近年来,随着人民生活水平的提高和消费习惯的改变,米质佳和适口性好的粳米越来越受到消费者的欢迎,其消费需求量也不断增加。然而,传统的常规粳稻品种繁多,经济效益不明显。随着超级粳稻的培育和推广,产量、品质和效益方面的优势明显,种植面积逐渐扩大。但超级粳稻的强势粒和弱势粒分化差异显著,弱势粒普遍存在充实差和粒质量低的问题[1],已成为制约稻米产量和品质进一步提升的瓶颈。
大穗型水稻强势粒与弱势粒的发育存在显著的时空差异。一般来说,强势粒是着生在稻穗上部一次枝梗上的颖花,具有开花早、充实好和粒质量高的特点;而弱势粒是着生在稻穗基部二次枝梗上的颖花,开花晚且充实度差,收获时粒质量偏低[2]。Yang等[3]比较超级稻强、弱势粒的结实特性发现,弱势粒的结实率和千粒质量显著低于强势粒。弱势粒充实差不仅会导致水稻的产量潜力难以发挥,还会严重影响稻米的品质。稻米品质的形成与籽粒的灌浆过程密切相关,强、弱势粒在开花和灌浆进程上存在差异,弱势粒灌浆受到上中部籽粒的抑制造成其品质不如强势粒,引起整体米质不佳[4]。前人研究认为,水稻穗上部的籽粒加工品质和直链淀粉含量高于穗下部,而垩白度和蛋白质则表现相反,随着开花时间的推迟而逐渐提高[5-7]。薛菁芳等[8]认为水稻不同粒位的粒质量与品质有显著的相关性,粒质量越高,品质越好,因此,充实度好的强势粒品质更优。上述研究表明,水稻粒位间品质差异较大,故可通过栽培手段降低这种差异,以提高穗内品质的均一性。
非结构性碳水化合物(Non-structural carbonydrate,NSC)是淀粉和可溶性糖的总称,淀粉所占的比重最大。抽穗后水稻籽粒中所需同化物包括花后功能叶的光合产物以及抽穗前水稻茎秆和叶鞘中储藏的NSC[9]。前人用糖花比(抽穗期茎鞘NSC与颖花数的比值)来表示灌浆初期每朵颖花所能获得的灌浆物质的多少,其值大小与籽粒灌浆初期的生理活性呈正相关[10]。因而提高抽穗期茎鞘NSC的积累能够促进籽粒库活性,有利于弱势粒灌浆充实[11]。通过抽穗前干湿交替灌溉,减少氮肥供应均显著提高了水稻抽穗期茎鞘NSC含量,进而提高弱势粒的结实率和充实度,实现籽粒产量的增加[12-13]。目前,关于茎鞘NSC对弱势粒灌浆结实的研究多限于粒质量和结实率的比较,关于茎鞘NSC如何调控弱势粒的灌浆过程以及其与品质形成关系的研究较少。
本研究在水稻穗分化结束后通过不同程度地遮荫和疏行疏蘖处理,构建抽穗期茎鞘NSC的积累量存在差异的不同群体,研究茎鞘NSC对大穗型粳稻粒位间的籽粒灌浆特性、结实能力及品质的影响,探明糖花比与籽粒结实特性和品质形成的关系。该研究结果可为大穗型水稻的遗传改良及其栽培调控新措施的建立提供理论依据。
试验于2019年中稻季在安徽省庐江县郭河镇安徽农业大学皖中试验基地(31°48′N,117°23′E)进行。试验地土壤为沙壤土,移栽前0~20 cm土壤主要理化参数为全氮2.10 g/kg,有机质33.06 g/kg,有效磷25.95 mg/kg,速效钾223.65 mg/kg,pH值5.25。供试材料为2个强、弱势粒灌浆差异显著的大穗型粳稻品系W1844和CJ03。
大田种植,塑料软盘稀泥育秧的方法培育秧苗,5月23日播种,6月16日人工移栽。行株距为30.0 cm×13.3 cm,每穴3苗,每个小区规格为12 m×8 m。总施肥量为:尿素330 kg/hm2、过磷酸钙450 kg/hm2、氯化钾300 kg/hm2。尿素按基肥∶分蘖肥∶穗肥=3∶3∶4比例施用,过磷酸钙全部作基肥,氯化钾按基肥∶分穗肥=1∶1的比例施用。其他田间管理按当地高产栽培的要求实施。
本研究共设置了遮荫处理和疏蘖处理2组试验。为了尽可能地降低试验处理对颖花分化的影响,本研究的疏蘖和遮荫处理均在穗分化结束时(倒1.0叶)开始,通过实际材料镜检剥取相结合的办法,确定水稻幼穗分化完成的时间(幼穗分化完成标志:剥穗后可观察到二次颖花分化完毕,颖花粒粒可见,内外颖生长相互闭合,雄蕊已经分化出花药和花丝,雌蕊分化出柱头、花柱和子房。此时幼穗的雏形已经形成,全穗长5~10 mm)。
1.2.1 遮荫处理 遮荫处理是为了降低抽穗期茎鞘NSC的积累量,本研究共设置了2个遮荫水平:冠层上部光强为自然光强50%的遮荫处理,记为S1;冠层上部光强为自然光强 25% 的遮荫处理,记为S2;不做任何处理的为对照,记为T0。处理时间从穗分化完成期开始,至抽穗期结束。遮光材料采用2,4针黑色遮阳网进行遮光,遮阳网在离地1.5 m处张挂,以保证冠层通风条件良好。以晴天的11:00-13:00遮阳网上下的平均光照强度变化为指标,测定S1实际遮光率为49.39%,S2实际遮光率75.57%。试验采用裂区设计,处理为主区,品种为副区,重复3次。
1.2.2 疏行疏蘖处理 疏行疏蘖处理是为了增加抽穗期茎鞘NSC的积累量,共设置2个密度处理水平:每隔一行疏去整行水稻植株的处理,记为D1;在D1的基础上,将剩余行中每穴的分蘖疏去,只留主茎的处理,记为D2。试验采用裂区设计,密度处理为主区,品种为副区,重复3次。
1.3.1 籽粒灌浆动态 在水稻抽穗开花期,从每个处理选取同一天开花并且穗型大小一致的主茎穗挂牌标记,自开花期-成熟期每隔5 d取标记穗,分别取下强势粒和弱势粒。定义强势粒为穗上部3个一次枝梗的颖花,弱势粒为穗基部3个二次枝梗的颖花。按照朱庆森等[14]的方法利用Richards方程对籽粒灌浆过程进行拟合,计算相应灌浆特征参数。Richards方程:
①
式中,W为粒质量(因变量),A为最终生长量,t为开花后的时间(自变量),B、K和N 为方程参数。其中主要参数如下:起始灌浆势R0,最大灌浆速率GRmax,平均灌浆速率GRmean,活跃灌浆期D,达到最大灌浆速率的时间Tmax。灌浆速率曲线具有2个拐点为t1和t2,达到最终粒质量99%时为实际灌浆终期t3,由此确定灌浆过程的3个阶段,分别为前期(0-t1)、中期(t1-t2)和后期(t2-t3),根据各时期的持续时间和灌浆物质量,计算前期、中期和后期的平均灌浆速率(MGR)和贡献率(RGC)。
1.3.2 茎鞘NSC含量 抽穗期每小区取30个标记主茎,将茎鞘、叶、穗分开,105 ℃杀青30 min,80 ℃恒温烘干至恒质量。将茎鞘干样磨碎过0.150 mm筛。茎鞘中NSC含量测定参照Li等[13]方法进行。
茎鞘可溶性糖和淀粉含量采用蒽酮比色法测定,两者之和为茎鞘NSC含量。
1.3.3 水稻千粒质量和结实率测定 于成熟期取每个小区中2个品种标记穗100个,考查穗粒数,取下强势粒和弱势粒,测量实粒数和千粒质量。
结实率= 实粒数/总粒数×100%。
1.3.4 稻米品质分析 稻米品质性状的分析测定参照中华人民共和国国家标准《GB/T17891—2017优质稻谷》进行,测定强、弱势粒的糙米率、精米率、整精米率、粒长、粒宽、垩白粒率和垩白度。
将整精米用微型万能粉碎机磨成粉,过0.150 mm筛,-20 ℃保存用于测定理化特性。直链淀粉含量采用GB/T15683—2008碘比色法测定。蛋白含量的测定使用凯氏定氮法。
用Excel 2013整理数据和绘制图表,SPSS 19.0 进行统计分析,处理间平均数差异的显著性检验用Duncan法。
花前通过疏行疏蘖和遮荫处理能显著改变W1844和CJ03抽穗期单茎生物量、NSC含量、单茎NSC含量和糖花比水平(图1)。与对照T0相比,疏行疏蘖处理显著提高抽穗期单茎生物量、NSC含量和糖花比,以D2处理最高;遮荫处理显著降低抽穗期NSC含量和糖花比,随着遮荫程度加深降低程度加大,S2处理下最低。与对照T0相比,D1、D2处理下两品种单茎生物量增加20.62%~54.17%,茎中NSC含量提高29.35%~97.28%,单茎NSC含量提高56.03%~204.14%,糖花比提高了47.84%~173.59%。S1、S2处理两品种单茎生物量降低22.94%~36.16%,茎中NSC含量降低34.61%~60.87%,单茎NSC含量降低55.03%~75.03%,糖花比降低33.28%~53.79%。
柱子上的小写字母表示同一品种不同处理的0.05 水平上的差异。
Lowercase letters on the column represent significant difference at 5% probability level.
图1 疏蘖和遮荫处理下水稻抽穗期茎鞘NSC含量以及糖花比
Fig.1 NSC content in stem sheath and carbohydrate-spikelet ratio of rice under
removing tillering and shading treatments at heading stage
疏行疏蘖和遮荫处理显著改变了大穗型水稻的穗粒数、弱势粒的结实率和千粒质量(表1)。随着糖花比的增加,两品种穗粒数以及弱势粒的结实率与千粒质量均呈增加趋势。D2处理下穗粒数、弱势粒的结实率与千粒质量最高,与T0相比差异显著。D1、D2处理两品种的穗粒数较T0高5.59%~22.63%,强势粒的结实率和千粒质量提高不显著,弱势粒结实率提高4.1~7.2百分点,千粒质量提高6.06%~14.29%。不同程度的遮荫则显著降低了穗粒数以及强、弱势粒的结实率与千粒质量,S2处理下表现最低。S1、S2处理下两品种穗粒数较T0低22.63%~51.32%,强势粒的结实率下降6.7~13.3百分点,千粒质量下降了6.50%~17.43%,弱势粒的结实率下降6.8~32.8百分点,千粒质量下降了13.54%~45.02%。粒位间比较发现,疏行疏蘖和遮荫处理对不同粒位的粒质量和结实率的影响也不同,对弱势粒的调控作用更大。
表1 疏蘖和遮荫处理下籽粒结实特性
Tab.1 Grain-setting characteristics of rice under removing tillering and shading treatments
品种Cultivars处理Treatments穗粒数Grains perpanicle结实率/%Seed setting rate千粒质量/g1000-grain weight强势粒SS弱势粒IS强势粒SS弱势粒ISW1844T0243±5b87.6±0.5a76.2±0.4b27.7±0.1a23.1±0.1cD1280±3a86.3±0.8a80.9±1.3a28.2±0.3a24.5±0.3bD2298±3a87.4±0.7a83.4±0.5a28.9±0.1a26.4±0.3aS1188±8c80.8±0.9b62.2±1.1c25.9±0.7b18.1±0.1dS2157±3d74.3±0.8c43.4±1.5d23.7±0.3c12.7±0.3eCJ03T0304±5c91.5±0.9a80.0±0.8b24.1±0.1b19.2±0.4bD1321±4b93.6±0.5a84.1±0.2a24.4±0.2b20.9±0.1aD2338±2a92.4±0.5a85.2±0.9a25.3±0.1a21.3±0.0aS1205±3d84.8±0.7b73.2±0.6c22.5±0.3c16.6±0.2cS2148±4e81.5±1.2c61.1±1.0d19.9±0.3d13.2±0.4d
注:SS.强势粒;IS.弱势粒。数字后不同字母表示在同一列中相同品种在0.05水平上差异显著。表3-4同。
Note:SS.Superior spikelets;IS.Inferior spikelets. Values within the same column for the same cultivar followed by different letters are significantly different at the 0.05 level.The same as Tab.3-4.
选择3个灌浆充实有较大差异的处理(T0、S2和D2),以开花后天数为自变量,各自相应的粒质量为因变量,对各处理的强、弱势粒的灌浆过程用Richards方程拟合(图2,3)。整个灌浆过程中强、弱势籽粒增质量差异显著,强势粒的粒质量在整个灌浆期间始终高于弱势粒,且粒质量在开花后迅速增大,在花后35 d左右达到最大值,之后粒质量变化趋于稳定。而弱势粒在花后较长时间内质量增加缓慢,在花后50 d左右才达到最大值。而通过疏蘖和遮荫处理能显著改变灌浆期间籽粒质量,D2处理显著提高籽粒质量,增质量曲线位于最上方,弱势粒在花后5 d左右籽粒便已经进入了粒质量的迅速增大期,较T0提前。S2处理下强弱势粒粒质量则显著降低,弱势粒的滞育期时间较长,在花后15 d左右粒质量才开始有明显的增加。2个品种的灌浆速率如图3所示,W1844和CJ03均为明显的异步灌浆,强势粒灌浆速率快速达到灌浆速率峰值,而后迅速下降,而弱势粒灌浆速率增加缓慢,到达灌浆速率峰值时间较迟。D2处理下的灌浆速率显著提高,弱势粒的最大灌浆速率峰值较T0提前。遮荫S2使强、弱势粒的灌浆速率均显著降低,弱势粒灌浆速率峰值推迟。
图2 W1844和CJ03籽粒灌浆增质量动态
Fig.2 Grain weight dynamics of W1844 and CJ03
图3 W1844和CJ03籽粒灌浆速率
Fig.3 Grain filling rate of W1844 and CJ03
根据Richards方程计算得出的2个大穗型粳稻不同处理下强、弱势粒灌浆特征参数见表2。疏蘖和遮荫对各特征参数产生不同影响。与T0相比,D2处理的强、弱势粒的灌浆起始势(R0)、平均灌浆速率(GRmean)与最大灌浆速率(GRmax)提高,实际灌浆时间缩短,其中弱势粒的灌浆速率有明显提高,最终的生长量A与强势粒的差距减小。S2处理下的强、弱势粒的R0、GRmean、GRmax与T0相比降低,弱势粒到达最大灌浆速率的时间推迟。D2处理弱势粒活跃灌浆期较短,但在灌浆起始具有较高的生长潜势,在整个灌浆过程中均能保持较高的灌浆速率,故其仍能获得较高的粒质量。相反的遮荫处理S2的实灌时间最长,但是由于灌浆速率和起始灌浆势较低,导致最终的粒质量也远低于T0。
表2 遮荫和疏蘖处理下籽粒灌浆特征参数与Richards方程参数
Tab.2 Grain-filling parameters and parameters of Richards equation of rice under removing tillering and shading treatments
品种Cultivar粒位PositionAR2R0GRmax/(mg/(粒·d))Tmax/dWmax/(mg/粒)GRmean/(mg/(粒·d))D/dW1844T0-SS28.050.998 80.159 21.230 714.6314.430.817 134.33T0-IS21.430.996 20.083 90.667 325.4012.200.434 849.28D2-SS29.000.999 00.164 71.458 412.9015.400.963 230.11D2-IS25.970.998 00.126 10.906 018.1113.370.601 443.18S2-SS22.530.997 00.136 90.815 517.1811.450.542 441.54S2-IS13.640.996 00.056 20.396 534.178.970.248 454.91CJ03T0-SS23.660.995 40.195 51.144 212.0411.790.763 131.00T0-IS19.730.996 40.076 80.617 225.3611.390.397 147.82D2-SS25.860.993 40.239 81.478 010.0412.760.987 026.20D2-IS22.710.996 80.115 00.829 617.9512.230.546 641.55S2-SS21.860.996 00.132 20.758 720.4811.080.504 843.30S2-IS14.070.996 60.059 30.403 434.148.960.255 355.10
注:A.最终生长量; R0.起始生长势;GRmax.最大灌浆速率;Tmax.达到最大灌浆速率的时间;Wmax.灌浆速率最大时的米粒质量;GRmean.平均灌浆速率;D.活跃灌浆期。
Note:A.The final weight of a kernel;R0.Initial grain-filling potential;GRmax.Maximum grain-filling rate;Tmax.The time reaching the maximum grain-filling rate;Wmax.Weight of a kernel at the time of maximum grain-filling rate;GRmean.Mean grain-filling rate;D.Active grain-filling period.
根据灌浆速率曲线的2个拐点,将籽粒灌浆过程划分为前、中(盛)和后期3个阶段。由表3可知,2个品种的强势粒的灌浆前、中期均短于弱势粒;平均灌浆速率(MGR)和贡献率(RGC)均为中期>前期>后期。疏蘖和遮荫处理对水稻强、弱势粒灌浆各阶段持续天数、MGR和RGC有较大影响。D2处理下灌浆历时缩短,其中W1844和CJ03弱势粒灌浆前期分别缩短6.80,7.10 d,S2处理下弱势粒灌浆前期分别延长9.50,8.26 d。MGR以D2处理最高,与T0相比,两品种强、弱势粒的前、中、后期MGR均较T0提高,其中弱势粒灌浆前期MGR提高幅度最大,W1844和CJ03弱势粒前期MGR分别较T0提高65.78%,61.15%。S2处理下各阶段MGR下降,以弱势粒前期降幅最大,分别较T0降低44.35%,43.28%。
表3 疏蘖和遮荫处理下籽粒前期、中期和后期灌浆特征
Tab.3 Grain filling characteristics of early,middle and late stage under removing tillering and shading treatments
品种Cultivars粒位Position灌浆前期Early stage of grain-filling灌浆中期Middle stage of grain-filling灌浆后期Late stage of grain-filling天数/dDays平均速率/(mg/(粒·d))MGR贡献率/%RGC天数/dDays平均速率/(mg/(粒·d))MGR贡献率/%RGC天数/dDays平均速率/(mg/(粒·d))MGR贡献/%RGCW1844T0-SS7.23±0.09de0.886 8±0.007 5b22.84±0.44cd14.81±0.06c1.080 7±0.001 8b57.04±0.19a17.60±0.29b0.304 7±0.001 1b19.12±0.26aT0-IS15.61±0.05b0.407 4±0.002 0e29.67±0.08b19.58±0.13a0.588 7±0.001 4e53.80±0.05b19.42±0.08b0.171 3±0.000 2e15.53±0.03cD2-SS6.56±0.23e1.100 2±0.001 7a24.88±0.86c12.69±0.18d1.282 4±0.012 2a56.13±0.39a14.29±0.53c0.365 1±0.004 8a17.99±0.47bD2-IS8.81±0.60c0.675 4±0.051 0c22.90±0.65cd18.61±0.52b0.795 5±0.012 5c57.00±0.29a22.08±1.40a0.224 6±0.008 8c19.09±0.37aS2-SS8.15±0.09cd0.610 6±0.017 0d22.08±0.26d18.06±0.21b0.715 6±0.005 9d57.36±0.11a21.91±0.10a0.201 2±0.001 4d19.56±0.15aS2-IS25.11±0.45a0.226 7±0.004 1f41.75±1.22a18.12±0.38b0.352 6±0.003 7f46.83±0.77c13.04±0.70c0.109 0±0.001 9f10.42±0.45dCJ03T0-SS5.22±0.01e0.949 1±0.005 8b20.96±0.04d13.63±0.02b1.003 2±0.003 4b57.81±0.01a17.05±0.01c0.280 7±0.000 9b20.23±0.03abT0-IS16.38±0.44b0.391 2±0.006 2d33.74±0.68b17.96±0.25a0.546 1±0.000 4e51.63±0.38b16.02±0.22c0.161 6±0.000 7e13.63±0.29dD2-SS4.25±0.05e1.240 8±0.040 8a20.37±0.38d11.59±0.05b1.295 1±0.005 9a58.03±0.15a14.72±0.02d0.361 7±0.003 0a20.60±0.22aD2-IS9.28±0.07d0.630 4±0.006 7c25.76±0.43c17.34±0.13a0.730 1±0.004 0c55.74±0.20ab19.07±0.36b0.208 5±0.001 6c17.50±0.23bcS2-SS11.06±0.25c0.434 2±0.005 2d21.96±0.38d18.85±0.11a0.665 8±0.001 8d57.41±0.12a22.94±0.14a0.187 0±0.000 8d19.63±0.17abS2-IS24.64±1.00a0.221 9±0.001 5e38.87±2.07a17.22±1.52a0.367 1±0.012 3f44.92±2.95c16.80±0.92c0.127 4±0.016 8f15.21±1.03c
注:MGR.平均灌浆速率;RGC.贡献率。
Note:MGR.Mean grain-filling rate;RGC.Ratio of the grain-filling contributed to the final grain weight.
供试水稻强、弱势粒外观品质差异明显。从部位上看,强势粒的加工品质、粒长和粒宽高于弱势粒,而垩白粒率和垩白度均低于弱势粒,其中强势粒整精米率比弱势粒高1.52~7.35百分点(表4)。疏蘖(D2)和遮荫(S2)能显著改变籽粒加工和外观品质,品种间表现一致。就加工品质而言,与T0相比,D2处理整精米率显著提高,强势粒整精米率平均提高2.56百分点;弱势粒整精米率提高3.38百分点;S2处理下强、弱势粒的糙米率、精米率和整精米率均显著降低,其中强势粒降低了1.33,2.46,6.15百分点;弱势粒降低了1.22,4.96,8.35百分点。D2处理下弱势粒的粒长、粒宽显著提高,相对于T0,平均提高了3.32%,3.73%,弱势粒垩白粒率和垩白度较T0显著下降,平均降低了6.67,3.48百分点。S2处理下强、弱势粒粒长和粒宽均显著降低,垩白粒率和垩白度显著提高,其中弱势粒的粒长和粒宽平均降低8.27%和6.64%,垩白粒率和垩白度平均提高10.67,4.58百分点。
表4 疏蘖和遮荫处理下水稻品质
Tab.4 Rice quality under removing tillering and shading treatments
品种Cultivar粒位Position糙米率/%BR精米率/%MR整精米率/%HMR粒长/mmGL粒宽/mmGW长/宽LWR垩白粒率/%CKR垩白度/%CD直链淀粉/%AC蛋白质/%ProW1844T0-SS84.84±0.05a71.43±0.67ab62.79±0.17b5.30±0.06a2.93±0.03b1.81±0.03ab30.67±0.67d9.10±0.20cd17.62±0.11ab6.58±0.14cT0-IS83.20±0.18b69.65±0.49bc59.19±0.58c5.12±0.04b2.78±0.02c1.84±0.01a37.33±1.33b13.56±0.49b15.91±0.22c7.34±0.19bD2-SS85.07±0.21a72.03±0.27a64.78±0.31a5.32±0.04a3.03±0.03a1.75±0.01b28.67±1.33d8.12±0.38d18.09±0.39a6.14±0.07dD2-IS84.56±0.11a70.93±0.40ab63.26±0.27ab5.27±0.03a2.88±0.02b1.83±0.02a32.00±1.15cd10.24±0.37c17.11±0.15b6.41±0.06cdS2-SS83.32±0.37b68.67±0.61c56.10±0.65d4.77±0.06c2.58±0.02d1.85±0.03a35.33±1.76bc13.66±0.68b14.55±0.19d7.50±0.18bS2-IS82.18±0.50c65.64±0.95d48.75±1.12e4.53±0.03d2.55±0.03d1.78±0.02ab45.33±1.76a17.83±0.69a12.20±0.51e8.91±0.08aCJ03T0-SS83.72±0.30a70.11±0.30bc59.33±0.77bc4.75±0.03b2.75±0.03ab1.73±0.25ab30.00±1.15d8.50±0.26c17.32±0.20a7.09±0.11cT0-IS82.78±0.11b68.98±0.68cd57.24±0.70c4.58±0.02c2.60±0.03c1.76±0.01ab42.67±1.76b13.23±0.65b14.94±0.16c7.67±0.08bD2-SS84.51±0.26a72.16±0.49a62.46±0.42a4.88±0.06a2.83±0.03a1.72±0.33b25.33±0.67e6.67±0.22d17.66±0.19a6.79±0.13cD2-IS84.10±0.12a71.39±0.46ab59.92±0.31b4.75±0.03b2.70±0.03b1.75±0.01ab34.67±0.67c9.59±0.31c16.51±0.15b6.92±0.09cS2-SS82.59±0.21b67.96±0.28d53.73±1.17d4.55±0.03c2.58±0.02c1.76±0.01ab44.00±1.15b12.61±0.82b15.06±0.23c7.56±0.16bS2-IS81.37±0.44c63.07±0.63e50.98±0.29e4.35±0.03d2.47±0.03d1.80±0.03a56.00±2.00a18.11±0.67a11.26±0.25d8.56±0.05a
注:BR.糙米率;MR.精米率; HMR.整精米率;GL.粒长;GW.粒宽;LWR.长宽比;CKR.垩白粒率;CD.垩白度;AC.直链淀粉含量;Pro.蛋白质含量。表6同。
Note:BR.Brown rice rate;MR.Milled rice rate;HMR.Head milled rice rate;GL.Grain length;GW.Grain width;LWR.Length-width ratio;CKR.Chalk kernel rate;CD.Chalk degree;AC.Amylose content;Pro.Protein content.The same as Tab.6.
强势粒的直链淀粉高于弱势粒,而蛋白质表现相反,弱势粒含量较高。疏蘖和遮荫处理显著改变强、弱势粒直链淀粉和蛋白质含量。D2处理强势粒直链淀粉提高不显著,弱势粒较T0弱势粒平均提高1.39百分点;S2处理下强、弱势粒直链淀粉含量均有较大程度的下降,其中强、弱势粒平均降低2.67,3.70百分点。D2处理下蛋白质含量有所降低,强、弱势粒平均降低0.37,0.84百分点;S2处理下强、弱势粒蛋白质含量平均提高0.70,1.23百分点。可知疏蘖和遮荫对弱势粒品质有显著性影响。
抽穗期茎鞘NSC含量和糖花比与穗粒数呈极显著正相关。抽穗期茎鞘NSC含量与强势粒结实率呈显著正相关,与强势粒千粒质量相关性不显著,糖花比与强势粒结实率和千粒质量的相关性均不显著;抽穗期茎鞘NSC含量和糖花比与弱势粒的结实率和千粒质量呈显著或极显著正相关(表5)。说明糖花比与弱势粒的充实关系密切。糖花比与品质之间的相关分析见表6,抽穗期NSC含量和强势粒的精米率呈显著正相关,糖花比与强势粒的精米率和整精米率的呈显著正相关;两者与强势粒的垩白度呈显著负相关,而与强势粒的粒长、粒宽、垩白粒率、直链淀粉和蛋白质含量无显著相关性。抽穗期NSC含量与弱势粒的糙米率和精米率呈显著正相关,与整精米率的相关性不显著。糖花比与弱势粒的加工品质均呈显著和极显著正相关。抽穗期NSC含量和糖花比与弱势粒的粒长、粒宽相关性不显著,与弱势粒垩白度和垩白粒率呈显著或极显著负相关;与弱势粒直链淀粉含量呈显著正相关,与弱势粒蛋白质含量呈显著负相关。说明提高抽穗期糖花比可提高稻米加工品质、外观品质和直链淀粉含量,降低蛋白质含量。
表5 糖花比与结实特性的关系
Tab.5 Relationship between carbohydrate-spikelet ratio and grain-setting characteristic
粒位与结实特征Grain position and grain-setting characteristic单茎NSC含量NSC accumulate糖花比NSC per spikelet强势粒SS穗粒数 Grains per panicle0.863∗∗0.824∗∗结实率Seed setting rate0.684∗0.632千粒质量1000-grain weight0.5610.630弱势粒IS结实率Seed setting rate0.757∗0.738∗千粒质量1000-grain weight0.745∗0.789∗∗
注:*、**分别表示在0.05和0.01水平显著相关。表6同。
Note:*,**significantly correlated at 0.05 and 0.01 levels respectively. The same as Tab.6.
表6 糖花比与稻米品质的关系
Tab.6 Relationship between carbohydrate-spikelet
ratio and rice quality
粒位与稻米品质Grain position and grain quality单茎NSC含量NSC accumulate糖花比NSC per spikelet强势粒SS糙米率BR0.7200.767精米率MR0.870∗0.892∗整精米率HMR0.7790.816∗粒长GL0.4420.521粒宽GW0.6790.732垩白粒率CKR-0.808-0.797垩白度CD-0.865∗-0.849∗直链淀粉含量AC0.7580.760蛋白质含量PC-0.706-0.761弱势粒IS糙米率BR0.894∗0.921∗∗精米率MR0.844∗0.850∗整精米率HMR0.7990.824∗粒长GL0.5320.608粒宽GW0.6670.729垩白粒率CKR-0.799-0.828∗垩白度CD-0.941∗∗-0.941∗∗直链淀粉含量AC0.829∗0.849∗蛋白质含量PC-0.854∗-0.881∗
一般而言,大穗型粳稻穗部不同部位籽粒灌浆充实的优劣和粒质量的高低存在较大差异,弱势粒的开花灌浆过程会受到强势粒的抑制,导致结实能力较低[15]。当前高产栽培的主攻方向就在于提高大穗型粳稻弱势粒的结实率和千粒质量。大穗型粳稻的弱势粒结实率低,粒质量小的主要原因是灌浆初期籽粒库强较低,提高抽穗期NSC含量与糖花比,可促进超级稻弱势粒库容的形成和提高籽粒库活,有利籽粒充实[16]。茎鞘NSC对水稻产量的提高在不同穗型品种上均有报道[17-19],相比于常规粳稻,茎鞘NSC在大穗型杂交粳稻的转运率和贡献率更高,对弱势粒的提升效果比强势粒更显著[20]。因此,通过栽培技术手段提高抽穗期茎鞘NSC含量与糖花比是促进大穗型粳稻弱势粒灌浆充实的有效途径[21]。本研究中,通过疏行疏蘖处理显著提高抽穗期茎鞘NSC的贮存和糖花比,进而提高弱势粒结实率和千粒质量。遮荫使抽穗期NSC的积累量减少,糖花比下降,籽粒结实率和千粒质量显著降低,与林贤青等[22]研究结果一致。此外,本研究中疏蘖和遮荫不仅改变水稻的结实特性,还改变了穗粒数,说明提高抽穗期茎鞘NSC和糖花比可减少颖花退化的数目[23]。
水稻籽粒灌浆的过程决定最终的产量[24]。大穗型粳稻异步灌浆现象明显,与弱势粒相比,强势粒具有更高的R0、GRmax和GRmean,灌浆前期较短,进入灌浆盛期更早,灌浆迅速。抽穗期茎鞘NSC作为籽粒灌浆的物质来源之一,其与籽粒的R0和GRmean呈极显著正相关[25]。本研究中,通过疏蘖和遮荫处理改变花前茎鞘NSC的积累能明显改变弱势粒的灌浆特性。D2处理弱势粒的灌浆曲线相较于T0明显左移,籽粒灌浆的几个特征参数,如R0、GRmax和GRmean显著提高,灌浆速率越大代表灌浆强度越强,活跃灌浆期缩短[26]。遮荫处理S2相反,其灌浆曲线明显右偏,R0、GRmax和GRmean显著下降。从籽粒灌浆阶段性特征变化可以看出,疏蘖和遮荫处理对弱势粒灌浆前期持续时间改变较大,而对灌浆速率最大的中(盛)期并无明显影响;平均灌浆速率(MGR)的受影响程度表现为前期>中期>后期。提高糖花比使弱势粒灌浆前期缩短,更快进入中期,同时使前、中期灌浆速率得到较大的提高。一般来说,强、弱势粒的灌浆速率不同,两者之间的差异主要表现在灌浆启动的时间和灌浆强度[27]。D2处理下茎鞘NSC积累量提高,弱势粒灌浆启动早,更快进入灌浆高峰期,且前中期灌浆速率显著提高是籽粒充实程度提高的主要原因[28]。
大穗型粳稻不同部位籽粒品质表现明显的粒位特征。强势粒粒质量高,灌浆初期胚乳细胞增殖强度大,淀粉粒排列紧密,充实度和品质较好[29-30]。本研究中,2个大穗型粳稻品系W1844和CJ03强势粒品质优于弱势粒,与前人研究结果一致[5-7]。稻米品质与灌浆期物质的供应以及籽粒灌浆结实的动态过程密切相关[31],因此,促进弱势粒灌浆充实来缩小穗上粒位间品质的差异,是改善稻米品质的关键[32]。已有的研究在灌浆期通过遮荫[33-34]、剪叶[35]和疏花[36]等手段探讨源库关系的改变对稻米品质的影响。在弱光和剪叶条件下,籽粒能够获得的同化物不足,粒质量降低,品质变劣。疏花限制库能显著提高稻米品质,且穗型越大的品种源库比小,籽粒结实率低,品质受到的影响更大[33-36]。但也有结论认为疏花有降低整精米率的趋势[31]。本研究中D2处理下抽穗期茎鞘NSC提高,增加灌浆初期的同化物输出量[37],缓解源库矛盾;另一方面高糖花比可提高籽粒库活性,灌浆速率提高,灌浆前期缩短,更快进入灌浆高峰期,中后期灌浆相对延长,使弱势粒粒质量增加,品质得到改善,与薛菁芳等[8]研究结果基本一致。而S2处理下糖花比显著下降,碳、氮代谢失调,籽粒品质变劣。进一步研究茎鞘NSC对稻穗不同位置籽粒的影响,发现其对弱势粒的调控效应更为显著。相关性分析表明,弱势粒的加工品质与直链淀粉含量和糖花比呈显著正相关,垩白度和蛋白质含量与糖花比呈显著或极显著负相关。此外,蛋白质与食味品质呈负相关的研究已有报道[38],即提高糖花比也可起到提高食味品质的目的。然而,关于茎鞘NSC影响米质的机理,如激素含量和碳代谢相关酶的活性改变,仍需进一步研究。
综上所述,D2处理提高糖花比使弱势粒灌浆前期大幅缩短,前中期平均灌浆速率显著提高,弱势粒充实度高,使千粒质量和结实率显著提高,改善稻米品质。因此,通过栽培措施提高抽穗期糖花比有利于增加大穗型粳稻籽粒特别是弱势粒的灌浆强度,对提高产量,改善水稻品质有重要作用。
[1] Chen L,Deng Y,Zhu H L,Hu Y X,Jiang Z R,Tang S,Wang S H,Ding Y F. The initiation of inferior grain filling is affected by sugar translocation efficiency in large panicle rice[J].Rice,2019,12(1):75. doi:10.1186/s12284-019-0333-7.
[2] 丁一,韩娟英,傅吉,张宁,舒小丽,吴殿星.水稻籽粒灌浆的影响因素及相关基因和蛋白研究进展[J].中国稻米,2018,24(3):1-6.doi:10.3969/j.issn.1006-8082.2018.03.001.
Ding Y,Han J Y,Fu J,Zhang N,Shu X L,Wu D X. Research progress on influence factors of rice grain filling and its related genes and proteins[J].China Rice,2018,24(3):1-6.
[3] Yang J C,Zhang J H. Grain-filling problem in super rice[J]. Journal of Experimental Botany,2010,61(1):1-5. doi:10.1093/jxb/erp348.
[4] 薛菁芳,陈书强,杜晓东,潘国君,王玉成. 黑龙江省两种不同穗型水稻品种的籽粒灌浆特性[J].湖北农业科学,2014,53(12):2736-2742. doi:10.3969/j.issn.0439-8114.2014.12.003.
Xue J F,Chen S Q,Du X D,Pan G J,Wang Y C. Grain-filling characteristics of two different panicle rice varieties in Heilongjiang Province[J].Hubei Agricultural Sciences,2014,53(12):2736-2742.
[5] 赵步洪,董明辉,张洪熙,朱庆森,杨建昌. 杂交水稻穗上不同粒位籽粒品质性状的差异[J].扬州大学学报(农业与生命科学版),2006,27(1):38-42. doi:10.3969/j.issn.1671-4652.2006.01.009.
Zhao B H,Dong M H,Zhang H X,Zhu Q S,Yang J C. Difference in quality characters of the grains at different positions within a hybrid rice panicle[J].Journal of Yangzhou University(Agricultural and Life Science Edition),2006,27(1):38-42.
[6] 陈书强,薛菁芳,潘国君,王秋玉. 水稻穗不同粒位籽粒蛋白质及其组分含量的比较[J].江苏农业学报,2014,30(4):698-708.doi:10.3969/j.issn.1000-4440.2014.04.002.
Chen S Q,Xue J F,Pan G J,Wang Q Y. Comparisons of protein and its components contents in japonica rice grainsat different grain positions of panicles[J]. Jiangsu Journal of Agricultural Sciences,2014,30(4):698-708.
[7] 章燕柳,穆海蓉,邵在胜,王云霞,景立权,王余龙,杨连新. 臭氧胁迫对稻穗不同部位糙米直链淀粉含量和RVA谱特征值的影响[J].应用生态学报,2019,30(12):4211-4221.doi:10.13287/j.1001-9332.201912.028.
Zhang Y L,Mu H R,Shao Z S,Wang Y X,Jing L Q,Wang Y L,Yang L X. Effects of ozone stress on amylose content and starch RVA profile in grains located at different positions on a panicle[J].Chinese Journal of Applied Ecology,2019,30(12):4211-4221.
[8] 薛菁芳,陈书强,潘国君,王玉成. 粳稻不同粒位上粒重和食味与其他品质性状的关系[J].华北农学报,2015,30(3):129-135.doi:10.7668/hbnxb.2015.03.023.
Xue J F,Chen S Q,Pan G J,Wang Y C. Relationship between grain weight,taste quality and other quality traits at different grain positions of japonica rice[J].Acta Agriculturae Boreali-Sinica,2015,30(3):129-135.
[9] Xu Y J,Zhang W Y,Ju C X,Li Y Y,Yang J C,Zhang J H. Involvement of abscisic acid in fructan hydrolysis and starch biosynthesis in wheat under soil drying[J].Plant Growth Regulation,2016,80(3):265-279. doi:10.1007/s10725-016-0164-0.
[10] 王志琴,杨建昌,朱庆森,郎有忠. 水稻抽穗期茎鞘中储存的可用性糖与籽粒充实的关系[J].江苏农学院学报,1997,18(4):13-17.doi:10.16872/j.cnki.1671-4652.1997.04.004.
Wang Z Q,Yang J C,Zhu Q S,Lang Y Z. Relation of the usable carbohydrate reserved in stems and sheaths at heading stage with grain-filling in rice plants[J].Jiangsu Agricultural Research,1997,18(4):13-17.
[11] Wada H,Masumoto-Kubo C,Tsutsumi K,Nonami H,Tanaka F,Okada H,Erra-Balsells R,Hiraoka K,Nakashima T,Hakata M,Morita S. Turgor-responsive starch phosphorylation in Oryza sativa stems:A primary event of starch degradation associated with grain-filling ability[J].PLoS One,2017,12(7):e0181272. doi:10.1371/journal.pone.0181272.
[12] Deng F,Wang L,Mei X F,Li S X,Pu S L,Ren W J. Polyaspartate urea and nitrogen management affect nonstructural carbohydrates and yield of rice[J].Crop Science,2016,56(6):3272-3285. doi:10.2135/cropsci2016.02.0130.
[13] Li G H,Hu Q Q,Shi Y G,Cui K H,Nie L X,Huang J L,Peng S B. Low nitrogen application enhances starch-metabolizing enzyme activity and improves accumulation and translocation of non-structural carbohydrates in rice stems[J].Frontiers in Plant Science,2018,9:1128. doi:10.3389/fpls.2018.01128.
[14] 朱庆森,曹显祖,骆亦其. 水稻籽粒灌浆的生长分析[J].作物学报,1988,14(3):182-193.doi:10.3321/j.issn:0496-3490.1988.03.002.
Zhu Q S,Cao X Z,Luo Y Q. Growth analysis on the process of grain filling in rice[J].Acta Agronomica Sinica,1988,14(3):182-193.
[15] 户少武,张欣,景立权,赖上坤,王云霞,朱建国,王余龙,杨连新. 高浓度CO2对稻穗不同位置籽粒结实和米质性状的影响[J].应用生态学报,2019,30(11):3725-3734. doi:10.13287/j.1001-9332.201911.022.
Hu S W,Zhang X,Jing L Q,Lai S K,Wang Y X,Zhu J G,Wang Y L,Yang L X. Effects of elevated CO2 concentration on grain filling capacity and quality of rice grains located at different positions on a panicle[J]. Chinese Journal of Applied Ecology,2019,30(11):3725-3734.
[16] Fu J,Huang Z H,Wang Z Q,Yang J C,Zhang J H. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice[J].Field Crops Research,2011,123(2):170-182. doi:10.1016/j.fcr.2011.05.015.
[17] 朱宽宇,展明飞,陈静,王志琴,杨建昌,赵步洪. 不同氮肥水平下结实期灌溉方式对水稻弱势粒灌浆及产量的影响[J].中国水稻科学,2018,32(2):155-168. doi:10.16819/j.1001-7216.2018.7060.
Zhu K Y,Zhan M F,Chen J,Wang Z Q,Yang J C,Zhao B H. Effects of irrigation regimes during grain filling under different nitrogen rates on inferior spikelets grain-filling and grain yield of rice[J].Chinese Journal of Rice Science,2018,32(2):155-168.
[18] Zhang H,Yu C,Kong X S,Hou D P,Gu J F,Liu L J,Wang Z Q,Yang J C. Progressive integrative crop managements increase grain yield,nitrogen use efficiency and irrigation water productivity in rice[J].Field Crops Research,2018,215:1-11. doi:10.1016/j.fcr.2017.09.034.
[19] 曹培培,杨凯,吕春华,黄耀,于凌飞,胡正华,孙文娟.不同CO2浓度和N肥水平对粳稻茎鞘非结构性碳水化合物含量与积累的影响[J].生态学杂志,2020,39(5):1474-1483.doi:10.13292/j.1000-4890.202005.003.
Cao P P,Yang K,Lü C H,Huang Y,Yu L F,Hu Z H,Sun W J. Effects of different CO2 concentrations and nitrogen application levels on content and accumulation of non-structural carbohydrate in stem sheath of Japonica rice[J].Chinese Journal of Ecology,2020,39(5):1474-1483.
[20] 顾俊荣,董明辉,赵步洪,陈培峰,季红娟,韩立宇. 不同水氮管理对水稻干物质积累和茎鞘物质运转及产量的影响[J].核农学报,2016,30(2):347-354. doi:10.11869/j.issn.100-8551.2016.02.0347.
Gu J R,Dong M H,Zhao B H,Chen P F,Ji H J,Han L Y. Effects of dry matter accumulation and photosynthatetransporation of stem and sheath and grain production under different water and nitrogen management in rice[J].Journal of Nuclear Agricultural Sciences,2016,30(2):347-354.
[21] Yang J C,Zhang J H,Wang Z Q,Zhu Q S,Liu L J. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling[J]. Field Crops Research,2003,81(1):69-81. doi:10.1016/S0378-4290(02)00214-9.
[22] 林贤青,朱德峰,罗玉坤,王雅芬.水稻茎鞘非结构性碳水化合物与穗部性状关系的研究[J].中国水稻科学,2001,15(2):155-157.doi:10.3321/j.issn:1001-7216.2001.02.016.
Lin X Q,Zhu D F,Luo Y K,Wang Y F. The non-structural carbohydrate of the stem and sheath in relation to the panicle characteristics in rice[J].Chinese Journal of Rice Science,2001,15(2):155-157.
[23] 董明辉,江贻,陈培峰,赵步洪,顾俊荣. 非结构性碳水化合物与水稻颖花形成关系的研究进展[J].农学学报,2020,10(10):1-6.doi:10.11923/j.issn.2095-4050.cjas19040021.
Dong M H,Jiang Y,Chen P F,Zhao B H,Gu J R. The relationship between non-structural carbohydrates and rice spikelet formation:A Review[J].Journal of Agriculture,2020,10(10):1-6.
[24] 李敏,罗德强,江学海,蒋明金,李树杏,姬广梅,李立江,周维佳. 高产氮高效型籼稻品种的籽粒灌浆特性[J].中国农业科技导报,2020,22(9):22-30. doi:10.13304/j.nykjdb.2019.1091.
Li M,Luo D Q,Jiang X H,Jiang M J,Li S X,Ji G M,Li L J,Zhou W J. Grain filling characteristics of the rice cultivar with high yield and high nitrogen use efficiency[J].Journal of Agricultural Science and Technology,2020,22(9):22-30.
[25] 董明辉,陈培峰,顾俊荣,乔中英,黄萌,朱赟德,赵步洪. 麦秸还田和氮肥运筹对超级杂交稻茎鞘物质运转与籽粒灌浆特性的影响[J].作物学报,2013,39(4):673-681. doi:10.3724/SP.J.1006.2013.00673.
Dong M H,Chen P F,Gu J R,Qiao Z Y,Huang M,Zhu B D,Zhao B H. Effects of wheat straw-residue applied to field and nitrogen management on photosynthate transportation of stem and sheath and grain-filling characteristics in super hybrid rice[J].Acta Agronomica Sinica,2013,39(4):673-681.
[26] 顾俊荣,韩立宇,董明辉,陈培峰,乔中英.不同穗型粳稻干物质运转与颖花形成及籽粒灌浆结实的差异研究[J].扬州大学学报(农业与生命科学版),2017,38(4):68-73,88. doi:10.16872/j.cnki.1671-4652.2017.04.013.
Gu J R,Han L Y,Dong M H,Chen P F,Qiao Z Y.Studies on the difference of dry matter accumulation and transportation,spikelets formation and the grain filling of japonica rice varieties with different panicle types[J].Journal of Yangzhou University(Agricultural and Life Science Edition),2017,38(4):68-73,88.
[27] 杨波,王宝祥,邢志鹏,孙志广,邢运高,卢百关,秦德荣,刘金波,张洪程,徐大勇. 施氮量对连粳15号晚直播条件下灌浆特性和米质的影响[J].扬州大学学报(农业与生命科学版),2020,41(3):59-65. doi:10.16872/j.cnki.1671-4652.2020.03.011.
Yang B,Wang B X,Xing Z P,Sun Z G,Xing Y G,Lu B G,Qin D R,Liu J B,Zhang H C,Xu D Y. Effect of nitrogen application on grain filling characteristics and quality of Lianjing 15 under late direct seeding[J].Journal of Yangzhou University(Agricultural and Life Science Edition),2020,41(3):59-65.
[28] 殷春渊,王书玉,刘贺梅,薛应征,张栩,王和乐,孙建权,胡秀明,李习军. 氮肥施用量对超级粳稻新稻18号强、弱势籽粒灌浆和稻米品质的影响[J].中国水稻科学,2013,27(5):503-510. doi:10.3969/j.issn.1001-7216.2013.05.007.
Yin C Y,Wang S Y,Liu H M,Xue Y Z,Zhang X,Wang H L,Sun J Q,Hu X M,Li X J. Effects of nitrogen fertilizer application on grain filling characteristics and rice quality of superior and inferior grains in super japonica rice Xindao 18[J].Chinese Journal of Rice Science,2013,27(5):503-510.
[29] 陈书强,金峰,王嘉宇,刘柏林,董丹,薛菁芳,张文忠,徐正进,陈温福. 两种穗型粳稻不同粒位籽粒垩白性状的比较分析[J].华北农学报,2008,23(2):1-8. doi:10.7668/hbnxb.2008.02.001.
Chen S Q,Jin F,Wang J Y,Liu B L,Dong D,Xue J F,Zhang W Z,Xu Z J,Chen W F. Comparison of grain chalky characters in different positions between two type panicles of japonica rice[J].Acta Agriculturae Boreali-Sinica,2008,23(2):1-8.
[30] 袁莉民,展明飞,章星传,王志琴,杨建昌. 水稻穗上不同粒位籽粒胚乳结构及其结实期灌溉方式对它的调控作用[J].作物学报,2018,44(2):245-259. doi:10.3724/SP.J.1006.2018.00245.
Yuan L M,Zhan M F,Zhang X C,Wang Z Q,Yang J C. Endosperm structure of grains at different positions of rice panicle and regulation effect of irrigation regimes on it during grain filling[J].Acta Agronomica Sinica,2018,44(2):245-259.
[31] 袁继超,丁志勇,赵超,朱庆森,李俊青,杨建昌. 高海拔地区水稻遮光、剪叶和疏花对米质影响的研究[J].作物学报,2005,31(11):1429-1436. doi:10.3321/j.issn:0496-3490.2005.11.007.
Yuan J C,Ding Z Y,Zhao C,Zhu Q S,Li J Q,Yang J C. Effects of sunshine-shading,leaf-cutting and spikelet-removing on yield and quality of rice in the high altitude region[J].Acta Agronomica Sinica,2005,31(11):1429-1436.
[32] 董明辉,刘晓斌,陆春泉,赵步洪,杨建昌. 外源ABA和GA对水稻不同粒位籽粒主要米质性状的影响[J].作物学报,2009,35(5):899-906. doi:10.3724/SP.J.1006.2009.00899.
Dong M H,Liu X B,Lu C Q,Zhao B H,Yang J C. Effects of exogenous ABA and GA on the main quality characteristics ofgrains at different positions of panicle in rice[J].Acta Agronomica Sinica,2009,35(5):899-906.
[33] 任万军,杨文钰,徐精文,樊高琼,马周华. 弱光对水稻籽粒生长及品质的影响[J].作物学报,2003,29(5):785-790.doi:10.3321/j.issn:0496-3490.2003.05.027.
Ren W J,Yang W Y,Xu J W,Fan G Q,Ma Z H. Effect of low light on grains growth and quality in rice[J].Acta Agronomica Sinica,2003,29(5):785-790.
[34] 杜彦修,晏云,季新,李飞,李丹阳,孙红正,张静,李俊周,彭廷,赵全志. 沿黄稻区水稻灌浆期遮阴对产量和品质的影响及耐弱光粳稻品种筛选[J].植物遗传资源学报,2019,20(5):1160-1169.doi:10.13430/j.cnki.jpgr.20181031001.
Du Y X,Yan Y,Ji X,Li F,Li D Y,Sun H Z,Zhang J,Li J Z,Peng T,Zhao Q Z. Effects of shading on yield and quality of japonica rice varieties in rice-growing regions alongside the Yellow River during grain-filling stage and screening of low-light tolerance[J].Journal of Plant Genetic Resources,2019,20(5):1160-1169.
[35] 周龙祥,唐设,刘正辉,李刚华,丁艳锋,王绍华. 开花期剪叶和疏花对宁粳1号和镇稻88稻米直链淀粉含量和胶稠度的影响[J].江苏农业学报,2014,30(5):943-949.doi:10.3969/j.issn.1000-4440.2014.05.004.
Zhou L X,Tang S,Liu Z H,Li G H,Ding Y F,Wang S H. Effect of leaf-cutting and spikelet-thinning on amylose content and gel consistence of japonica rice Ningjing 1 and Zhendao 88[J].Jiangsu Journal of Agricultural Sciences,2014,30(5):943-949.
[36] 陶龙兴,王熹,廖西元,沈波,谈惠娟,黄世文. 灌浆期气温与源库强度对稻米品质的影响及其生理分析[J].应用生态学报,2006,17(4):647-652. doi:10.13287/j.1001-9332.2006.0131.
Tao L X,Wang X,Liao X Y,Shen B,Tan H J,Huang S W. Physiological effects of air temperature and sink-source volume at milk-filling stage of rice on its grain quality[J].Chinese Journal of Applied Ecology,2006,17(4):647-652.
[37] Okamura M,Hirose T,Hashida Y,Yamagishi T,Ohsugi R,Aoki N. Starch reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture[J]. Functional Plant Biology,2013,40(11):1137-1146. doi:10.1071/FP13105.
[38] Huang S J,Zhao C F,Zhu Z,Zhou L H,Zheng Q H,Wang C L. Characterization of eating quality and starch properties of two Wx alleles japonica rice cultivars under different nitrogen treatments[J].Journal of Integrative Agriculture,2020,19(4):988-998. doi:10.1016/S2095-3119(19)62672-9.
尤翠翠(1986-),女,安徽淮北人,讲师,博士,硕士生导师,主要从事作物栽培与生理研究。
武立权(1975-),男,安徽肥东人,教授,博士,博士生导师,主要从事作物栽培与生理研究。