统计和作图。

2 结果与分析

2.1 不同施肥处理对松花菜生长的影响

从图1-A可以看出,随着生育期的延长,各处理的株高均表现为“S”形曲线增长速率;成熟期不同处理株高由大到小依次为CK2>T4>T2>T3>T1>CK1,CK2处理株高最高,达22.3 cm,说明化肥过量容易造成植株地上部徒长。图1-B展示了各生育期松花菜茎粗的变化,同样随生育期延长不断增加,成熟期达到最大;成熟期T3和T4处理的茎粗大于CK2,说明化肥减量30%配施生物有机肥可以促进短缩茎的增粗。由图1-C可知,松花菜的叶片数随着生育期的延长而增加,除莲座期外,不同处理各生育期叶片数差异不显著,成熟期表现出CK2叶片数最多。由于松花菜栽培过程中折叶护花的特殊措施,仅测定前3个时期的株幅(图1-D),幼苗期和莲座期不同处理植株株幅均较小,T3处理株幅显著高于CK2;现蕾期各处理株幅急剧增加,T2、T3和T4处理株幅均高于CK2,T3处理显著提高10.5%。说明与常规施肥相比,化肥减量30%配施生物有机肥可以促进叶片开展,有利于光截获提高光合效能。

2.2 不同施肥处理对松花菜干物质及养分吸收分配的影响

2.2.1 不同施肥处理对松花菜干物质积累和分配的影响 由图2可知,不同施肥处理松花菜干物质积累趋势相似,干物质积累量随着生育期的推进不断增加。幼苗期、莲座期、现蕾期各施肥处理间差异不显著;到花球膨大期,T3处理的干物质积累显著高于CK2处理;成熟期各处理的干物质积累量均达到最大,T2、T3、T4积累量分别较CK2增加了0.5%,8.3%,7.2%,且T3、T4达到显著水平。从整体来看,T3、T4处理的干物质积累量在全生育期内一直处于较高水平,表明化肥配施适量生物有机肥有利于松花菜干物质的积累。

不同小写字母表示差异显著(P<0.05)。图2-3同。
The different lowercase letters show significant difference(P < 0.05).The same as Fig.2-3.

图1 施肥处理对不同时期松花菜植株株高(A)、茎粗(B)、叶片数(C)和叶片开展度(D)的影响
Fig.1 Effects of different fertilization treatments on plant height(A),stem diameter(B),
leaf number(C)and leaf development degree(D)of cauliflower in different periods

图2 不同施肥处理对松花菜干物质积累量的影响
Fig.2 Effects of different fertilizer application rates
on dry matter accumulation in cauliflower

由图3可知,松花菜在不同生育期各器官干物质积累分配随生长中心的转移而变化,幼苗期-莲座期以叶片生长为主,叶片干物质分配比例占80%以上;现蕾期后干物质分配方向改变,同化产物开始转向花球。幼苗期和莲座期不同处理干物质均主要分配到叶片中。现蕾期干物质积累开始向花球转移,花球的分配比例为1.6%~3.4%,T3、T4处理花球干物质分配比例较CK2增加。花球膨大期,花球的干物质分配比例达15.3%~19.6%,T3和T4处理花球干物质分配比例均高于CK2。成熟期,花球干物质分配比例达24.0%~28.6%,T1、T2、T3、T4处理较CK2处理相比,花球干物质分配比例分别增加2.5,4.3,4.6,3.0百分点。表明基于平衡施肥的化肥减量配施生物有机肥促进光合产物从营养器官向生殖器官转移,有利于产品器官的形成,增加产量。

图3 不同施肥处理对松花菜各器官干物质分配的影响
Fig.3 Effects of different fertilization treatments on dry matter distribution in organs of cauliflower

2.2.2 不同施肥处理对松花菜生育期养分吸收积累和分配的影响 各施肥处理在不同生育期氮、磷、钾元素积累规律相似,均呈现为随生育期延长植株养分积累量增加(表2-4)。从养分积累总量看,配施生物有机肥促进养分积累,增加养分积累量;不同施肥处理氮素和磷素积累量在幼苗期就表现出显著性差异,而钾素积累量在花球膨大期表现出显著性差异。成熟期,与CK2处理相比,T2处理植株氮、磷、钾积累总量分别提高9.1%,3.1%,2.4%;T3处理植株氮、磷、钾积累总量分别提高19.7%,12.1%,11.2%;T4处理养分积累量分别提高19.1%,11.9%,10.9%。

表2 不同施肥处理对松花菜各器官氮素积累分配的影响
Tab.2 Effects of different fertilization treatments on nitrogen accumulation and distribution in various organs of cauliflower

生育期Growing stage处理Treatment根/(kg/hm2)Root茎/(kg/hm2)Stem叶/(kg/hm2)Leaf花球/(kg/hm2)Broccoli花球中氮素分配比例/%N distribution of broccoliN积累量/(kg/hm2)N accumulation幼苗期CK10.14±0.01a-3.59±0.11b--3.73±0.12bSeedling stageCK20.15±0.01a-3.43±0.09b--3.58±0.08bT10.16±0.01a-4.14±0.26ab--4.30±0.27abT20.15±0.01a-3.97±0.30ab--4.11±0.31abT30.17±0.00a-4.82±0.23a--4.99±0.23aT40.17±0.02a-4.62±0.41a--4.80±0.43a莲座期CK11.95±0.05a-11.31±1.47c--22.62±2.93cRosette stageCK22.31±0.27a-14.59±1.38bc--29.17±2.75bcT12.40±0.07a-17.07±0.53ab--34.13±1.06abT22.03±0.08a-18.22±1.44a--36.44±2.87aT32.41±0.11a-18.70±0.52a--37.40±1.05aT42.14±0.32a-18.28±0.69a--36.55±1.39a现蕾期CK13.81±0.49b4.91±0.23c100.54±4.06b2.74±0.26c2.45112.00±4.58bBudding stageCK25.26±0.21a5.84±0.17bc118.64±0.78a4.64±0.13b3.45134.38±0.97aT15.39±0.33a6.35±0.25ab113.76±3.39ab5.20±0.60b3.98130.70±3.05aT24.84±0.23ab7.18±0.56a112.63±9.12ab4.90±0.37b3.78129.56±9.28aT35.17±0.20a5.89±0.33bc119.41±4.00a5.16±0.55b3.81135.65±4.20aT45.45±0.52a7.14±0.45a115.71±6.21ab6.81±0.31a5.04135.12±7.04a膨大期CK14.57±0.21b7.45±0.68b81.65±6.27b23.76±0.4c20.23117.43±5.42cExpending stageCK27.59±0.43a8.77±0.48ab146.49±10.07a40.69±1.3ab19.99203.54±8.87abT16.89±1.13a7.56±0.45b143.95±3.84a33.34±2.3b17.39191.75±4.79bT27.60±0.60a7.85±0.74b138.88±3.40a39.86±2.9ab20.53194.19±1.14bT38.49±0.39a9.46±0.72ab157.58±3.90a43.27±1.6a19.77218.81±3.39aT47.82±0.52a9.97±0.68a154.65±6.46a43.28±4.0a20.06215.72±4.27a成熟期CK14.31±0.04d5.23±0.15c82.78±4.54b29.32±0.70d24.10121.63±3.83cMaturityCK25.85±0.14bc6.59±0.08b141.20±7.02a52.30±1.07c25.39205.94±7.34bT15.99±0.32bc6.44±0.13b145.36±10.55a50.07±1.03c24.09207.86±9.66bT25.44±0.37c6.29±0.64b150.44±11.90a62.53±3.71b27.83224.71±10.45abT36.66±0.11ab6.62±0.14b164.19±12.63a69.09±1.55a28.02246.56±11.88aT47.42±0.43a9.32±0.41a164.34±4.17a64.15±2.04ab26.16245.24±2.10a

注:幼苗期与莲座期仅分地上与地下两部分,地上部茎叶合称为叶。

Note: seedling stage and rosette stage can only be divided into aboveground and underground parts, and aboveground stems and leaves are collectively called leaves.

幼苗期和莲座期植株氮、磷、钾养分主要积累于叶中;现蕾期养分积累量继续增加,花球积累量占比较小;花球膨大期,松花菜根、茎、叶中氮磷钾养分积累量均进一步增加,并开始明显向花球部位转移;成熟期养分各部位养分积累量达到最大,不同施肥处理间规律一致,各器官积累量均呈现为叶>花球>茎>根。从整体看,成熟期前,不同施肥处理根部氮素积累量无显著差异,成熟期T3和T4处理根部氮素积累量较CK2增加;T3、T4处理较CK2,显著促进幼苗期和莲座期叶部位氮素积累,莲座期积累量可显著提高28.2%;且成熟期配施生物有机肥处理花球部位氮素积累量均高于常规施肥处理。整体而言,前3个生育期内不同施肥处理根中磷素积累量均无明显差异,幼苗期叶片磷素积累量T3和T4处理显著高于CK2,莲座期仅T4处理叶片磷素积累量显著高于CK2,现蕾期叶片磷素开始向花球转运,各施肥处理间磷素积累量差异不显著;成熟期,T4处理根、茎部位磷素积累量显著增加,T3、T4花球中磷素积累量较CK2分别显著增加32.1%,22.7%。幼苗期和莲座期不同施肥处理对松花菜根、叶各器官钾素吸收积累无明显影响,且叶是主要分布部位。现蕾期,不同施肥处理各器官钾素积累量依次表现为叶>茎>根>花球;花球膨大期开始,各器官钾素积累量呈现出叶>花球>茎>根;成熟期,T3、T4处理花球部位钾素积累量显著高于CK2,分别增加30.6%,23.8%。

由表2-4中花球部位养分占比可以看出,相比常规施肥处理,化肥减量配施生物有机肥处理促进生育后期养分向花球部位的运输分配。成熟期,花球氮素分配比例由CK2的25.39%提高至28.02%,磷素占比由24.88%提高至28.99%,钾素占比由26.88%提高至31.57%。

表3 不同施肥处理对松花菜各器官磷素积累分配的影响
Tab.3 Effects of different fertilization treatments on phosphorus accumulation and distribution in various organs of cauliflower

生育期Growing stage处理Treatment根/(kg/hm2)Root茎/(kg/hm2)Stem叶/(kg/hm2)Leaf花球/(kg/hm2)Broccoli花球中磷素分配比例/%P distribution of broccoliP积累量/(kg/hm2)P accumulation幼苗期CK10.011±0.00a-0.08±0.01e--0.09±0.01eSeedling stageCK20.011±0.00a-0.12±0.00cd-- 0.13±0.00cdT10.011±0.00a-0.10±0.01de-- 0.11±0.01deT20.011±0.00a-0.14±0.01bc-- 0.15±0.01bcT30.012±0.00a-0.16±0.00ab-- 0.17±0.00abT40.012±0.00a-0.17±0.02a--0.18±0.02a莲座期CK10.33±0.00ab-1.93±0.10b--2.25±0.10cRosette stageCK20.36±0.04ab-2.19±0.12b--2.55±0.12abT10.29±0.01b-2.00±0.12b--2.29±0.12abT20.29±0.00b-2.21±0.06b--2.50±0.06abT30.38±0.03a-2.23±0.07b--2.61±0.06bT40.39±0.03a-2.65±0.08a--3.04±0.10a现蕾期CK11.29±0.15a1.33±0.02b22.95±0.65d0.09±0.01c0.3525.65±0.56dSquaring stageCK21.41±0.06a1.52±0.07ab29.97±0.26bc0.17±0.01b0.5333.08±0.31bcT11.38±0.09a1.52±0.16ab27.29±0.68c0.19±0.02b0.6230.38±0.50cT21.24±0.04a1.89±0.16a33.24±2.06ab0.17±0.01b0.4836.54±2.17abT31.30±0.09a1.33±0.08b33.35±0.45ab0.20±0.02b0.5536.18±0.39bT41.52±0.15a1.86±0.17a36.23±1.23a0.26±0.01a0.6539.86±1.45a膨大期CK11.43±0.02bc1.96±0.19bc18.53±1.76b4.46±0.16c16.9026.38±1.59dExpending stageCK21.99±0.22ab2.18±0.03ab26.72±1.68a8.40±0.58ab21.3939.29±1.17abT11.33±0.21c1.48±0.07c25.09±0.75a6.88±0.40b19.7834.78±1.09cT21.76±0.12abc1.90±0.18bc25.10±1.02a7.82±0.72ab21.3836.59±0.19bcT31.91±0.20abc2.34±0.13ab28.59±0.77a8.27±0.52ab20.1341.11±0.69aT42.13±0.21a2.53±0.23a26.30±1.50a9.03±0.73a22.5839.99±1.03a成熟期CK11.30±0.01c1.40±0.02c17.08±0.46c6.84±0.19c25.6926.63±0.31dMaturityCK21.73±0.05b1.98±0.05b26.70±0.74a10.08±0.32b24.8840.49±0.49bT11.38±0.09c1.62±0.04bc21.81±1.52b10.02±0.13b28.7634.83±1.49cT21.62±0.10b1.97±0.17b26.12±1.88a12.04±0.67a28.8541.74±1.96abT31.83±0.02b1.83±0.04b28.55±1.17a13.15±0.44a28.9945.37±0.79aT42.26±0.09a2.76±0.23a27.82±1.42a12.45±0.39a27.5045.29±1.36a

表4 不同施肥处理对松花菜各器官钾素积累分配的影响
Tab.4 Effects of different fertilization treatments on potassium accumulation and distribution in various organs of cauliflower

生育期Growing stage处理Treatment根/(kg/hm2)Root茎/(kg/hm2)Stem叶/(kg/hm2)Leaf花球/(kg/hm2)Broccoli花球中钾素分配比例/%K distribution of broccoliK积累量/(kg/hm2)K accumulation幼苗期CK10.24±0.01a-3.25±0.18a--3.50±0.18aSeedling stageCK20.24±0.00a-3.49±0.12a--3.73±0.12aT10.25±0.02a-3.34±0.25a--3.59±0.27aT20.24±0.02a-3.21±0.21a--3.45±0.22aT30.28±0.01a-3.62±0.13a--3.90±0.14aT40.29±0.03a-3.65±0.36a--3.94±0.39a莲座期CK12.87±0.07a-17.05±1.10c--19.92±1.17bRosette stageCK23.63±0.53a-19.05±0.59bc--22.67±0.83aT13.33±0.15a-19.71±0.64ab--23.04±0.54aT23.03±0.08a-22.20±1.17a--25.22±1.16aT33.43±0.13a-21.33±0.39ab--24.76±0.46aT43.30±0.44a-20.11±0.59ab--23.41±0.88a现蕾期CK16.43±0.72a8.19±0.19a94.96±0.91a2.26±0.29c2.02111.85±1.56aBudding stageCK27.39±0.20a8.26±0.62a101.08±1.76a3.44±0.04b2.86120.16±2.31aT17.27±0.54a8.27±0.57a91.97±3.10a3.85±0.43b3.45111.36±2.90aT27.15±0.22a9.47±0.69a94.27±5.24a3.58±0.23b3.13114.47±5.55aT37.28±0.24a7.83±0.47a92.68±2.93a3.87±0.37b3.47111.67±2.78aT47.66±0.66a9.54±0.74a97.10±2.47a5.22±0.20a4.37119.52±3.45a膨大期CK18.98±0.13a12.90±0.98abc85.57±7.36d22.19±0.59c17.12129.64±5.70cExpending stageCK210.88±0.71a13.29±0.71abc123.06±7.49ab36.55±1.18ab19.89183.78±6.53aT18.71±1.29a10.48±0.61c96.86±2.10cd32.74±2.21b22.01148.79±2.99bT29.52±0.66a11.86±1.03bc104.89±5.30bc34.89±2.52ab21.65161.17±2.37bT310.92±0.78a14.00±0.75ab124.99±2.75a40.11±2.11ab21.11190.02±3.06aT410.75±0.38a15.20±1.13a121.33±7.03ab40.58±3.87a21.60187.85±4.31a成熟期CK18.58±0.40c10.79±0.13b85.58±2.44b39.18±0.53d27.18144.13±2.43dMaturityCK210.72±0.23ab12.75±0.07b127.73±3.82a55.59±1.94c26.88206.79±4.28bT19.58±0.61bc11.96±0.26b111.46±6.84a53.16±1.25c28.56186.15±5.13cT28.41±0.68c11.48±1.06b128.03±12.08a63.73±3.77b30.11211.65±10.74abT311.16±0.44ab11.79±0.32b134.45±7.99a72.62±1.21a31.57230.01±8.08aT412.16±0.68a16.87±1.14a131.55±4.20a68.81±2.67ab30.00229.39±4.74a

2.3 不同施肥处理对松花菜产量的影响

由表5可知,相比CK2,T1处理生物产量和经济产量均降低,经济产量下降3.8%;T2、T3、T4处理的经济产量均表现为显著增加,分别提高9.5%,11.3%,18.8%;各施肥处理经济系数以CK2处理最低,T3处理最高,比CK2增加4.9百分点;T1、T2、T3、T4处理花球纵横径较CK2均增大,最大增幅分别达11.5%,7.8%。表明化肥减量配施生物有机肥可以达到减施增产的效果。

表5 不同施肥处理对松花菜产量的影响
Tab.5 Effects of different fertilization treatments on the yield and its components of cauliflower

处理Treatment生物产量/(×103kg/hm2)Biological yield经济产量/(×103kg/hm2)Economic yield经济系数/%Harvest index花球横径/cmTransversediameter花球纵径/cmVertical diameterCK189.5±1.87d37.3±0.98d41.718.4±0.34c13.0±0.29abCK2110.6±3.65b45.3±1.32c41.019.2±0.32b12.8±0.23abT1101.9±1.63c43.6±1.07c42.820.9±0.26a13.0±0.28abT2110.3±3.00b49.6±1.43b45.021.2±0.30a13.3±0.27aT3109.7±2.28b50.4±0.95ab45.921.4±0.34a13.8±0.29aT4118.6±2.75a53.8±1.54a45.421.4±0.25a13.8±0.27a

2.4 不同施肥处理对松花菜种植肥料利用率的影响

从表6可以看出,合理施肥可以有效提高肥料利用率。T3、T4处理氮肥利用率较CK2分别提高3.0,2.7百分点;相比CK2处理,化肥减量处理磷肥利用率均提高,T1、T2、T3、T4处理的磷肥利用率分别是CK2处理的3.1,5.7,7.0,7.0倍;T2、T3、T4处理钾肥利用率较CK2处理分别提高14.2,29.9,29.4百分点。T3处理肥料利用率最高,氮肥利用率由CK2的28.8%提高到31.8%,磷肥利用率由3.7%提高到26.0%,钾肥利用率由43.5%提高到73.4%。

表6 不同施肥处理对肥料利用率的影响
Tab.6 Effects of different fertilization treatments on fertilizer utilization rate %

处理Treatment氮肥利用率Nitrogen use efficiency磷肥利用率Phosphate use efficiency钾肥利用率Potassium use efficiencyCK1---CK228.83.743.5 T121.911.435.9 T226.221.057.7 T331.826.073.4 T431.525.972.9

3 讨论与结论

生育期氮、磷、钾等养分的供应是松花菜生长及产量的基础,而养分的吸收受水肥管理[18]、栽培模式[19]等多个因素影响。有研究表明,化肥平衡施肥并配施生物有机肥对作物生长发育、产量等产生积极的影响[20-21]。本研究发现,化肥减量30%平衡施肥并配施6 000 kg/hm2生物有机肥松花菜茎粗和株幅均显著高于常规施肥处理,且经济产量显著提高11.3%。此结果与前人研究相一致。邱尧等[22]发现,增施生物有机肥可以促进水稻的生长,增加产量。唐宇等[23]研究发现,化肥减量30%条件下配施生物有机肥番茄产量不降反增。

施肥影响植株干物质的积累与分配,合理的施肥措施可以促进植物的营养物质向生殖器官的分配[24]。朱代强[25]研究表明,与常规施肥相比,化肥减量20%配施6 000 kg/hm2生物有机肥有利于蒜苗假茎中干物质积累与分配。张朝轩[26]研究发现,氮磷钾优化配方施肥有利于青花菜生长和干物质积累。本试验同样发现,化肥减量30%平衡施肥和配施生物有机肥可有效促进松花菜干物质的积累,以及结球后期干物质向花球的运输,且以施用6 000 kg/hm2生物有机肥效果最为突出。

大量研究表明,合理施肥可以增加作物对氮、磷、钾养分的吸收积累,促进养分的合理分配[27-29]。本试验研究发现,化肥减量30%平衡施肥并配施生物有机肥促进松花菜对氮磷钾养分的吸收利用,利于养分向花球的转移分配,达到高产的目的,且以配施6 000 kg/hm2生物有机肥的处理效果最佳。而配施3 000 kg/hm2生物有机肥的处理效果不佳,可能由于化肥减量30%后配施生物有机肥量较少,土壤肥力降低造成。这与张迎春等[30]对莴笋研究试验中的结果相似,化肥减量30%配施3 000 kg/hm2生物有机肥时,莴笋叶片和根系中钾素积累量降低。配施12 000 kg/hm2生物有机肥处理养分吸收积累量略低于配施6 000 kg/hm2生物有机肥的处理,原因可能有2个:一是大量生物有机肥施入,土壤中微生物数量增多,出现微生物与作物竞争养分现象[31];二是生物有机肥具有促进土壤养分释放的作用,土壤养分含量则随生物有机肥用量的增加而增加,养分含量过高则抑制作物对养分的吸收[32]

肥料利用率是衡量施肥是否合理的重要指标。化肥平衡施肥配施生物有机肥是减少化肥用量和提高肥料利用率的重要途径[33-34]。本试验发现,化肥减量配施生物有机肥可明显提高肥料利用率,化肥减量30%配施6 000 kg/hm2生物有机肥处理的肥料利用率为N 31.8%,P2O5 26.0%,K2O 73.4%,均高于常规施肥处理的N 28.8%,P2O5 3.7%,K2O 43.5%,这与前人研究结果一致。黄立梅等[35]研究表明,平衡施肥显著增加冬小麦-夏玉米的产量,提高经济效益及肥料利用率。何传龙等[36]研究表明,相比习惯施肥,化肥减量30%甘蓝氮、磷、钾肥利用率分别提高27.3%,23.4%,23.5%。魏晓兰等[37]研究表明,配施生物有机肥能促进小白菜对氮、磷、钾的吸收,提高肥料利用率。

化肥减量30%配施3 000~12 000 kg/hm2生物有机肥有助于松花菜茎粗和生物量增加;促进整个生育期植株对氮、磷、钾元素的吸收和积累,并有利于成熟期养分向花球的分配转移,增加产量;同时,能有效地提高化肥的利用率,且以T3处理(即基于平衡施肥化肥减量30%配施6 000 kg/hm2生物有机肥)肥料利用率最高,达到了减施增效的目的。

参考文献:

[1] 肖阳. 农业绿色发展背景下我国化肥减量增效研究——以河南省为例[D].北京:中国农业科学院,2018.

Xiao Y. Reduction and efficiency of chemical fertilizer under the background of agricultural green development in China —an empirical study of Henan Province[D].Beijing:Chinese Academy of Agricultural Sciences,2018.

[2] 宋以玲,于建,陈士更,肖承泽,李玉环,苏秀荣,丁方军. 化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响[J].水土保持学报,2018,32(1):352-360. doi:10.13870/j.cnki.stbcxb.2018.01.055.

Song Y L,Yu J,Chen S G,Xiao C Z,Li Y H,Su X R,Ding F J. Effects of reduced chemical fertilizer with application of bio-organic fertilizer on rape growth,microorganism and enzymes activities in soil[J].Journal of Soil and Water Conservation,2018,32(1):352-360.

[3] 杨鹏,晏莉霞,蒲全明,马家斌,向承勇,刘超,耿明明,邓榆川,林邦民,雍磊. 化肥减量配施有机肥对春甘蓝产量及品质的影响[J].中国农业科技导报,2018,20(10):85-94. doi:10.13304/j.nykjdb.2018.0038.

Yang P,Yan L X,Pu Q M,Ma J B,Xiang C Y,Liu C,Geng M M,Deng Y C,Lin B M,Yong L. Effects of reduction of chemical fertilizer and organic manure supplement on spring cabbage yield and quality[J].Journal of Agricultural Science and Technology,2018,20(10):85-94.

[4] 贾豪语,张国斌,郁继华,杨海兴,魏红霞,刘赵帆,张晶,李杰. 化肥与生物肥配施对花椰菜产量和养分吸收利用的影响[J].甘肃农业大学学报,2013,48(5):36-42,49. doi:10.13432/j.cnki.jgsau.2013.05.007.

Jia H Y,Zhang G B,Yu J H,Yang H X,Wei H X,Liu Z F,Zhang J,Li J. Effects of fertilizer and bio-fertilizer combined application on yield and nutrient absorption and utilization of cauliflower[J].Journal of Gansu Agricultural University,2013,48(5):36-42,49.

[5] 杨尚霖. 施加生物有机肥对土壤微生物多样性的影响[D].哈尔滨:黑龙江大学,2018.

Yang S L. Apply biological organic fertilizer to soil microorganism impact of diversity[D].Harbin:Heilongjiang University,2018.

[6] Liu H J,Xiong W,Zhang R F,Hang X N,Wang D S,Li R,Shen Q R. Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora[J].Plant and Soil,2018,423(1/2):229-240. doi:10.1007/s11104-017-3504-6.

[7] Huang N,Wang W W,Yao Y L,Zhu F X,Wang W P,Chang X J. The influence of different concentrations of bio-organic fertilizer on cucumber Fusarium wilt and soil microflora alterations[J].PLoS One,2017,12(2):e0171490. doi:10.1371/journal.pone.0171490.

[8] Ibukunoluwa Moyin-Jesu E. Use of different organic fertilizers on soil fertility improvement,growth and head yield parameters of cabbage(Brassica oleraceae L.)[J].International Journal of Recycling of Organic Waste in Agriculture,2015,4(4):291-298. doi:10.1007/s40093-015-0108-0.

[9] 余高,陈芬,谢英荷,侯建伟. 化肥减施、有机肥配施对辣椒产量及品质的影响[J].北方园艺,2020(4):47-53. doi:10.11937/bfyy.20192112.

Yu G,Chen F,Xie Y H,Hou J W. Effects of reduced chemical fertilizer and combined with organic fertilizer application on pepper yield and quality[J].Northern Horticulture,2020(4):47-53.

[10] 张越.蔬菜测土配方施肥研究进展[J].现代农业科技,2020(5):56-57.doi:10.3969/j.issn.1007-5739.2020.05.032.

Zhang Y. Research progress on soil testing and formula fertilization of vegetable[J].Xiandai Nongye Keji,2020(5):56-57.

[11] 马征,崔荣宗,贾德,魏建林,张柏松,郑福丽,李国生.氮磷钾平衡施用对大葱产量、养分吸收及利用的影响[J].中国土壤与肥料,2019(3):109-114. doi:10.11838/sfsc.1673-6257.18303.

Ma Z,Cui R Z,Jia D,Wei J L,Zhang B S,Zheng F L,Li G S. Effects of N,P and K balanced fertilization on Welsh onion yield,nutrient uptake and utilization[J].Soil and Fertilizer Sciences in China,2019(3):109-114.

[12] 赵冬琦.平衡施肥对甜樱桃园土壤理化性质和果实品质的影响[D].雅安:四川农业大学,2017.

Zhao D Q. Effects of balanced fertilization on soil physicochemical properties and fruit quality of cherry[D].Yaan:Sichuan Agricultural University,2017.

[13] 张迎春.生物有机肥部分替代化肥对莴笋生长生理、养分利用及土壤肥力的影响[D].兰州:甘肃农业大学,2019.

Zhang Y C. Effects of partial substitution of chemical fertilizer by bio-organic fertilizer on the physiological characteristics,nutrient utilization and soil fertility of Asparagus lettuce[D].Lanzhou:Gansu Agricultural University,2019.

[14] 李杰,贾豪语,颉建明,郁继华,杨萍.生物肥部分替代化肥对花椰菜产量、品质、光合特性及肥料利用率的影响[J].草业学报,2015,24(1):47-55. doi:10.11686/cyxb20150107.

Li J,Jia H Y,Xie J M,Yu J H,Yang P. Effects of partial substitution of mineral fertilizer by bio-fertilizer on yield,quality,photosynthesis and fertilizer utilization rate in broccoli[J].Acta Prataculturae Sinica,2015,24(1):47-55.

[15] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学出版社,1999.

Lu R K. Analytical methods of soil agrochemistry[M].Beijing:China Agricultural Science Press,1999.

[16] 余小芬,杨树明,邹炳礼,解燕,刘华林,刘加红,张瑞勤,吕亚琼,蔡永占,张素华,邱学礼.云南多雨烟区增密减氮对烤烟产质量及养分利用率的调控效应[J].水土保持学报,2020,34(5):327-333. doi:10.13870/j.cnki.stbcxb.2020.05.045.

Yu X F,Yang S M,Zou B L,Xie Y,Liu H L,Liu J H,Zhang R Q,Lü Y Q,Cai Y Z,Zhang S H,Qiu X L. The regulatory effects of enhanced density combined with reduced nitrogen fertilizer on yield,quality and nutrient use efficiency of flue-cured tobacco in rainy areas,Yunnan Province[J].Journal of Soil and Water Conservation,2020,34(5):327-333.

[17] 孙志祥,韩上,武际,李敏,王慧,程文龙,唐杉,朱林.秸秆还田对双季稻产量和土壤钾素平衡的影响[J].中国农学通报,2020,36(9):9-13.

Sun Z X,Han S,Wu J,Li M,Wang H,Cheng W L,Tang S,Zhu L. Effect of straw returning on yield and soil potassium balance of double cropping rice[J].Chinese Agricultural Science Bulletin,2020,36(9):9-13.

[18] 王秋君,郭德杰,马艳,梁永红,仇美华.不同化肥减施技术对设施辣椒产量及养分吸收利用的影响[J].中国农学通报,2020,36(17):99-107.

Wang Q J,Guo D J,Ma Y,Liang Y H,Qiu M H. Reducing chemical fertilizer techniques affect facilities pepper yield and nutrient absorption and utilization[J].Chinese Agricultural Science Bulletin,2020,36(17):99-107.

[19] 蔡媛媛,王瑞琪,王丽丽,刘惠芬,杨殿林,谭炳昌.华北平原不同施氮量与施肥模式对作物产量与氮肥利用率的影响[J].农业资源与环境学报,2020,37(4):503-510. doi:10.13254/j.jare.2018.0254.

Cai Y Y,Wang R Q,Wang L L,Liu H F,Yang D L,Tan B C.Effects of nitrogen amount and fertilization patterns on crop yield and nitrogen use efficiency on the North China Plain[J].Journal of Agricultural Resources and Environment,2020,37(4):503-510.

[20] 付文杰.不同施肥处理对小白菜生长、产量和品质的影响[D].武汉:华中农业大学,2019.

Fu W J. Effect of different fertilization treatments on growth,yield and quality of pakchoi[D].Wuhan:Huazhong Agricultural University,2019.

[21] 姚一峰,唐铁华,缪桂红,高建国,赵丹.商品有机肥替代部分化肥技术在大棚西兰花生产上的应用研究[J].上海农业科技,2019(1):104-105.

Yao Y F,Tang T H,Miao G H,Gao J G,Zhao D. Application of commercial organic fertilizer to replace part of chemical fertilizer in greenhouse broccoli production[J].Shanghai Agricultural Science and Technology,2019(1):104-105.

[22] 邱尧,刘备,何霖,杨梅玉,谭石勇.增施生物有机肥对水稻产量和土壤肥力的影响[J].中国农学通报,2020,36(13):1-5.

Qiu Y,Liu B,He L,Yang M Y,Tan S Y. Effects of bio-organic fertilizer on rice yield and soil fertility[J].Chinese Agricultural Science Bulletin,2020,36(13):1-5.

[23] 唐宇,包慧芳,詹发强,侯敏,王宁,杨蓉,林子敬,龙宣杞.化肥减施条件下配施生物有机肥对番茄生长及品质的影响[J].新疆农业科学,2019,56(5):841-854. doi:10.6048/j.issn.1001-4330.2019.05.007.

Tang Y,Bao H F,Zhan F Q,Hou M,Wang N,Yang R,Lin Z J,Long X Q. Effect of combined application of bio-organic fertilizer on tomato growth and quality under the condition of chemical fertilizer reduction[J].Xinjiang Agricultural Sciences,2019,56(5):841-854.

[24] 康利允,常高正,高宁宁,李晓慧,李海伦,梁慎,徐小利,赵卫星.不同氮、钾肥施用量对甜瓜养分吸收、分配及产量的影响[J].中国农业科学,2018,51(9):1758-1770. doi:10.3864/j.issn.0578-1752.2018.09.013.

Kang L Y,Chang G Z,Gao N N,Li X H,Li H L,Liang S,Xu X L,Zhao W X. Effects of different nitrogen and potassium fertilizing amount on nutrition absorption,nutrition distribution and yield of muskmelon[J].Scientia Agricultura Sinica,2018,51(9):1758-1770.

[25] 朱代强.生物有机肥部分替代化肥对蒜苗生长生理、养分吸收、产量及品质的影响[D].兰州:甘肃农业大学,2018.

Zhu D Q. The effect of bio-organic fertilizer on the yield nutrient absorption photosynthesis and quality of garlic shoots[D].Lanzhou:Gansu Agricultural University,2018.

[26] 张朝轩.出口青花菜氮磷钾优化施肥效应研究[D].南京:南京农业大学,2007.doi:10.7666/d.Y1215087.

Zhang C X. Study on the effects of nitrogen,phosphorus and potassium optimum fertilization on export broccoli production[D].Nanjing:Nanjing Agricultural University,2007.

[27] 晋凡生,韩彦龙,李洁,李海金,李晓平.氮磷钾配施对红芸豆养分吸收、干物质积累及产量构成因子的影响[J].华北农学报,2018,33(6):183-192. doi:10.7668/hbnxb.2018.06.025.

Jin F S,Han Y L,Li J,Li H J,Li X P. Effect of NPK fertilizers on nutrient uptake and dry matter accumulation and yield components of red kidney beans[J].Acta Agriculturae Boreali-Sinica,2018,33(6):183-192.

[28] 胡国智,冯炯鑫,张炎,吴海波,熊韬,李青军.不同施氮量对甜瓜养分吸收、分配、利用及产量的影响[J].植物营养与肥料学报,2013,19(3):760-766. doi:10.11674/zwyf.2013.0328.

Hu G Z,Feng J X,Zhang Y,Wu H B,Xiong T,Li Q J. Effects of nitrogen fertilization on nutrient uptake,assignment,utilization and yield of melon[J].Journal of Plant Nutrition and Fertilizers,2013,19(3):760-766.

[29] 赵沛义,段玉,妥德宝,李焕春,刘梅,靳存旺,李瑛.施肥对甜菜产量、物质积累和养分吸收规律的影响[J].华北农学报,2008,23(6):199-202.doi:10.7668/hbnxb.2008.06.045.

Zhao P Y,Duan Y,Tuo D B,Li H C,Liu M,Jin C W,Li Y. Effect of fertilization on the yield and matter accumulation and nutrient uptake law of sugar beet[J].Acta Agriculturae Boreali-Sinica,2008,23(6):199-202.

[30] 张迎春,颉建明,李静,牛天航,夏国栋,毛振宇,王庆玲,陈艺易.生物有机肥部分替代化肥对莴笋及土壤理化性质和微生物的影响[J].水土保持学报,2019,33(4):196-205. doi:10.13870/j.cnki.stbcxb.2019.04.028.

Zhang Y C,Xie J M,Li J,Niu T H,Xia G D,Mao Z Y,Wang Q L,Chen Y Y. Effects of partial substitution of chemical fertilizer by bio-organic fertilizer on Asparagus lettuce and soil physical-chemical properties and microorganisms[J].Journal of Soil and Water Conservation,2019,33(4):196-205.

[31] 张水清,岳克,杜丽君,王更新,宋晓,郭斗斗,张珂珂,张玉亭,黄绍敏.不同耕作方式下有机肥施用量对华北潮土性质及作物产量的影响[J].中国土壤与肥料,2020(4):84-89. doi:10.11838/sfsc.1673-6257.19325.

Zhang S Q,Yue K,Du L J,Wang G X,Song X,Guo D D,Zhang K K,Zhang Y T,Huang S M. Effect of organic fertilizer application dosages on the properties of fluvo-aquic soil and crop yield under different tillage modes in North China[J].Soil and Fertilizer Sciences in China,2020(4):84-89.

[32] 郭鹏飞,闫鹏科,孙权.有机肥施用量对赤霞珠产量和品质的影响[J].湖南农业大学学报(自然科学版),2020,46(3):303-309. doi:10.13331/j.cnki.jhau.2020.03.008.

Guo P F,Yan P K,Sun Q. Effect of the amount of organic fertilizer on the yield and quality of Cabernet sauvignon[J].Journal of Hunan Agricultural University (Natural Sciences),2020,46(3):303-309.

[33] 闫湘,金继运,何萍,梁鸣早.提高肥料利用率技术研究进展[J].中国农业科学,2008,41(2):450-459. doi:10.3864/j.issn.0578-1752.2008.02.019.

Yan X,Jin J Y,He P,Liang M Z. Recent advances in technology of increasing fertilizer use efficiency[J].Scientia Agricultura Sinica,2008,41(2):450-459.

[34] 赵亚南,宿敏敏,吕阳,况福虹,陈轩敬,张跃强,石孝均.减量施肥下小麦产量、肥料利用率和土壤养分平衡[J].植物营养与肥料学报,2017,23(4):864-873. doi:10.11674/zwyf.16417.

Zhao Y N,Su M M,Lü Y,Kuang F H,Chen X J,Zhang Y Q,Shi X J.Wheat yield,nutrient use efficiencies and soil nutrient balance under reduced fertilizer rate[J].Journal of Plant Nutrition and Fertilizers,2017,23(4):864-873.

[35] 黄立梅,黄绍文,韩宝文. 冬小麦-夏玉米适宜氮磷用量和平衡施肥效应[J].中国土壤与肥料,2010(5):38-44. doi:10.3969/j.issn.1673-6257.2010.05.008.

Huang L M,Huang S W,Han B W. Winter wheat-summer corn response to nitrogen and phosphorus application and balanced fertilization[J].Soil and Fertilizer Sciences in China,2010(5):38-44.

[36] 何传龙,马友华,李帆,蒋光月,周维平.减量施肥对菜地土壤养分淋失及春甘蓝产量的影响[J].土壤通报,2011,42(2):397-401. doi:10.19336/j.cnki.trtb.2011.02.028.

He C L,Ma Y H,Li F,Jiang G Y,Zhou W P. Effects of reducing fertilizer application on vegetable soil nutrient leaching and spring cabbage yield[J].Chinese Journal of Soil Science,2011,42(2):397-401.

[37] 魏晓兰,吴彩姣,孙玮,汤燕,谷勋刚.减量施肥条件下生物有机肥对土壤养分供应及小白菜吸收的影响[J].水土保持通报,2017,37(1):40-44. doi:10.13961/j.cnki.stbctb.2017.01.007.

Wei X L,Wu C J,Sun W,Tang Y,Gu X G. Effect of bio-organic fertilizer on soil nutrient supply and absorption of Bok choy under different decreasing fertilization[J].Bulletin of Soil and Water Conservation,2017,37(1):40-44.

Effects of Chemical Fertilizer Reduction Combined with Biological Organic Fertilizer on Nutrient Absorption and Yield of Cauliflower

LI Ju1,GAO Chengfei1,MA Ning1,WANG Shuya1,LUO Shilei1,LÜ Jian1,FENG Zhi1,HU Linli1,XIAO Xuemei1,2,YU Jihua1,2

(1.College of Horticulture,Gansu Agricultural University,Lanzhou 730070,China;2.Key Laboratory of Crops in Drought Habitat of Gansu Province,Lanzhou 730070,China)

Abstract To determine the best method of fertilizer reduction,high yield and stable yield in the production area of cauliflower in Northwest Plateau.The Lihe Green stem 100 days cauliflower was used as material,six treatments were set as follows:the non-fertilization(CK1)and conventional fertilization(CK2)as control;chemical fertilizer reduction by 30% added balanced fertilizer(T1);chemical fertilizer reduction by 30% added balanced fertilizer and biological organic fertilizer 3 000(T2),6 000(T3),12 000 kg/ha (T4).Compared with CK2 treatment,the economic yield of cauliflower decreased by 3.8%,and the utilization rate of phosphorus fertilizer increased from 3.7% to 11.4% in treatment T1;the economic yield of T2,T3 and T4 increased by 9.5%,11.3%,18.8%,respectively. Meanwhile,the accumulation of dry matter and nutrients,and the each element distribution proportion in flower ball were increased. Compared with CK2,T2,T3 and T4 treatments increased dry matter accumulation by 0.5%,8.3% and 7.2%,nitrogen accumulation by 9.1%,19.7% and 19.1%,phosphorus accumulation by 3.1%,12.1% and 11.9%,and potassium accumulation by 2.4%,11.2% and 10.9%,respectively. Among them,T3 and T4 treatments were significantly different(P< 0.05). In addition,compared with CK2,chemical fertilizer reduction combined with biological organic fertilizer significantly increased the utilization rate of phosphorus and potassium fertilizer. The utilization rate of phosphate fertilizer increased from 3.7% to 26% and 25.9%,and that of potassium fertilizer increased from 43.5% to 73.4% and 72.9%,respectively.Chemical fertilizer reduction by 30% added appropriate amount of biological organic fertilizer could promote the absorption,accumulation and rational distribution of nutrients on cauliflower,improve the fertilizer utilization rate,and then increase the yield.

Key words Cauliflower;Reduced fertilizer application;Biological organic fertilizer;Nutrition absorption and distribution;Yield

收稿日期:2021-09-03

基金项目:甘肃省教育厅“双一流”科研重点项目(GSSYLXM-02);甘肃省自然科学基金(20JR10RA513);甘肃农业大学国重实验室开放基金项目(GSCS-2020-12);甘肃农业大学盛彤笙科技创新基金项目(GSAU-STS-1745)

作者简介:李 菊(1996-),女,甘肃平凉人,硕士,主要从事蔬菜栽培生理与生态研究。

通讯作者:肖雪梅(1986-),女,河北衡水人,副教授,博士,主要从事设施蔬菜栽培生理与生物技术研究。

中图分类号:S635.3;S143

文献标识码:A

文章编号:1000-7091(2021)06-0153-10

doi10.7668/hbnxb.20192324