土壤是重要的自然资源,是人类赖以生存和发展的巨大碳氮库和生物库,支撑着作物生产[1]。土壤肥力决定着作物产量高低与品质优劣[2]。施用有机肥是提升土壤肥力的重要途径[3]。中国农业废弃物资源丰富,将农业废弃物转化为土壤肥力和作物所需的养分是循环农业的重要环节,也是农业绿色发展的基础[4-5]。当前,以农业废弃物为来源的有机肥在全国有着较大面积的应用,且种类多样,明确不同种类有机肥还田对土壤肥力的提升作用是实现土壤高效培肥的前提与基础。
有机肥还田后可显著提升土壤有机碳含量与养分供应能力[6]。土壤酶活性作为评价土壤肥力高低的重要指标,与土壤有机质转化及养分有效性密切相关[7]。单施化肥对土壤酶活性无显著影响,但配施有机肥后可以显著提高土壤蔗糖酶活性[8]。玉米秸秆还田后矿化释放的养分,可显著提高土壤纤维素酶和脲酶活性[9],猪粪、牛粪等禽畜粪肥还田可促进土壤生物活性,提高土壤蔗糖酶、脲酶和过氧化氢酶活性[10-11]。由于土壤类型、有机肥品质等因素的差异,不同种类有机肥还田后土壤酶活性的变化各异。
东北黑土土质肥沃、结构良好,为保障区域农业可持续发展提供了得天独厚的自然优势。但多年来不合理利用导致黑土肥力退化趋势明显,已引起全社会的广泛关注。东北地区年均畜禽粪便年产量近5亿t[12],同时,东北黑土区作为我国玉米主产区,秸秆资源丰富,年均玉米秸秆产量达1.7亿t[13],实施有机培肥是改善黑土肥力退化现状、提升黑土可持续生产力的有效措施[14]。因此,综合评价不同种类有机肥还田对黑土肥力与玉米产量的影响,对于科学指导黑土有机培肥与农业废弃物的高效利用具有重要意义。本研究基于多年田间定位试验,探讨玉米秸秆与禽畜粪肥等不同种类有机肥还田对土壤有机碳、速效养分与酶活性等肥力因子的影响及多年玉米产量的动态变化,为建立东北黑土有机培肥技术体系、提升黑土肥力与健康提供理论依据。
本试验位于吉林省公主岭市吉林省农业科学院试验基地(E124°48′33.8″,N43°30′23″),该地区属于温带大陆性季风气候,年平均气温4~5 ℃,年均降水量450~650 mm,年均日照2 743 h,年均有效积温2 600~3 000 ℃,无霜期110~140 d,土壤类型为中层黑土。试验起始于2011年秋季,试验前该区域土壤基本理化性质为0~20 cm土层:有机碳16.5 g/kg、全氮1.56 g/kg、全磷0.54 g/kg、全钾18.0 g/kg、pH值6.20,20~40 cm土层:有机碳13.9 g/kg、全氮1.34 g/kg、全磷0.41 g/kg、全钾17.5 g/kg、pH值6.21。
试验起始于2011年秋季,共设置5个处理,分别为单施化肥(NPK)、化肥配施玉米秸秆(NPK+ST)、化肥配施牛粪(NPK+NF)、化肥配施鸡粪(NPK+JF)和化肥配施猪粪(NPK+ZF),每个处理3次重复,各小区面积104 m2。各处理年均化肥施用量为N 200 kg/hm2、P2O5 90 kg/hm2、K2O 75 kg/hm2,40%氮肥和全部磷、钾肥以底肥施入,60%的氮肥在玉米拔节期追施。配施玉米秸秆处理为小区当年秸秆全部还田,配施畜禽粪肥处理各有机肥年均投入量为15 000 kg/(hm2·a),于秋收后撒施于地表,经旋耕混入0~15 cm土层,翌年春季使用免耕施肥播种机进行施肥与播种,采用玉米连作-平播耕种方式,品种为先玉335,种植密度为6万/hm2。供试有机肥养分性状列于表1。2012-2016年,试验区玉米生长季(5-9月)降雨量如图1。
表1 供试有机肥养分性状
Tab.1 Basic properties of organic manure
有机物料Organic materialspH值pH value碳/(g/kg)C氮/(g/kg)N磷/(g/kg)P钾/(g/kg)KC/N比C/N ratio玉米秸秆 Corn straw6.74437.000.405.5063.30牛粪 Cow manure8.930220.305.309.7015.12鸡粪 Chicken manure7.914912.6015.608.5011.88猪粪 Pig manure8.025517.3017.5013.6014.75
图1 2012-2016年试验区玉米生长季降雨量
Fig.1 Rainfall during maize grow season in experimental site from 2012 to 2016
土壤样品于2016年玉米收获后采集,采用五点采样法,用土钻分别采集0~20 cm,20~40 cm土层土壤样品,剔除动、植物残体和石块,风干后过2 mm筛待测。土壤基础理化指标采用常规分析法测定[15],土壤活性有机碳采用KMnO4氧化法测定[16],即能被浓度为333 mmol/L KMnO4氧化的有机碳,为活性有机碳。土壤酶活性采用关松荫[17]和吴金水等[18]的方法,即脲酶利用靛酚蓝比色法(NH3-N mg/(g·d),37 ℃),磷酸酶采用磷酸苯二钠比色法(苯酚μmol/(g·d),37 ℃),蔗糖酶活性采用3,5-二硝基水杨酸比色法(葡萄糖mg/(g·d),37 ℃),纤维素酶采用蒽酮比色法(葡萄糖 mg/(g·d),37 ℃)。
2012-2016年,玉米成熟期进行籽粒产量的测定,各小区按13 m2取样,以14%含水量折算玉米籽粒产量。
采用Excel 2010进行数据处理,SPSS 23.0进行Duncan′s多重比较,Origin 2018进行图表的绘制。
化肥配施有机肥对玉米产量的影响如表2所示,各处理玉米产量年际间呈波动变化。在试验开始后的第1年(2012年)和第3年(2014年),与NPK处理相比,各配施有机肥处理对玉米产量的影响不显著。2013年,与NPK处理相比,NPK+ZF处理玉米产量得以显著增加,其他处理玉米产量无显著变化。2015年,NPK+ST处理玉米产量显著高于NPK和NPK+NF处理,但NPK+NF、NPK+JF、NPK+ZF处理与NPK处理玉米产量间差异不显著。2016年,化肥配施有机肥各处理玉米产量均显著高于NPK处理,增幅为6.86%~19.4%,以NPK+ZF处理产量最高,显著高于NPK+ST和NPK+JF处理,但与NPK+NF处理间无显著差异。5 a玉米产量平均值的高低表现为NPK+ZF>NPK+ST>NPK+JF>NPK+NF>NPK,与NPK处理相比,各处理的增幅分别为11.70%,9.93%,6.17%,4.82%。
化肥配施不同种类有机肥处理对0~20 cm土层土壤有机碳含量有不同程度的影响,如图2-A所示,与NPK处理相比,化肥配施有机肥增加了土壤有机碳含量,其中NPK+NF和NPK+ZF处理土壤有机碳含量的增加达到显著水平,增幅为11.5%,11.1%。NPK+ST和NPK+JF处理对该土层土壤有机碳含量的影响不显著。各处理20~40 cm土层土壤有机碳含量间差异不显著。与NPK处理相比,化肥配施有机肥显著增加了0~20 cm土层土壤活性有机碳含量(图2-B),NPK+ST、NPK+NF、NPK+JF和NPK+ZF各处理土壤活性有机碳含量的增幅分别为36.2%,39.2%,18.3%,35.4%,其中NPK+ST、NPK+NF和NPK+ZF三者间差异并不显著,但均显著高于NPK+JF处理。各处理20~40 cm土层土壤活性有机碳含量间差异不显著。
表2 化肥配施有机肥处理对玉米产量的影响
Tab.2 Effects of chemical fertilizer combined with organic amendments on maize yield t/hm2
处理Treatment20122013201420152016平均值MeanNPK10.87±0.17ab10.54±0.44b11.66±0.74a8.41±0.20b10.79±0.15c10.37±1.09aNPK+ST12.14±0.67a11.01±0.13b12.65±0.12a9.65±0.14a11.53±0.69b11.40±1.20aNPK+NF10.56±0.68ab10.78±0.06b11.63±0.44a8.89±0.71b12.49±0.28ab10.87±1.34aNPK+JF10.54±0.73b11.04±1.09ab12.15±0.06a9.52±1.53ab11.80±0.85b11.01±1.04aNPK+ZF10.90±0.54ab12.10±0.49a12.56±0.08a9.48±1.17ab12.88±0.39a11.58±1.40a
注:不同小写字母代表同一年不同处理间差异显著(P<0.05)。
Note:Different small letters represent significant difference between different treatments in the same year(P<0.05).
柱上不同小写字母代表不同处理间差异显著(P<0.05)。图3同。
Different small letters above the bars represent significant difference between different treatments(P<0.05).The same as Fig.3.
图2 化肥配施有机肥处理对土壤有机碳与活性有机碳含量的影响
Fig.2 Effects of chemical fertilizer combined with organic amendments on contents of soil organic carbon and active organic carbon
化肥配施不同种类有机肥对土壤pH值的影响如表3所示。与NPK处理相比,化肥配施有机肥处理增加了0~20 cm,20~40 cm土层土壤pH值,以NPK+NF处理两土层pH值的增加显著,增幅分别为4.95%,4.71%。其他处理对两土层pH值的影响均未达到显著水平。与NPK处理相比,NPK+NF和NPK+JF处理对0~20 cm土层碱解氮含量的影响不显著,NPK+ZF处理显著增加了该土层碱解氮的含量,增幅为11.1%,NPK+ST处理碱解氮含量显著下降,下降了10.8%;NPK+ZF和NPK+NF处理显著增加了20~40 cm土层土壤碱解氮的含量,而NPK+ST和NPK+JF处理对该土层碱解氮含量的影响不显著。与NPK处理相比,NPK+NF、NPK+JF和NPK+ZF处理显著增加了0~20 cm土层速效磷含量,增幅分别为1.19,2.68,3.02倍,NPK+ST处理对该土层速效磷含量无显著影响;NPK+JF和NPK+ZF处理显著增加了20~40 cm土层速效磷含量,增幅分别为1.20,1.73倍,NPK+ST和NPK+NF 2个处理对该土层速效磷含量无显著影响。与NPK处理相比,NPK+NF、NPK+JF和NPK+ZF处理显著增加了0~20 cm土层速效钾含量,增幅分别为14.0%,16.2%,19.6%,NPK+ST处理对该土层速效钾含量无显著影响;NPK+ST、NPK+NF和NPK+JF处理对20~40 cm土层速效钾含量无显著影响,NPK+ZF处理显著增加了该土层速效钾的含量,增幅为11.9%。
表3 化肥配施有机肥处理对土壤pH值和速效养分含量的影响
Tab.3 Effects of chemical fertilizer combined with organic amendments on soil pH and available nutrients contents
土层/cmSoil layer处理TreatmentpH值pH value碱解氮/(mg/kg)Available N速效磷/(mg/kg)Available P速效钾/(mg/kg)Available K0~20NPK5.86±0.14b237.48±12.84b23.44±1.86c161.14±8.75bNPK+ST5.90±0.04b211.85±13.30c31.64±1.82c163.19±3.63bNPK+NF6.15±0.15a242.71±6.33b51.23±13.20b183.75±4.36aNPK+JF5.92±0.10b249.70±7.31ab86.37±6.96a187.20±7.74aNPK+ZF6.04±0.09ab263.87±5.14a94.34±7.25a192.72±5.28a20~40NPK5.95±0.03b152.63±5.85b13.39±1.94c125.95±4.91bNPK+ST6.12±0.06ab158.81±5.84b14.91±1.33c128.67±1.30abNPK+NF6.23±0.20a181.55±8.06a17.48±3.49c135.61±5.96abNPK+JF6.09±0.03ab163.20±7.66b29.49±6.64b134.49±6.23abNPK+ZF6.12±0.07ab179.24±7.39a36.58±2.92a140.98±11.28a
注:不同小写字母代表不同处理间差异显著(P<0.05)。
Note:Different small letters represent significant difference between different treatments(P<0.05).
化肥配施不同种类有机肥对土壤酶活性有不同程度的影响(图3)。与NPK处理相比,NPK+ST、NPK+NF和NPK+ZF处理显著增加了0~20 cm土层土壤纤维素酶活性,增幅分别为27.0%,29.3%,15.7%,NPK+JF对该土层土壤纤维素酶活性的影响不显著(图3-A)。各有机肥处理20~40 cm土层土壤纤维素酶活性的高低表现为:NPK+NF>NPK+ZF>NPK+ST>NPK+JF>NPK,与NPK相比,增幅分别为41.7%,33.2%,19.4%,5.42%。NPK+ST、NPK+NF、NPK+JF和NPK+ZF处理0~20 cm土层土壤蔗糖酶活性显著高于NPK处理,增幅分别为54.8%,47.3%,126.0%,88.0%(图3-B),其中NPK+JF和NPK+ZF处理间该土层土壤蔗糖酶活性差异不显著,NPK+ST和NPK+NF 2个处理间0~20 cm土层土壤蔗糖酶活性差异不显著。在20~40 cm土层,NPK+ST、NPK+NF、NPK+JF和NPK+ZF处理土壤蔗糖酶活性显著高于NPK处理,增幅分别为26.8%,19.0%,19.3%,31.4%,配施有机肥处理间无显著差异。
与NPK处理相比,NPK+JF和NPK+ZF处理显著增加了0~20 cm土层脲酶活性,增幅分别为16.0%,12.1%,NPK+ST和NPK+NF处理对该土层脲酶活性无显著影响,NPK+JF处理脲酶活性显著高于NPK+ST和NPK+NF处理,NPK+ZF、NPK+ST和NPK+NF处理脲酶活性间差异不显著(图3-C)。各处理20~40 cm土层土壤脲酶活性间无显著差异。与NPK处理相比,化肥配施有机肥处理显著增加了0~20 cm,20~40 cm土层土壤磷酸酶活性(图3-D)。在0~20 cm土层,NPK+ST、NPK+NF、NPK+JF和NPK+ZF处理磷酸酶活性分别增加87.9%,103.0%,92.8%,124.0%,其中NPK+ZF处理显著高于NPK+ST、NPK+NF和NPK+JF处理。在20~40 cm土层,NPK+ST、NPK+NF、NPK+JF和NPK+ZF处理土壤磷酸酶活性的较NPK处理分别增加99.5%,94.9%,98.4%,96.9%,各有机肥处理间差异不显著。
图3 化肥配施有机肥处理对土壤酶活性的影响
Fig.3 Effects of chemical fertilizer combined with organic amendments on soil enzyme activity
土壤有机碳是表征土壤肥力的重要指标。增施有机肥是提升土壤有机碳水平的重要途径。本研究结果表明,与单施化肥相比,连续5 a增施有机肥能够增加0~20 cm土层土壤有机碳的含量,以化肥配施牛粪和配施猪粪处理对土壤有机碳的积累效果最显著。土壤有机碳的积累与外源碳投入的数量和质量直接相关,全量秸秆还田处理虽然碳投入量最高,但其较高的C/N比不利于微生物对其分解与利用[19],导致其腐解与腐殖化过程较慢,对土壤有机碳含量的贡献不如猪粪和牛粪。猪粪和牛粪中碳含量明显高于鸡粪,因此,二者对土壤有机碳含量的积累作用更加突出。活性有机碳在土壤中不稳定、周转速度较快,是土壤碳循环的关键动力,成为植物营养的主要来源[20]。与单施化肥相比,增施有机肥显著增加了0~20 cm,20~40 cm土层土壤活性有机碳的含量,不同有机肥处理间以化肥配施鸡粪处理最低,由于鸡粪的C/N比低,且其活性有机碳的迁移能力比猪粪、秸秆和牛粪低[21]。
与单施化肥相比,化肥配施秸秆对0~20 cm,20~40 cm土层养分有效性的影响均不显著,这主要与秸秆氮磷钾养分投入量较低,以及其较高C/N比所造成的土壤碱解氮消耗密切相关[22]。相比之下,牛粪、猪粪与鸡粪处理对土壤速效养分含量的积累作用更加明显。化肥配施不同种类有机肥处理下土壤速效养分的变化更多地取决于畜禽粪肥中养分含量。由此可见,与玉米秸秆全量还田相比,畜禽粪肥的施入更有助于提升土壤速效养分的供应。值得注意的是,化肥配施不同种类有机肥对总有机碳和活性有机碳的影响主要集中于0~20 cm土层,而0~20 cm,20~40 cm土层土壤速效养分对不同种类有机肥处理均有显著响应,这与有机肥施用条件下土壤速效养分随水向下运移的特征有关[23]。
土壤酶积极参与土壤中各种生物化学反应,其高低反映了土壤生物的活性与生化反应的程度[24]。纤维素酶和蔗糖酶是表征土壤碳素转化的速度与程度的指标,化肥配施有机肥处理不同程度地增加了耕层纤维素酶和蔗糖酶的活性,由于有机肥的投入,为土壤微生物活动提供了丰富的碳源底物,同时又增加了养分和能量,促进了土壤相关酶活性的提高[25]。本研究中,化肥配施秸秆和配施牛粪处理耕层土壤纤维素酶活性显著高于其他有机肥处理(除NPK+ST处理外),主要由于秸秆与牛粪属于植物来源,其纤维素含量较高[26]。化肥配施鸡粪和配施猪粪处理耕层土壤蔗糖酶含量较高,表明其土壤中高分子有机化合物更易被转化为能够被植物和土壤微生物吸收和利用的简单糖类[27]。农作物秸秆为土壤提供有效的生物活性能量,携带大量纤维组分,提供反应底物,另外玉米秸秆的C/N比较高,增加了碳源物质,促进微生物的繁殖,刺激了纤维素酶活性的提高[28-29]。牛粪中含有大量的微生物,土壤纤维素酶活性与微生物丰度有一定的相关性[30-31]。鸡粪中含有70%的饲料未被发酵吸收,含有大量的营养物质,为蔗糖酶提供更多的酶促基质[32-33],而猪粪能够增加土壤中细菌、真菌和放线菌的数量,有助于提高土壤蔗糖酶的活性[34-35]。脲酶参与土壤中氮素的转化,本研究中,在0~20 cm土层脲酶活性以化肥配施鸡粪和配施猪粪处理较高,表明二者更利于土壤速效氮素的释放,从而保证植物的养分供应。磷酸酶是土壤有机磷向无机磷的转化过程的重要产物。本研究,化肥配施猪粪处理耕层土壤磷酸酶活性显著高于其他有机肥处理,原因在于配施猪粪处理有更高的磷素输入。
有机培肥对作物产量的提升效果取决于土壤肥力水平、有机肥的品质及施用量[36]。本研究中,在2012-2015年,除个别年份化肥配施秸秆或配施猪粪处理玉米产量显著高于单施化肥处理外,多数年份配施有机肥处理对玉米产量的影响不显著,在有机培肥的第5年(2016年),化肥配施有机肥各处理玉米产量均显著高于单施化肥。可见,随着有机肥施用年限的延长,耕层土壤有机碳含量、速效养分供应及酶活性等肥力因子得以明显改善,从而促进了玉米产量的大幅提升。这与张秀芝等[37]关于有机培肥后黑土玉米产量变化的结果相一致。从多年平均玉米产量来看,化肥配施有机肥比单施化肥处理有所增加,但秸秆全量还田或是增施有机肥处理平均玉米产量间无显著差异。主要原因可能在于各种有机肥的投入量相对较低,仍需更长时间尺度观测玉米产量对不同种类有机物料处理差异响应。
5 a连续培肥后,与单施化肥相比,化肥配施牛粪和配施猪粪处理显著增加了耕层土壤有机碳及其活性组分的含量,而化肥配施秸秆或鸡粪对有机碳的提升主要集中于其活性组分;化肥配施猪粪或鸡粪对0~40 cm土层土壤速效养分的积累作用优于配施牛粪或秸秆处理;化肥配施有机肥处理对0~20 cm,20~40 cm土层土壤纤维素酶、蔗糖酶、脲酶和磷酸酶活性的提高有积极作用,各种酶活性对不同种类有机肥的响应程度各异。5 a间,各处理玉米产量呈现波动变化,化肥配施有机肥处理的平均玉米产量比单施化肥处理增加4.82%~11.7%,其中,以化肥配施猪粪处理增幅最高。
[1] 刘树伟,纪程,邹建文.陆地生态系统碳氮过程对大气CO2浓度升高的响应与反馈[J].南京农业大学学报,2019,42(5):781-786. doi:10.7685/jnau.201903018.
Liu S W,Ji C,Zou J W.Response and feedback of terrestrial carbon and nitrogen cycling to elevated atmospheric CO2[J].Journal of Nanjing Agricultural University,2019,42(5):781-786.
[2] Frimpong K A,Asare-Bediako E,Amissah R,Okae-Anti D. Influence of compost on incidence and severity of okra mosaic disease and fruit yield and quality of two okra(Abelmoschus esculentus L. Moench)cultivars[J].International Journal of Plant and Soil Science,2017,16(1):1-14. doi:10.9734/IJPSS/2017/32753.
[3] 杨忠赞,迟凤琴,匡恩俊,张久明,宿庆瑞,张一雯,刘亦丹.有机肥替代对土壤理化性状及产量的综合评价[J].华北农学报,2019,34(S1):153-160. doi:10.7668/hbnxb.20190078.
Yang Z Z,Chi F Q,Kuang E J,Zhang J M,Su Q R,Zhang Y W,Liu Y D. Comprehensive evaluation of soil physical and chemical properties and yield by substitution of organic manure[J].Acta Agriculturae Boreali-Sinica,2019,34(S1):153-160.
[4] 伍佳,王忍,吕广动,隆斌庆,杨飞翔,陈慧娜,黄璜.不同秸秆还田方式对水稻产量及土壤养分的影响[J].华北农学报,2019,34(6):177-183. doi:10.7668/hbnxb.201751760.
Wu J,Wang R,Lü G D,Long B Q,Yang F X,Chen H N,Huang H. Effects of different straw returning ways on rice yield and soil nutrients [J].Acta Agriculturae Boreali-Sinica,2019,34(6):177-183.
[5] He Y B,Gu F,Xu C,Wang Y. Assessing of the influence of organic and inorganic amendments on the physical-chemical properties of a red soil(Ultisol)quality[J].Catena,2019,183:104231.doi:10.1016/j.catena.2019.104231.
[6] 张志毅,熊桂云,吴茂前,范先鹏,冯婷婷,巴瑞先,段申荣.有机培肥与耕作方式对稻麦轮作土壤团聚体和有机碳组分的影响[J].中国生态农业学报(中英文),2020,28(3):405-412.doi:10.13930/j.cnki.cjea.190617.
Zhang Z Y,Xiong G Y,Wu M Q,Fan X P,Feng T T,Ba R X,Duan S R.Effects of organic fertilization and tillage method on soil aggregates and organic carbon fractions in a wheat-rice system [J].Chinese Journal of Eco-Agriculture,2020,28(3):405-412.
[7] Mahajan G R,Das B,Manivannan S,Manjunath B L,Verma R R,Desai S,Kulkarni R M,Latare A M,Sale R,Murgaonkar D,Patel K P,Morajkar S,Desai A,Barnes N,Mulla H. Soil and water conservation measures improve soil carbon sequestration and soil quality under cashews[J].International Journal of Sediment Research,2021,36(2):190-206. doi:10.1016/j.ijsrc.2020.07.009.
[8] 马忠明,王平,陈娟,包兴国.适量有机肥与氮肥配施方可提高河西绿洲土壤肥力及作物生产效益[J].植物营养与肥料学报,2016,22(5):1298-1309. doi:10.11674/zwyf.15346.
Ma Z M,Wang P,Chen J,Bao X G. Combined long-term application of organic materials with nitrogen fertilizer in suitable amount could improve soil fertility and crop production profit in Hexi Oasis of Gansu Province[J].Journal of Plant Nutrition and Fertilizers,2016,22(5):1298-1309.
[9] 武晓森,周晓琳,曹凤明,朱宝成,赵同凯,沈德龙.不同施肥处理对玉米产量及土壤酶活性的影响[J].中国土壤与肥料,2015(1):44-49. doi:10.11838/sfsc.20150109.
Wu X S,Zhou X L,Cao F M,Zhu B C,Zhao T K,Shen D L. Effects of different fertilization on the corn yield and soil enzyme activity in corn growth period[J].Soil and Fertilizer Sciences in China,2015(1):44-49.
[10] Shao X H,Zheng J W. Soil organic carbon,black carbon,and enzyme activity under long-term fertilization[J].Journal of Integrative Agriculture,2014,13(3):517-524. doi:10.1016/S2095-3119(13)60707-8.
[11] 孙凯,刘振,胡恒宇,李耕,刘文涛,杨柳,宁堂原,王彦玲.有机培肥与轮耕方式对夏玉米田土壤碳氮和产量的影响[J].作物学报,2019,45(3):401-410.doi:10.3724/SP.J.1006.2019.83028.
Sun K,Liu Z,Hu H Y,Li G,Liu W T,Yang L,Ning T Y,Wang Y L. Effect of organic fertilizer and rotational tillage practices on soil carbon and nitrogen and maize yield in wheat-maize cropping system[J].Acta Agronomica Sinica,2019,45(3):401-410.
[12] 申贵男,袁媛,艾士奇,刘晓烨,晏磊,谷学佳,王玉峰,王伟东.东北粮食主产区秸秆和畜禽粪便资源化现状问卷调查及建议[J].土壤与作物,2020,9(3):296-303. doi:10.11689/j.issn.2095-2961.2020.03.010.
Shen G N,Yuan Y,Ai S Q,Liu X Y,Yan L,Gu X J,Wang Y F,Wang W D. Questionnaire survey and suggestions on the status of straw and livestock manure recycling in the main grain producing areas of Northeast China [J].Soils and Crops,2020,9(3):296-303.
[13] 蔡红光,梁尧,刘慧涛,刘剑钊,秦裕波,刘方明,袁静超,张洪喜,任军,王立春.东北地区玉米秸秆全量深翻还田耕种技术研究[J].玉米科学,2019,27(5):123-129.doi:10.13597/j.cnki.maize.science.20190518.
Cai H G,Liang Y,Liu H T,Liu J Z,Qin Y B,Liu F M,Yuan J C,Zhang H X,Ren J,Wang L C. Research on full maize straw returning with deep ploughing mode in the northeast China[J].Journal of Maize Sciences,2019,27(5):123-129.
[14] 武红亮,王士超,槐圣昌,闫志浩,马常宝,薛彦东,徐明岗,卢昌艾.近30年来典型黑土肥力和生产力演变特征[J].植物营养与肥料学报,2018,24(6):1456-1464. doi:10.11674/zwyf.18238.
Wu H L,Wang S C,Huai S C,Yan Z H,Ma C B,Xue Y D,Xu M G,Lu C A. Evolutionary characteristics of fertility and productivity of typical black soil in recent 30 years[J].Journal of Plant Nutrition and Fertilizers,2018,24(6):1456-1464.
[15] 鲍士旦. 土壤农化分析[M].3版. 北京:中国农业出版社,2000.
Bao S D. Soil chemical analysis[M].3rd edition.Beijing:China Agriculture Press,2000.
[16] Blair G J,Lefroy R D B,Lisle L. Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural systems[J].Australian Journal of Agricultural Research,1995,46(7):1459-1466.doi:10.1071/AR9951459.
[17] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:260-360.
Guan S Y. Soil enzyme and its research methods[M].Beijing:China Agriculture Press,1986:260-360.
[18] 吴金水,林启美,黄巧云,肖和艾.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006.
Wu J S,Lin Q M,Huang Q Y,Xiao H A. Determination of soil microbial biomass and its application[M].Beijing:China Meteorological Press,2006.
[19] 张学林,周亚男,李晓立,侯小畔,安婷婷,王群.氮肥对室内和大田条件下作物秸秆分解和养分释放的影响[J].中国农业科学,2019,52(10):1746-1760. doi:10.3864/j.issn.0578-1752.2019.10.008.
Zhang X L,Zhou Y N,Li X L,Hou X P,An T T,Wang Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions[J].Scientia Agricultura Sinica,2019,52(10):1746-1760.
[20] 张宇辰,彭道黎.间伐对塞罕坝华北落叶松人工林土壤活性有机碳的影响[J].应用与环境生物学报,2020,26(4):961-968. doi:10.19675/j.cnki.1006-687x.2020.01030.
Zhang Y C,Peng D L. Effects of thinning on the soil active organic carbon of Larix principis rupprechtii plantations in Saihanba[J].Chinese Journal of Applied and Environmental Biology,2020,26(4):961-968.
[21] 王怡雯,许浩,茹淑华,苏德纯.有机肥连续施用对土壤剖面有机碳分布的影响及其与重金属的关系[J].生态学杂志,2019,38(5):1500-1507. doi:10.13292/j.1000-4890.201905.011.
Wang Y W,Xu H,Ru S H,Su D C. Effects of continuous application of organic fertilizer on the distribution of organic carbon in soil profile and its relationship with heavy metals[J].Chinese Journal of Ecology,2019,38(5):1500-1507.
[22] 丁文成,李书田,黄绍敏.氮肥管理和秸秆腐熟剂对15N标记玉米秸秆氮有效性与去向的影响[J].中国农业科学,2016,49(14):2725-2736. doi:10.3864/j.issn.0578-1752.2016.14.007.
Ding W C,Li S T,Huang S M. Bioavailability and fate of nitrogen from 15N-labeled corn straw as affected by nitrogen management and straw microbial inoculants[J].Scientia Agricultura Sinica,2016,49(14):2725-2736.
[23] 李大明,柳开楼,叶会财,胡志华,余喜初,徐小林,杨旭初,周利军,胡秋萍,胡惠文,黄庆海.长期不同施肥处理红壤旱地剖面养分分布差异[J].植物营养与肥料学报,2018,24(3):633-640.doi:10.11674/zwyf.17265.
Li D M,Liu K L,Ye H C,Hu Z H,Yu X C,Xu X L,Yang X C,Zhou L J,Hu Q P,Hu H W,Huang Q H. Differences of soil nutrient distribution in profiles under long-term fertilization in upland red soil[J].Journal of Plant Nutrition and Fertilizers,2018,24(3):633-640.
[24] Cui J W,Song D L,Dai X L,Xu X P,He P,Wang X Y,Liang G Q,Zhou W,Zhu P. Effects of long-term cropping regimes on SOC stability,soil microbial community and enzyme activities in the mollisol region of Northeast China[J].Applied Soil Ecology,2021,164:103941. doi:10.1016/J.APSOIL.2021.103941.
[25] 贺美,王立刚,朱平,戚瑞敏,王迎春.长期定位施肥下黑土碳排放特征及其碳库组分与酶活性变化[J].生态学报,2017,37(19):6379-6389. doi:10.5846/stxb201607111414.
He M,Wang L G,Zhu P,Qi R M,Wang Y C. Carbon emission characteristics,carbon library components,and enzyme activity under long-term fertilization conditions of black soil[J].Acta Ecologica Sinica,2017,37(19):6379-6389.
[26] 李明松,张洪梅,朱平,高云航,刘淑霞.不同施肥处理对农田黑土土壤酶活性的影响[J].玉米科学,2017,25(5):116-121. doi:10.13597/j.cnki.maize.science.20170519.
Li M S,Zhang H M,Zhu P,Gao Y H,Liu S X. Effects of different fertilization treatments on farmland phaeozem soil enzyme activity[J].Journal of Maize Sciences,2017,25(5):116-121.
[27] 胡啸. 稻田施用有机物料对土壤肥力影响[D].杨凌:西北农林科技大学,2019.
Hu X. Effects on soil fertility in the application of organic materials in paddy field[D].Yangling:Northwest A&F University,2019.
[28] 程曼,解文艳,杨振兴,周怀平.黄土旱塬长期秸秆还田对土壤养分、酶活性及玉米产量的影响[J].中国生态农业学报(中英文),2019,27(10):1528-1536. doi:10.13930/j.cnki.cjea.190235.
Cheng M,Xie W Y,Yang Z X,Zhou H P. Effects of long-term straw return on corn yield,soil nutrient contents and enzyme activities in dryland of the Loess Plateau,China[J].Chinese Journal of Eco-Agriculture,2019,27(10):1528-1536.
[29] 张茜,张小梅,梁斌,毕明浩,李俊良.长期定位施肥对设施番茄土壤酶活性及土壤养分动态变化的影响[J].华北农学报,2017,32(1):179-186. doi:10.7668/hbnxb.2017.01.027.
Zhang Q,Zhang X M,Liang B,Bi M H,Li J L. Effects of long-term fertilization on the dynamics of soil enzyme activity and soil nutrient under the greenhouse tomato-cultivating system[J].Acta Agriculturae Boreali-Sinica,2017,32(1):179-186.
[30] 丁力,张清旭,陈晓婷,叶江华,贾小丽,孔祥海,林炜明,王海斌.动物源有机肥对茶树生长及其根际土壤酶活性的影响[J].江苏农业科学,2018,46(20):121-125. doi:10.15889/j.issn.1002-1302.2018.20.031.
Ding L,Zhang Q X,Chen X T,Ye J H,Jia X L,Kong X H,Lin W M,Wang H B.Effects of animal manure on tea tree growth and enzyme activity in rhizosphere soil[J].Jiangsu Agricultural Sciences,2018,46(20):121-125.
[31] 戚瑞敏,温延臣,赵秉强,林治安,李志杰,李娟.长期不同施肥潮土活性有机氮库组分与酶活性对外源牛粪的响应[J].植物营养与肥料学报,2019,25(8):1265-1276. doi:10.11674/zwyf.18516.
Qi R M,Wen Y C,Zhao B Q,Lin Z A,Li Z J,Li J. Response of soil organic nitrogen fractions and enzyme activities to cattle manure addition in long-term fertilized fluvo-aquic soil[J].Journal of Plant Nutrition and Fertilizers,2019,25(8):1265-1276.
[32] 井大炜,邢尚军.鸡粪与化肥不同配比对杨树苗根际土壤酶和微生物量碳、氮变化的影响[J].植物营养与肥料学报,2013,19(2):455-461. doi:10.11674/zwyf.2013.0223.
Jing D W,Xing S J. Effects of chicken manure mixed with inorganic fertilizer on soil enzyme activities,microbial biomass C and N at rhizosphere of poplar seedlings[J].Journal of Plant Nutrition and Fertilizers,2013,19(2):455-461.
[33] 弓萌萌,王红,张雪梅,刘洋,李寒,郭素萍.不同有机肥施用量对苹果园土壤养分及酶活性的影响[J].西北林学院学报,2019,34(3):74-78,97.doi:10.3969/j.issn.1001-7461.2019.03.11.
Gong M M,Wang H,Zhang X M,Liu Y,Li H,Guo S P. Effects of different organic fertilizer amounts on soil nutrient and enzyme activity of apple orchard[J].Journal of Northwest Forestry University,2019,34(3):74-78,97.
[34] 程雄,王利英,李文彦,张海春,李永涛,张玉龙.猪场废弃物和解磷菌、蚯蚓联合施用对旱坡地土壤碳循环相关酶的影响[J].农业环境科学学报,2017,36(12):2479-2485. doi:10.11654/jaes.2017-0686.
Cheng X,Wang L Y,Li W Y,Zhang H C,Li Y T,Zhang Y L. Effects of pig farm waste,phosphate-solubilizing bacteria,and earthworms on enzymes related to soil C cycling in arid hillside land[J].Journal of Agro-Environment Science,2017,36(12):2479-2485.
[35] 姜利红,谢桂先,刘强,荣湘民,向秀媛,李波.有机无机肥配施对双季稻田土壤微生物和碳库的影响[J].湖南农业大学学报(自然科学版),2018,44(3):295-300. doi:10.13331/j.cnki.jhau.2018.03.012.
Jiang L H,Xie G X,Liu Q,Rong X M,Xiang X Y,Li B. Effect of combined application of organic and inorganic fertilizers on soil microbial and carbon pool in double rice paddy field[J].Journal of Hunan Agricultural University(Natural Sciences),2018,44(3):295-300.
[36] 邱吟霜,王西娜,李培富,侯贤清,王艳丽,吴鹏年,霍文斌.不同种类有机肥及用量对当季旱地土壤肥力和玉米产量的影响[J].中国土壤与肥料,2019(6):182-189.doi:10.11838/sfsc.1673-6257.18498.
Qiu Y S,Wang X N,Li P F,Hou X Q,Wang Y L,Wu P N,Huo W B. Different kinds of organic fertilizers and amounts on dryland soil fertility and corn yield in the current season[J].Soil and Fertilizer Sciences in China,2019(6):182-189.
[37] 张秀芝,高洪军,彭畅,李强,朱平,高强. 长期有机培肥黑土有机碳、全氮及玉米产量稳定性的变化特征[J].植物营养与肥料学报,2019,25(9):1473-1481.doi:10.11674/zwyf.18390.
Zhang X Z,Gao H J,Peng C,Li Q,Zhu P,Gao Q. Variation trend of soil organic carbon,total nitrogen and the stability of maize yield in black soil under long-term organic fertilization[J].Journal of Plant Nutrition and Fertilizers,2019,25(9):1473-1481.
蔡红光(1981-),男,吉林舒兰人,研究员,博士,硕士生导师,主要从事土壤培肥与养分资源高效利用研究。
梁 尧(1984-),女,吉林辽源人,副研究员,博士,主要从事土壤有机培肥研究。