烤烟生长和干物质积累是烟叶质量和产量形成的基础[1-2],不仅受品种和栽培技术的影响,也受生态环境的影响。不同品种烤烟生长和干物质积累及氮、磷、钾养分积累存在差异[3],不同水分调控方法也影响烤烟生长、干物质积累和养分吸收[4-5];适宜施用镁肥有利于烤烟生长发育、干物质和养分的积累[6],粉垄耕作可促进烤烟生长,也有利于干物质和养分积累[7]。刘国顺等[8]研究了豫西烤烟生长和干物质积累规律,认为把烟株团棵至圆顶期安排在雨量最大的月份是优质丰产的重要措施;李君等[9]研究了氮、磷、钾肥配施对烤烟生长、养分吸收分配和利用率的影响,并提出了泸州烟区烤烟施肥参数;王世济等[10]对皖南烟区烤烟干物质和养分积累规律研究认为移栽后31~75 d的烟株干物质积累量占69%;滕永忠等[11]研究表明,滇东南烟区烤烟干物质和养分在烟株中的分配随烟株的生长发育而发生不均匀和单向的变化;陈懿等[12]研究贵州典型烟区烟株生育期干物质重量与根系体积呈显著正相关。但有关湖南稻茬烤烟生长、干物质和养分积累规律的研究报道较少,特别是涉及不同烤烟产量水平的研究还是空白。湖南稻茬烤烟是中国重要的浓香型烟叶[1],其主产区郴州和衡阳是浓香型重要产区。本研究采用典型案例分析方法,选择郴州桂阳县和衡阳耒阳市2种产量水平的烟田为研究对象,比较分析其烤烟生长、干物质和养分积累及养分利用效率差异,以期为湖南浓香型烟叶生产提供理论依据。
于2019年在湖南省浓香型烟区的郴州市桂阳县正和镇梧桐村(25.77°N,112.69° E)和衡阳市耒阳市马水镇燕中村(26.65°N,113.06° E)的典型烟稻轮作田进行。桂阳县烤烟大田期日平均温度、降雨量、日照时数分别为22.35 ℃、750.05 mm、525.75 h;耒阳市烤烟大田期日平均温度、降雨量、日照时数分别为23.45 ℃、809.24 mm、542.46 h。烤烟品种为云烟87。种植密度为16 500株/hm2。
本研究采用案例方法,在烤烟团棵期(移栽后30 d),每村分别选取具有适产水平(2 250~2 700 kg/hm2)和丰产水平(2 700~3 150 kg/hm2)的2种典型烟田作为试验田。每类型选取3处烟田作为重复(面积在1 000 m2以上)。典型烟田的选择,依据近3 a烤烟种植的烟叶产量水平和烟苗长势,经过长期在烤烟生产第一线工作的技术员和具有丰富烤烟种植经验的烟农及研究人员多次磋商确定,并经试验后统计产量验证。在确定典型烟田后,调查各烟田的土壤养分状况(表1)和烤烟大田种植情况,分别如下:
桂阳适产水平烟田(GSY)和丰产水平烟田(GHY):水稻土,烤烟栽培管理措施按照桂阳县优质烤烟生产技术规程进行。具体为:氮、磷、钾施用量分别为182.55,130.73,479.10 kg/hm2;N∶P2O5∶K2O=1∶0.72∶2.62;基肥N∶追肥N=38∶62。烤烟采用两段育苗,3月8日第2段育苗移栽,4月4日大田移栽,5月24日现蕾打顶,并去除低脚叶4~5片,留叶数16~18片。
耒阳适产水平烟田(LSY)和丰产水平烟田(LHY):水稻土,烤烟栽培管理措施按照衡阳市优质烤烟生产技术规程进行。具体为:氮、磷、钾施用量分别为180.00,145.35,441.00 kg/hm2;N∶P2O5∶K2O=1∶0.81∶2.45;基肥N∶追肥N=53∶47。烤烟采用漂浮育苗,3月18日大田移栽,5月25日现蕾打顶,并去除低脚叶4~5片,留叶数16~18片。
表1 不同处理烟田的土壤养分与氮矿化量
Tab.1 Soil nutrient and nitrogen mineralization in different treatment
处理Treatment土壤pHSoil pH养分Nutrient氮矿化量/(mg/kg)Nitrogen mineralization有机质/(g/kg)Organic matter全氮/(g/kg)Total N全磷/(g/kg) Total P全钾/(g/kg)Total K铵态氮/(mg/kg)Ammonium nitrogen硝态氮/(mg/kg)Nitrate nitrogen30~60 d60~90 d90~120 dGSY7.1212.001.001.306.505.291.9638.9366.6671.08LSY7.2520.801.151.807.304.912.2543.5779.0069.18GHY7.1914.501.302.4012.506.362.8656.8475.3490.29LHY7.2315.101.101.3014.507.142.3254.5188.0778.86
烤烟农艺性状和叶面积指数调查:每类型烟田定10株长势均匀一致烤烟,于移栽后30,60,90 d,按标准《烟草农艺性状调查测量方法》(YC/T142-2010)测定株高、茎围、节距、叶片数、最大叶长、最大叶宽等。计算叶面积=叶长×叶宽×0.634 5。叶面积指数(Leaf area index,LAI)=单株叶面积(m2)×1 100÷666.7(m2)。
根系形态指标和烤烟干物质及全氮、全磷、全钾含量测定:于移栽后30,60,90 d,每类型烟田选择5株长势均匀一致的烤烟。小心挖取根系,采用LA-2400多参数根系分析系统(加拿大Regent),测定根长、根表面积、根体积、根直径及根尖数。将植株切分为根、茎、叶片3部分,在105 ℃杀青30 min,80 ℃烘干至恒质量后测定干物质量。植株用H2SO4-H2O2法消煮,全氮采用凯氏定氮法测定,全磷采用钼锑抗比色法测定,全钾采用火焰光度法测定[13]。
采用 Microsoft Excel 2003 和 SPSS 17.0 进行数据处理和统计分析。采用Duncan法在P=0.05 水平下检验显著性。
单位面积干物质积累量(kg/hm2)=单株干物质量(g)×种植密度/1 000。
单位面积氮(磷、钾)积累量(kg/hm2)=不同时期单株干物质量(g)×单株含氮(磷、钾)量(%)×种植密度/1 000。
干物质(氮、磷、钾)分配率(%)=某器官干物质(氮、磷、钾)量/植株干物质(氮、磷、钾)总量×100。
氮(磷、钾)肥吸收效率(Fertilizer absorption efficiency,FAE,%)=单位面积烟株氮(磷、钾)积累量(90 d)/单位面积施氮(磷、钾)量×100。
氮(磷、钾)肥利用效益(Fertilizer utilization efficiency,FUE,kg/kg)=单位面积烟叶干物质量(90 d)/单位面积施氮(磷、钾)量。
氮(磷、钾)烟叶生产效率( Leaf production efficiency,LPE,kg/kg)=单位面积烟叶干物质量(90 d)/单位面积植株氮(磷、钾)素积累总量。
氮(磷、钾)收获指数(Harvest index,HI,%)=单位面积烟叶中的氮(磷、钾)积累量(90 d)/单位面积氮(磷、钾)积累量×100。
2.1.1 烤烟农艺性状 由表2可知,在烤烟移栽后30 d,同一产量水平的桂阳烤烟有效叶片数多于耒阳,不同烟区烤烟农艺性状(除有效叶片数外)差异不显著。60 d后,LSY烤烟株高、茎围、节距大于GSY,GSY烤烟的最大叶长、宽、面积大于LSY;LHY烤烟茎围大于GHY,GHY烤烟节距大于LHY。90 d后,LSY烤烟株高、茎围、有效叶片数大于GSY,GSY烤烟的最大叶长、面积大于LSY;LHY烤烟茎围、叶片数大于GHY;因为桂阳烟叶仅留上部4~6片烟叶,而耒阳烟叶还留有效叶8~11片,造成耒阳烟叶好于桂阳烟叶的假象。不同烟区烤烟农艺性状各有特色,总体上看,耒阳烤烟植株高大、茎粗;桂阳烤烟叶片长、宽、面积要大于耒阳,为烟叶产量打下良好基础。
表2 不同烟区的烤烟农艺性状比较
Tab.2 Comparison on agronomic characters of flue-cured tobacco in different tobacco-planting areas
时间/dTime处理Treatment株高/cmPlant height茎围/cmStem girth有效叶片数Valid leaf number节距/cmInternode length最大叶长/cmMax leaf length最大叶宽/cmMax leaf width最大叶面积/cm2Max leaf area30GSY19.75±3.55a6.48±0.58a11.00±0.63a1.98±0.45a42.27±3.26a19.97±2.77a538.76±103.36aLSY18.69±3.01a5.59±0.37a9.42±0.42b1.93±0.24a39.75±2.65a17.45±2.40a440.20±91.86aGHY20.97±2.24a6.33±0.45a11.67±1.21a2.33±0.20a44.20±3.85a20.27±3.10a571.12±116.5aLHY21.80±0.91a6.55±1.00a9.00±1.41b2.43±0.43a43.93±2.45a20.93±2.19a585.18±88.29a60GSY85.13±1.92b8.45±0.43b13.67±0.58a3.97±0.37b71.97±1.80a30.03±0.67a1 371.71±57.97aLSY95.38±3.73a9.33±0.22a12.17±1.95a4.55±0.55a64.75±5.02b27.82±1.58b1 145.24±133.13bGHY104.33±6.81a9.73±0.12b15.67±0.58a6.52±0.48a82.97±5.71a33.83±1.17a1 782.36±162.18aLHY101.75±6.01a10.83±0.59a15.00±1.00a5.08±0.43b81.30±2.19a32.93±1.40a1 697.58±28.01a90GSY87.17±3.69b8.93±0.12b5.33±0.58b5.86±1.22a80.50±1.80a26.50±1.45a1 354.36±97.77aLSY97.47±9.56a9.80±0.76a8.33±0.20a5.23±0.42a71.34±0.55b24.15±2.42a1 099.27±116.57bGHY103.00±9.54a10.20±0.36b4.00±0.01b5.92±0.58a78.83±7.29a28.80±3.02a1 448.73±272.40aLHY108.00±4.06a11.47±0.65a10.67±0.58a6.04±0.42a85.33±4.16a34.63±3.59a1 877.45±244.06a
注:烤烟在移栽后90 d桂阳已采收4房烟叶,耒阳已采收2房烟叶;不同小写字母表示5%差异显著水平。表3-7同。
Note:90 days after transplanting,4 tobacco leaves have been harvested in Guiyang and 2 in Leiyang;Different small letters indicate significant difference at 5% level. The same as Tab.3-7.
2.1.2 烤烟叶面积指数 由图1可知,在烤烟移栽后30 d,同一产量水平的不同烟区烤烟大田叶面积指数差异不显著。60 d后,GSY叶面积指数高于LSY 69.35%;GHY叶面积指数高于LHY 70.63%。90 d后,LSY叶面积指数高于GSY 18.76%;LHY叶面积指数高于GHY 205.69%;这种差异与耒阳烟叶采收较迟有关。
不同小写字母表示0.05水平差异显著。图2-4同。
Different small letters mean significant difference at 0.05 level. The same as Fig.2-4.
图1 不同烟区的烤烟叶面积指数比较
Fig.1 Comparison on leaf area index of flue-cured tobacco in different tobacco-planting areas
2.1.3 烤烟根系形态指标 由表3可知,在烤烟移栽后30 d,LSY烤烟根长度、根表面积、根体积、根平均直径大于GSY;丰产水平下,不同烟区烤烟根系形态指标差异不显著。60 d或90 d后,同一产量水平下的烤烟根系长度、根系表面积是桂阳大于耒阳,根系体积、根系平均直径是耒阳大于桂阳。90 d后,同一地区中丰产水平的烤烟根系形态指标显著大于适产水平。造成这种差异的主要原因是桂阳烤烟侧分枝多、细根多,耒阳烤烟侧根较粗,分枝少。
由表4可知,在烤烟移栽后30 d,同一产量水平下,不同烟区烤烟总干物质量差异不显著。60 d后,LSY烤烟总干物质量、根干物质、茎干物质大于GSY;GHY烤烟叶总干物质总量大于LHY,LHY根干物质大于GHY。90 d后,耒阳烤烟总干物质量、根干物质、茎干物质是大于桂阳,桂阳烤烟的叶干物质大于耒阳。从干物质分配比例看,桂阳烤烟叶干物质分配比例大于耒阳,但耒阳烤烟的根干物质分配比例大于桂阳。耒阳烤烟的根干物质量大于桂阳,桂阳烤烟的叶干物质量大于桂阳,这是2个产区的明显特征。
表3 不同烟区的烤烟根系形态指标比较
Tab.3 Comparison on root morphological index of flue-cured tobacco in different tobacco-planting areas
时间/dTime处理Treatment根长度/cmRoot length根表面积/cm2Root surface area根体积/cm3Root volume根平均直径/mmRoot diameter30GSY130.99±29.77b121.24±20.43b10.71±0.78b0.37±0.04bLSY414.65±36.53a212.60±10.00a13.67±0.51a0.49±0.06aGHY289.28±100.48a235.61±44.90a14.11±5.02a0.43±0.01aLHY379.57±83.53a253.22±10.86a14.44±1.07a0.44±0.06a60GSY3 850.89±790.53a1 849.97±783.52a138.35±15.73b0.79±0.07bLSY1 309.45±155.86b669.62±93.30b247.62±24.92a1.25±0.08aGHY13 232.89±347.73a3 670.95±1 829.34a140.26±12.47b1.05±0.03bLHY1 423.61±167.27b746.79±188.18b197.50±40.84a1.41±0.10a90GSY7 534.67±918.84a2 251.73±216.71a160.69±3.27b1.05±0.08bLSY2 256.77±287.50b835.55±40.10b256.67±23.08a2.13±0.07aGHY22 870.42±2 137.92a3 971.18±155.34a163.43±7.72b1.51±0.02bLHY3 112.27±178.15b1 345.89±83.15b298.76±59.38a2.47±0.27a
表4 不同烟区的烤烟干物质积累与分配比较
Tab.4 Comparison on dry matter accumulation and distribution of flue-cured tobacco in different tobacco-planting areas
时间/dTime处理Treatment总干物质量/(kg/hm2)Total dry matter干物质积累量/(kg/hm2)Dry matter accumulation干物质分配比例/%Allocation proportion of dry matter根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf30GSY261.83±79.92a18.15±4.55a39.62±16.86a204.07±59.15a7.12±1.0814.60±2.1778.28±1.80LSY237.65±48.70a19.63±4.56a33.92±7.55a184.13±39.25a8.25±0.3414.38±2.3577.40±2.39GHY287.12±68.22a21.75±6.23a42.10±11.65a223.33±52.11a7.58±1.3314.58±1.2677.83±0.89LHY291.78±53.67a22.70±2.48a45.35±15.37a223.75±40.95a8.02±1.7915.28±2.7276.68±2.8060GSY2 592.46±59.71b570.36±53.23b531.66±32.91b1 490.45±80.72a21.74±3.9220.58±1.2757.68±2.87LSY2 901.45±37.78a721.55±22.81a795.37±64.75a1 384.54±159.33a24.89±3.4927.38±4.8747.73±1.38GHY4 556.09±708.01a904.97±47.31b1 012.42±82.18a2 638.69±333.64a19.45±4.5522.41±1.9858.14±3.60LHY4 377.87±424.73a1 467.72±90.63a1 178.82±55.70a1 731.33±509.30b33.79±4.5327.18±3.9939.03±8.4590GSY4 642.34±57.38b1 173.72±18.82b1 160.04±60.46b2 308.57±36.69a21.93±0.5326.05±2.7552.02±2.37LSY4 806.84±29.95a1 223.96±73.14a1 355.23±59.55a2 227.65±30.66b25.56±6.3528.16±2.7846.28±3.68GHY6 003.62±64.85b1 450.63±90.91b1 618.49±64.02b2 934.50±72.21a17.20±2.7929.44±1.5653.36±3.07LHY6 359.76±53.44a1 666.83±32.88a1 968.46±12.64a2 724.48±45.30b26.27±2.8931.07±4.6242.66±7.03
2.3.1 烤烟氮积累与分配 由表5可知,在烤烟移栽后30 d,GSY烤烟总氮含量、叶的氮积累量大于LSY;LHY烤烟总氮含量及根、茎、叶的氮积累量大于GHY。60 d后,GSY烤烟氮积累及根、叶氮积累量大于LSY;GHY烤烟总氮含量、叶氮积累量大于LHY,但LHY的根、茎的氮积累量大于GHY。90 d后,适产水平下烤烟氮积累烟区间差异与60 d一样;LHY根氮积累量大于GHY,GHY茎氮积累量大于LHY。整体上看,氮主要分配给叶片,其比例随生育进程下降;在烤烟生长的中、后期,桂阳烟区的烤烟总氮含量大于耒阳。
表5 不同烟区的烤烟氮积累与分配比较
Tab.5 Comparison on N accumulation and distribution of flue-cured tobacco in different tobacco-planting areas
时间/dTime处理Treatment总氮含量/(kg/hm2)Total N content氮积累量/(kg/hm2)N accumulation氮分配比例/%Allocation proportion of N根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf30GSY9.12±0.12a0.47±0.01a0.87±0.04a7.78±0.07a5.11±0.059.57±0.3485.32±0.39LSY7.94±0.03b0.45±0.02a0.80±0.03a6.69±0.01b5.63±0.2210.09±0.2284.28±0.44GHY8.87±0.13b0.54±0.02b0.73±0.03b7.60±0.11b6.05±0.148.22±0.1685.73±0.03LHY12.60±0.06a0.61±0.01a1.04±0.04a10.95±0.10a4.87±0.118.25±0.3286.87±0.4460GSY58.11±2.11a12.94±0.57a11.09±0.41a34.08±1.13a22.27±0.1719.08±0.0158.65±0.19LSY47.84±0.76b10.73±0.39b10.12±0.31a26.99±1.46b22.43±1.1721.16±0.9856.40±2.15GHY69.32±1.37a16.05±0.73b14.50±0.25b38.78±0.39a23.14±0.5920.92±0.0555.94±0.55LHY64.69±3.87b19.79±2.53a17.36±0.62a27.54±0.71b30.52±2.0926.85±0.6442.62±1.4590GSY62.84±2.03a15.22±0.38a14.44±0.58a33.18±1.07a24.23±0.1822.97±0.1852.80±0.01LSY59.53±1.40b13.89±0.70b14.43±0.58a31.21±0.12b23.32±0.6224.23±0.4152.45±1.03GHY74.70±3.31a15.65±0.73b23.17±0.92a35.88±1.65a20.95±0.0631.02±0.1448.03±0.09LHY73.74±2.41a17.19±2.05a19.77±3.98b36.78±1.45a23.33±2.9126.75±4.9349.91±2.46
2.3.2 烤烟磷积累与分配 由表6可知,在烤烟移栽后30 d,LHY烤烟总磷含量及茎、叶的磷积累量大于GHY。60 d后,LHY烤烟根、茎磷积累量大于GHY。90 d后,LSY烤烟总磷含量及茎、叶磷积累量大于GSY;GHY烤烟总磷含量、叶磷积累量大于LHY。从磷在根、茎、叶分配比例看,磷主要分配给叶片,随烤烟生育进程,叶磷积累比例下降,但根、茎磷积累比例上升。
表6 不同烟区的烤烟磷积累与分配比较
Tab.6 Comparison on P accumulation and distribution of flue-cured tobacco in different tobacco-planting areas
时间/dTime处理Treatment总磷含量/(kg/hm2)Total P content磷积累量/(kg/hm2)P accumulation磷分配比例/%Allocation proportion of P根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf30GSY1.08±0.04a0.05±0.01a0.12±0.02a0.91±0.04a4.72±0.4411.36±1.7183.92±1.70LSY0.98±0.04a0.06±0.02a0.12±0.01a0.79±0.13a6.63±0.5012.54±0.7380.83±0.24GHY1.14±0.05b0.08±0.01a0.12±0.01b0.95±0.04b6.77±0.8210.37±0.1382.86±0.89LHY1.37±0.06a0.06±0.02a0.15±0.03a1.16±0.06a4.71±0.1610.80±1.8984.50±2.0060GSY8.31±0.39a1.62±0.26a2.03±0.14a4.65±0.24a19.51±1.1024.47±0.6056.02±0.55LSY8.89±0.43a1.96±0.10a2.36±0.44a4.57±0.16a22.06±1.2726.44±4.0451.50±2.79GHY12.01±3.44a2.40±0.35b3.44±0.15b6.16±2.96a20.71±3.5930.41±9.0648.88±12.62LHY13.11±0.15a3.78±0.31a4.97±0.42a4.36±0.37a28.80±2.1037.90±2.9533.30±3.1590GSY9.42±0.88b3.00±0.23a2.84±0.15b3.58±0.52b31.88±1.0830.20±1.1637.92±2.00LSY13.82±0.51a3.40±0.27a4.49±0.26a5.92±0.58a24.58±1.3232.60±2.8542.82±2.94GHY16.37±0.73a4.02±0.30a4.81±0.11a7.54±0.99a24.59±2.4029.44±2.0545.96±4.14LHY14.89±1.08b4.22±0.19a5.77±0.64a4.91±0.62b28.48±3.3038.66±1.5832.86±2.07
2.3.3 烤烟钾积累与分配 由表7可知,在烤烟移栽后30 d,LHY烤烟钾积累总量及茎、叶的钾积累量大于GHY。60 d后,LSY烤烟钾积累总量及根、茎钾积累量大于GSY;LHY烤烟根钾积累量大于GHY。90 d后,LSY茎钾积累量大于GSY。从钾在根、茎、叶分配比例看,钾主要分配给叶片,随烤烟生育进程,叶钾积累比例呈先下降再上升趋势,至烤烟生长的中、后期,叶钾积累比例稳定在50%左右。整体上看,桂阳烤烟叶钾积累比例大于耒阳,耒阳烤烟根钾积累大于桂阳,这可能与这2个烟区的烤烟根系类型和干物质多少有关。
表7 不同烟区的烤烟钾积累与分配比较
Tab.7 Comparison on K accumulation and distribution of flue-cured tobacco in different tobacco-planting areas
时间/dTime处理Treatment总钾含量/(kg/hm2)Total K content钾积累量/(kg/hm2)K accumulation钾分配比例/%Allocation proportion of K根 Root茎 Stem叶 Leaf根 Root茎 Stem叶 Leaf30GSY10.61±0.19a0.45±0.15a1.79±0.08a8.38±0.06a4.22±0.4216.82±0.5178.96±0.93LSY11.50±0.67a0.60±0.13a1.88±0.07a9.02±0.64a5.25±0.4416.33±0.8478.41±1.03GHY12.08±0.13b0.71±0.03a1.84±0.17b9.54±0.19b5.84±0.3215.19±1.3378.98±1.46LHY15.14±0.65a0.70±0.10a2.19±0.30a12.25±0.41a4.62±0.5414.44±1.6480.94±1.5560GSY86.01±3.36b15.48±0.07b22.05±0.16b48.49±3.30a18.01±0.7325.66±0.9356.33±1.65LSY96.92±0.99a17.27±0.40a30.54±0.92a49.11±2.28a18.82±0.5830.52±1.2650.66±1.84GHY125.34±7.18a20.03±3.84b39.06±2.32a66.25±3.19a16.45±2.4833.05±9.5750.50±11.93LHY131.50±3.32a28.87±1.19a41.98±4.86a60.65±6.65a21.95±0.4931.99±4.4446.06±4.0390GSY116.32±2.96a15.81±1.16a31.86±0.58b68.65±2.37a13.58±0.7927.40±0.6759.01±1.19LSY119.87±0.49a16.85±0.49a39.75±1.66a63.27±0.77a14.06±0.4733.16±1.2652.78±0.81GHY169.56±8.07a22.56±1.26a58.00±3.30a89.00±5.34a13.76±3.1334.99±5.2651.65±8.34LHY153.90±9.59a22.61±1.01a51.39±7.57a80.40±4.29a14.71±2.2433.70±3.6851.59±5.32
由图2可知,同一产量水平下,不同烟区的氮利用效率指标差异不显著(N-LPE除外);但丰产水平的烤烟N-FAE较适产水平高15.88~19.27百分点,适产水平的烤烟N-HI较丰产水平高4.86~9.03百分点,丰产水平的烤烟N-FUE较适产水平高18.24%~21.33%,丰产水平的烤烟N-LPE较适产水平高3.64%~14.93%。由图3可知,从磷肥利用看,丰产水平烤烟的P-FAE、P-FUE大于适产水平烤烟,以桂阳丰产水平烤烟的P-FAE、P-FUE最高。从P-HI看,GHY>LSY>GSY>LHY;从P-LPE看,GSY>LHY>GHY>LSY。由图4可知,从钾肥利用看,丰产水平烤烟的K-FAE、K-FUE大于适产水平烤烟;同时,耒阳适产水平烤烟的K-FAE大于桂阳烤烟。从钾素吸收看,适产水平烤烟K-HI、K-LPE大于丰产水平烤烟;但只有GSY烤烟的K-HI、K-LPE显著高于GHY。以上说明丰产水平的氮、磷、钾肥利用效率高。
N-FAE.氮肥吸收效率,%;N-FUE.氮肥利用效益,kg/kg;N-LPE.氮烟叶生产效率,kg/kg;N-HI.氮收获指数,%。
N-FAE. Nitrogen fertilizer absorption efficiency,%;N-FUE.Nitrogen fertilizer utilization efficiency,kg/kg;N-LPE. Nitrogen tobacco leaf production efficiency,kg/kg;N-HI.Nitrogen harvest index,%.
图2 不同烟区的烤烟氮素利用效率比较
Fig.2 Comparison on N efficiency of flue-cured tobacco in different tobacco-planting areas
P-FAE.磷肥吸收效率,%;P-FUE.磷肥利用效益,kg/kg; P-LPE.磷烟叶生产效率,kg/kg;P-HI.磷收获指数,%。
P-FAE.Phosphorus fertilizer absorption efficiency,%;P-FUE.Phosphorus fertilizer utilization efficiency,kg/kg;P-LPE.Phosphorus tobacco leaf production efficiency,kg/kg;P-HI.Phosphorus harvest index,%.
图3 不同烟区的烤烟磷素利用效率比较
Fig.3 Comparison on P efficiency of flue-cured tobacco in different tobacco-planting areas
K-FAE.钾肥吸收效率,%;K-FUE.钾肥利用效益,kg/kg;K-LPE.钾烟叶生产效率,kg/kg;K-HI.钾收获指数,%。
K-FAE. Potassium fertilizer absorption efficiency,%;K-FUE.Potassium fertilizer utilization efficiency,kg/kg;K-LPE.Potassium tobacco leaf production efficiency,kg/kg;K-HI.Potassium harvest index,%.
图4 不同烟区的烤烟钾素利用效率比较
Fig.4 Comparison on K efficiency of flue-cured tobacco in different tobacco-planting areas
烤烟生产与根系生长发育、环境条件密切相关,根系好坏决定着烤烟产量和质量[14]。土壤质地比土壤温度和水分对烤烟根系生长的影响更大[15]。研究结果显示,丰产水平的烤烟根系形态指标大于适产水平,这是因为丰产水平的土壤养分含量及氮矿化量高于适产水平。不同烟区之间,桂阳烤烟根长度、根表面积大于耒阳,但桂阳根体积、根平均直径小于耒阳,耒阳烤烟的根干物质也重于桂阳。这种差异是由于两烟区烤烟根系的组成不同所造成。耒阳烤烟侧根粗但数量少,桂阳烤烟侧根细但数量多。根系对土壤养分的吸收主要靠根毛,细根多,其吸收养分的面积就大[16]。桂阳烟区和耒阳烟区烤烟产量和质量差异[17],其根系侧根组成不同可能是其原因之一。所以,评价烤烟根系的好与差,仅看根系的干物质量或根系体积会导致错误的判断。烤烟侧根粗细与土壤紧实度关系密切[18]。在紧实土壤的烤烟根系迫不得已增加自己的粗度为适应根系下扎,从而导致侧根粗而数量少。因此,稻茬烤烟种植,要尽量熟化土壤,减少大块土壤,增加土壤细度,减轻根系下扎的能量消耗,为根系生长创造一个良好的土壤环境。
烤烟生长是烟株将矿质营养转化、积累为有机营养并构建自身的过程[1]。研究结果表明,丰产水平烤烟生长发育较适产水平好,其原因主要与土壤供氮水平有关(丰产水平烟田土壤铵态氮高于适产水平,不同时期的氮矿化量均是丰产水平大于适产水平)。从两大烟区烤烟农艺性状看,耒阳烤烟植株高大、茎粗,桂阳烤烟叶片长、宽、面积要大于耒阳。烤烟产量不仅取决于烟株总干物质量,更重要的是在叶片中的分配量。本研究结果显示,耒阳烤烟干物质总量大于桂阳,但桂阳烤烟的叶干物质量大于耒阳,导致桂阳烤烟叶干物质分配比例显著大于耒阳。这种差异不仅与两大烟区土壤有关,还与育苗方式有关。桂阳烟区采用两段育苗,移栽后返苗快,根系发育好,为烟叶发育打下良好的基础 [19]。耒阳烟区采用漂浮育苗,虽移栽期早,但返苗期长,加之土壤颗粒粗和土块大,根系早期发育受到抑制;植株虽然高大且茎粗,但叶片发育差。因此,南方稻茬烤烟移栽和伸根期处于低温阴雨天气,培育壮根苗,提高移栽质量,可促进早生快发,为烟叶优质丰产打下良好基础。
氮磷钾是烤烟生长发育的三大必要营养元素。烤烟质量与烟株对氮磷钾养分的吸收及其在烟株体内的分配密切相关[10],而烤烟对氮磷钾养分的吸收又受烤烟根系发育、农艺性状及土壤养分供应的影响。研究结果表明,烟株吸收的氮、磷、钾主要分配给叶片,这与多数人[7,10-11]的研究结论一致;桂阳烟区的烤烟氮积累量大于耒阳,这可能与桂阳烟区土壤后期的供氮能力强、烤烟侧根中细根多有关;土壤后期供氮能力强,可能会引起烟叶的烟碱含量高[20],生产中要注意。桂阳烤烟叶钾积累比例大于耒阳,耒阳烤烟根钾积累大于桂阳,这也与桂阳烤烟根系中侧根多、吸收养分能力强有关。从稻茬烤烟对氮、磷、钾养分利用效率看,丰产水平烤烟的氮、磷、钾肥利用效率高,但适产水平的氮、磷、钾素收获指数较高。适产水平烤烟的养分收获指数高,说明适产水平烤烟的养分积累总量虽不高,但在烟叶中分配比例高。稻茬烤烟生产中,如何将烟株吸收的氮、磷、钾养分更好地分配给烟叶,以提高烟叶产量和质量潜力,是烤烟栽培中要重视的问题。本研究干物质和养分积累采用的是移栽后90 d的数据,此后烟株对氮磷钾养分的吸收和在不同器官之间的分配一直发生,会导致试验数据被低估,但本试验的数据仍然可以体现两地烤烟干物质和养分利用效率的主要差异,具有一定的参考价值。
典型浓香型稻茬烤烟种植的郴州桂阳和衡阳耒阳烟区,其烤烟生长发育、干物质和养分积累与分配、养分利用效率存在差异。丰产水平较适产水平烤烟地上部生长发育好,根系发达,干物质和氮、磷、钾养分积累多,氮、磷、钾肥利用效率高;但适产水平的氮、磷、钾养分在烟叶中分配比例大,氮、磷、钾养分收获指数高。不同产区之间,耒阳烟区烤烟植株高大,茎粗、根粗、根与茎的干物质和养分积累多;桂阳烟区烤烟叶片面积大,侧根数量多,烟叶干物质和养分积累多。稻茬烤烟生产中,要针对稻茬烤烟土块大和低温阴雨天气,熟化土壤,细碎土壤,为烤烟根系生长创造一个良好的土壤环境,促进烤烟早生快发。
[1] 刘国顺.中国浓香型特色烟叶理论与生产[M].北京:科学出版社,2020.
Liu G S. Theory and production of Chinese fragrant characteristic tobacco leaves[M]. Beijing:Science Press,2020.
[2] 邓小华,周米良,田峰.山地植烟土壤维护与改良理论与实践[M]. 北京:中国农业科学技术出版社,2019.
Deng X H,Zhou M L,Tian F. Theory and practice on mountain tobacco-planting soil improvement and conservation[M]. Beijing:China Agricultural Science and Technology Press,2019.
[3] 李海江,王根发,张要旭,王艳丽,丁松爽. 不同品种烤烟干物质积累及氮、磷、钾积累的动态变化规律[J]. 河南农业大学学报,2015,49(2):166-170,176. doi:10.16445/j.cnki.1000-2340.2015.02.006.
Li H J,Wang G F,Zhang Y X,Wang Y L,Ding S S. Dynamics of dry matter,nitrogen,phosphorus and potassium accumulation in different flue-cured tobacco varieties[J]. Journal of Henan Agricultural University,2015,49(2):166-170,176.
[4] 周永波,邵孝侯,苏贤坤,袁有波,代丽丹,王宇.水分调控对烤烟生长、干物质积累和养分吸收的影响[J].灌溉排水学报,2010,29(1):56-59.doi:10.13522/j.cnki.ggps.2010.01.026.
Zhou Y B,Shao X H,Su X K,Yuan Y B,Dai L D,Wang Y. Effects of soil moisture regulation on growth and dry matter accumulation and nutrient absorption of flue-cured tobacco[J].Journal of Irrigation and Drainage,2010,29(1):56-59.
[5] 杜传印,王德权,夏磊,高政绪,王大海,高凯,席元肖,方敏,闫凯,王玉华,杨少杰,丛琪.水肥一体化条件下减施氮肥对烤烟生长及生理特性的影响[J]. 中国烟草科学,2018,39(6):29-35. doi:10.13496/j.issn.1007-5119.2018.06.005.
Du C Y,Wang D Q,Xia L,Gao Z X,Wang D H,Gao K,Xi Y X,Fang M,Yan K,Wang Y H,Yang S J,Cong Q. Effect of reducing nitrogen fertilization with fertigation on growth and physiological characteristics of flue-cured tobacco[J].Chinese Tobacco Science,2018,39(6):29-35.
[6] 徐畅,陈祖富,高明,郑杰炳,陶春.供镁水平对烤烟生长及养分吸收的影响[J].植物营养与肥料学报,2009,15(1):191-196.doi: 10.3321/j.issn:1008-505x.2009.01.028.
Xu C,Chen Z F,Gao M,Zheng J B,Tao C. Effects of magnesium nutrition on growth and nutrient absorption of flue-cured tobacco[J].Journal of Plant Nutrition and Fertilizers,2009,15(1):191-196.
[7] 邓小华,王新月,杨红武,刘勇军,邓永晟,周米良,张明发,赵炯平,李奇,王卫民,陈金,粟戈璇.粉垄耕作深度对烤烟生长和物质积累及烟叶产质量的影响[J]. 中国烟草科学,2020,41(5):28-35. doi:10.13496/j.issn.1007-5119.2020.05.004.
Deng X H,Wang X Y,Yang H W,Liu Y J,Deng Y S,Zhou M L,Zhang M F,Zhao J P,Li Q,Wang W M,Chen J,Su G X. Effects of smashing ridge tillage on growth,dry matter accumulation,output and quality of flue-cured tobacco[J]. Chinese Tobacco Science,2020,41(5):28-35.
[8] 刘国顺,符云鹏,高致明,焦桂珍,何清心,陈彦春,张民生.豫西雨养烟区烤烟生长发育规律研究[J].河南农业大学学报,1998,32(S1):2-9. doi:10.16445/j.cnki.1000-2340.1998.s1.001.
Liu G S,Fu Y P,Gao Z M,Jiao G Z,He Q X,Chen Y C,Zhang M S.The developing characteristics of fule-cured tobacco plant in rainfed agriculture area of west Henan Province[J].Journal of Henan Agricultural University,1998,32(S1):2-9.
[9] 李君,张云贵,谢强,刘青丽,李志宏,李健铭,张永辉,夏建华,郭仕平.泸州烤烟养分管理的关键技术参数研究[J].中国土壤与肥料,2020(2):100-106.doi:10.11838/sfsc.1673-6257.19177.
Li J,Zhang Y G,Xie Q,Liu Q L,Li Z H,Li J M,Zhang Y H,Xia J H,Guo S P. Study on key parameters of nutrient management for flue-cured tobacco in Luzhou[J].Soil and Fertilizer Sciences in China,2020(2):100-106.
[10] 王世济,刘炎红,崔权仁,刘小平,韩永镜,陈其峰,赵第锟.皖南烟区烤烟干物质和养分的积累研究[J].烟草科技,2004,37(7):40-43. doi:10.3969/j.issn.1002-0861.2004.07.014.
Wang S J,Liu Y H,Cui Q R,Liu X P,Han Y J,Chen Q F,Zhao D K. Research on dry matter and nutrient accumulation in flue-cured tobacco in growing area of South Anhui[J].Tobacco Science and Technology,2004,37(7):40-43.
[11] 滕永忠,李素华,王瑞宝,杨光华,张洪玲.滇东南烟区烤烟干物质和养分的分配状况研究[J].中国烟草科学,2005,26(1):17-19. doi:10.3969/j.issn.1007-5119.2005.01.005.
Teng Y Z,Li S H,Wang R B,Yang G H,Zhang H L. Distribution of dry matter and nutrient in tobacco of southeast Yunnan Province[J].Chinese Tobacco Science,2005,26(1):17-19.
[12] 陈懿,张纪利,潘文杰,李章海,李洪勋,陈伟.贵州典型烟区土壤对烤烟生长发育相关生理特性的影响[J].贵州农业科学,2010,38(12):131-134. doi:10.3969/j.issn.1001-3601.2010.12.039.
Chen Y,Zhang J L,Pan W J,Li Z H,Li H X,Chen W. Effects of soils from typical tobacco planting areas on physiological characteristics related to growth and development of flue-cured tobacco[J].Guizhou Agricultural Sciences,2010,38(12):131-134.
[13] 王学奎.植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2006.
Wang X K.Principles and techniques of plant physiological and biochemical experiments[M]. Beijing:Higher Education Press,2006.
[14] 徐文兵,吴峰,邓小华,齐永杰,罗建钦,李群岭,杨丽丽,李海林,罗伟.根区施用不同生物有机肥对烤烟根系生长发育的影响[J]. 中国烟草科学,2017,38(5):45-49.doi:10.13496/j.issn.1007-5119.2017.05.008.
Xu W B,Wu F,Deng X H,Qi Y J,Luo J Q,Li Q L,Yang L L,Li H L,Luo W. Effects of root-zone application of different bio-organic fertilizers on flue-cured tobacco roots[J]. Chinese Tobacco Science,2017,38(5):45-49.
[15] 罗井清,邓小华,陈金,裴晓东,刘勇军,何命军,李帆.凹形双垄侧覆膜对耕层水热环境和上部烟叶生长及质量的影响[J].土壤,2019,51(5):1013-1019. doi:10.13758/j.cnki.tr.2019.05.024.
Luo J Q,Deng X H,Chen J,Pei X D,Liu Y J,He M J,Li F.Effects of concave ridge double-row and side mulching on moisture and temperature of plough soil and growth of tobacco during late period of field-planting and quality of tobacco upper leaves[J].Soils,2019,51(5):1013-1019.
[16] 黄琰,周冀衡,张钊.烤烟不定根对主要营养元素吸收能力的研究[J].中国烟草学报,2008,14(6):48-52. doi:10.3321/j.issn:1004-5708.2008.06.010.
Huang Y,Zhou J H,Zhang Z. Absorption of main nutrient elements by adventitious roots in flue-cured tobacco[J].Acta Tabacaria Sinica,2008,14(6):48-52.
[17] 李海林,邓小华,李伟,肖春生,彭曙光,邹凯. 湖南浓香型产区上部烟叶化学成分特征与风格特色[J]. 中国烟草科学,2016,37(3):79-85. doi:10.13496/j.issn.1007-5119.2016.03.014.
Li H L,Deng X H,Li W,Xiao C S,Peng S G,Zou K. Chemical components and style characteristics of upper flue-cured tobacco leaf from heavy flavor tobacco-planting areas of Hunan Province[J]. Chinese Tobacco Science,2016,37(3):79-85.
[18] 孙学武,柳开楼,邹晓霞,司贤宗,郑永美,丁红,吴正锋,沈浦,王才斌. 花生栽培措施消减土壤紧实胁迫危害研究现状与展望[J].山东农业科学,2020,52(8):152-159. doi:10.14083/j.issn.1001-4942.2020.08.031.
Sun X W,Liu K L,Zou X X,Si X Z,Zheng Y M,Ding H,Wu Z F,Shen P,Wang C B. Research advances and perspective of peanut cultivation measures for reducing the harm of soil compaction stress[J].Shandong Agricultural Sciences,2020,52(8):152-159.
[19] 张义志,孔凡玉,黄建,李宏光,方明,王生才,杨清林.水旱两段式育苗技术对烤烟成苗素质的影响[J].江苏农业科学,2015,43(1):67-69.doi:10.15889/j.issn.1002-1302.2015.01.021.
Zhang Y Z,Kong F Y,Huang J,Li H G,Fang M,Wang S C,Yang Q L. Effects of two-stage seedling in water and drought technique on seedling quality of flue-cured tobacco[J].Jiangsu Agricultural Sciences,2015,43(1):67-69.
[20] 邓小华,杨丽丽,邹凯,齐永杰,徐文兵,张光利,于庆涛,雷天义.烟稻轮作模式下烤烟增密减氮的主要化学成分效应分析[J].植物营养与肥料学报,2017,23(4):991-997. doi:10.11674/zwyf.16369.
Deng X H,Yang L L,Zou K,Qi Y J,Xu W B,Zhang G L,Yu Q T,Lei T Y. Effect of density-increasing and nitrogen-saving on chemical components of flue-cured tobacco under tobacco-rice rotation system[J].Journal of Plant Nutrition and Fertilizers,2017,23(4):991-997.