基于CRISPR/Cas9技术的水稻OsARF12突变体的构建

杜想想,赵亚帆,赵晨云,赵帅兵,李 源,程 远,赵全志,杜彦修,孙红正,孙虎威,彭 廷

(河南粮食作物协同创新中心,河南省水稻生物学重点实验室,河南农业大学,河南 郑州 450046)

摘要:为研究水稻生长素响应因子OsARF12在水稻生长发育中的作用,通过CRISPR/Cas9基因编辑技术,设计OsARF12 2个不同外显子突变靶点,化学合成包括突变靶点的特异性序列,并与中间载体sgRNA连接进而与Cas9终载体重组获得OsARF12 2个不同突变靶点的表达载体。选取测序成功的单一克隆,利用农杆菌介导法导入粳稻品种日本晴,获得转基因植株,并结合测序结果分析突变单株的突变类型,T1突变体KO-ARF12-1有3种纯合突变、2种双等位突变,共5种突变类型;KO-ARF12-2有6种纯合突变、4种双等位突变和1种杂合突变,共11种突变类型。挑选突变类型为缺失1 nt、缺失4 nt、缺失7 nt和缺失2 nt插入1 nt、缺失5 nt的株系作为研究对象,荧光定量PCR鉴定结果表明,OsARF12在突变体中的表达量较野生型极显著下降(P<0.01)。在正常大田生长条件下,2种突变体不同突变类型株系与野生型相比,株高显著降低,降幅为13.15%~18.39%;第1,2茎节间长度无显著差异,第3,4茎节间长度显著降低,降幅为21.91%,23.46%。利用CRISPR/Cas9创制的OsARF12突变体,对水稻节间延伸及株高具有一定调节作用,对于完善水稻生长素响应因子的分子调控机制具有重要意义。

关键词:水稻;OsARF12;CRISPR/Cas9;基因编辑;株高

生长素作为最早发现的一类植物激素,参与调控植物多种生长发育过程,如根的发育[1]、顶端优势、向性反应和形态建成[2]等。生长素调控通路中关键蛋白主要包括生长素/吲哚乙酸蛋白(Aux/IAAs)、SCF复合系统和生长素响应因子(ARFs)[3]。生长素响应因子是能与生长素应答元件(AuxRE)TGTCTC序列特异结合,调节生长素反应基因的一类转录因子,最先在模式植物拟南芥中被鉴定出来[4],该家族共有23个基因[5]。其中ARF1/ARF2功能的缺失通过增加拟南芥中Aux/IAA基因的转录进而调控叶片衰老和开花时间[6]ARF3/ARF4主要调控侧生器官的结构发育[7]ARF3直接与细胞分裂素基因AtIPT5启动子结合,负调控AtIPT5的表达,介导生长素与细胞分裂素相互作用,影响新生芽的再生[8]ARF5通过调控AMP1的表达影响胚和维管组织的形成[9]arf6arf8突变体雄蕊发育迟缓,而arf6/arf8双突变体则不能形成成熟的花,表明ARF6ARF8共同参与花的形态建成[10],同时,ARF8还负调控果实的起始发育[11]ARF7/ARF19可直接激活下游基因LBD/ASLs的表达来影响侧根形成[12]ARF10/ARF16则是在miR160下游调控根冠发育及根的向地性[13]

单子叶植物水稻ARF家族中有25个成员[14]OsARF1是水稻中第一个被发现的ARF基因[15],它与胚芽鞘的向性有关;之后的研究表明,OsARF1对营养生长和种子发育至关重要[16]OsARF4能与OsGSK41/OsGSK互作且被后者磷酸化,调控水稻籽粒大小及千粒质量[17]OsARF16参与细胞分裂素介导的水稻磷酸盐转运和信号传递通路,且敲除株系对外源细胞分裂素不响应[18]OsARF17OsARF19通过调节生长素和BR信号来控制水稻叶夹角大小[19-20]。然而,目前对水稻ARF家族的研究大多集中在籽粒发育和叶夹角等方面,ARFs其他成员对水稻农艺性状的影响尚不明确。

CRISPR/Cas9是第3代基因编辑技术,相比其他编辑技术具有成本低、快速高效等优点,已经成为目前最主流的基因编辑系统[21]。近年来,大量研究人员通过CRISPR/Cas9技术对水稻基因编辑,研究水稻基因的功能,也取得了重要进展[22]。本研究利用CRISPR/Cas9系统对水稻生长素响应因子OsARF12第1个和第2个外显子靶位点进行编辑,独立转化粳稻品种日本晴,通过对2个外显子不同突变位点的KO-ARF12-1和KO-ARF12-2突变体进行测序、表达量鉴定、表型性状调查,研究OsARF12对水稻农艺性状的影响。

1 材料和方法

1.1 试验材料

转基因受体材料为:粳稻品种日本晴(Oryza sativa spp. japonica cv. Nipponbare)。CRISPR/Cas9载体为:pOs-gRNA、pH-Ubi-CAS9。试验所需引物(表1)合成与测序分析均由上海生工生物工程股份有限公司完成。

表1 试验所用引物
Tab.1 Primers used in this test

引物名称Primer name引物序列(5′-3′)Primer sequence(5′-3′)ARF12 Crispr1_FGGCGGAACGATGCGTACCTTCCCGARF12 Crispr1_RAAACCGGGAAGGTACGCATCGTTCARF12 Crispr2_FGGCGTTCACACCCGGATATCGGTTARF12 Crispr2_RAAACAACCGATATCCGGGTGTGAACrispr ARF12-1_FCTGACTTGGGCTGGCAATTTCrispr ARF12-1_RGAGGCTGCTGTGTGAAATCCCrispr ARF12-2_FTTTCCTCCCCATGTACACCGCrispr ARF12-2_RATAATGGGGTGATGTCCTGACOsARF12_F定CTGACTTGGGCTGGCAATTTOsARF12_R定TCGACGAATACAAGCTGCCAGCactin_FGGAAGTACAGTGTCTGGATTGGAGactin_RTCTTGGCTTAGCATTCTTGGGT

1.2 试验方法

1.2.1 OsARF12靶位点设计和表达载体构建 根据CRISPR/Cas9原理,在RAP-DB网站(https://rapdb.dna.affrc.go.jp/)上获取水稻OsARF12外显子序列,分别选取第1个外显子PAM序列(CGG)前20 bp(5′-GAACGATGCGTACCTTCCCG-3′)及第2个外显子PAM序列(GGG)前20 bp(5′-TTCACACCCGGATATCGGTT-3′)为靶位点(图1)。分别在2个靶位点5′端前加上Bsa Ⅰ限制性内切酶的黏性末端接头GGCG,即为ARF12 Crispr1_F、ARF12 Crispr2_F(表1);将选取的2个靶序列分别反向互补并在其5′端前加上Bsa Ⅰ限制性内切酶的黏性末端接头AAAC,即为ARF12 Crispr1_R、ARF12 Crispr2_R(表1)。将2对加过接头的序列送往上海生工生物工程股份有限公司合成后,经磷酸化修饰和退火形成双链,用T4 DNA连接酶与经过限制性内切酶Bsa Ⅰ酶切过后的中间载体sgRNA连接,转化大肠杆菌感受态DH5α,随后进行菌落PCR检测与测序,并用阳性质粒与Cas9终载体进行LR重组,转化DH5α,经菌落PCR和测序检测,将阳性质粒转化农杆菌EHA105。利用农杆菌介导法导入粳稻品种日本晴,获得转基因植株。

1.2.2 植株DNA和总RNA的提取 在野生型和各转基因植株抽穗前取叶片样品,并立即置于液氮中,-80 ℃冰箱保存。采用CTAB法提取叶片DNA;TRIzol法提取总RNA。

1.2.3 反转录 使用天根生化科技有限公司FastKing RT Kit(KR118-02)反转录试剂盒将1 μg总RNA反转录成cDNA。

sgRNA-1. OsARF12第1个外显子靶位点;sgRNA-2. OsARF12第2个外显子靶位点。
sgRNA-1. The first exon target site of OsARF12;sgRNA-2. The second exon target site of OsARF12.

图1 OsARF12靶位点设计
Fig.1 Design of target sites of OsARF12

1.2.4 OsARF12表达量分析 将cDNA稀释10倍,使用天根生化科技有限公司定量检测试剂盒SYBR Green(FP209),Actin基因作为内参,采用Bio-Rad CFX96荧光定量PCR仪进行实时荧光定量PCR分析。相对表达量采用2-ΔΔCt法计算。

1.2.5 数据分析 采用Microsoft Excel 2016对试验数据进行整理和作图,利用SPSS 24进行差异显著性分析。

2 结果与分析

2.1 KO-ARF12-1/-2 T0突变体鉴定

将携带CRISPR/Cas9-ARF12-1和CRISPR/Cas9-ARF12-2质粒的农杆菌侵染水稻品种日本晴,得到KO-ARF12-1 T0再生苗5株,KO-ARF12-2 T0再生苗15株。利用CTAB法提取各单株叶片的DNA,并根据OsARF12的序列分别设计2个不同靶位点引物:Crispr ARF12-1_F、Crispr ARF12-1_R和Crispr ARF12-2_F、Crispr ARF12-2_R(表1),用对应的引物对转基因植株的DNA进行扩增(图2),并将扩增产物送往公司测序。通过对T0测序结果比对发现:KO-ARF12-1-1为1条链缺失1 nt、互补链缺失7 nt的双等位突变体;KO-ARF12-1-2和KO-ARF12-1-3为1条链缺失4 nt、互补链缺失7 nt的双等位突变体,KO-ARF12-1-4和KO-ARF12-1-5 2条链均未突变(表2)。

M.2 kb DNA 标准分子质量。图3-4同。
M.2 kb DNA Marker. The same as Fig.3-4.

图2 OsARF12 T0转基因植株鉴定
Fig. 2 Identification of OsARF12 T0 transgenic plants

表2 KO-ARF12-1 T0转基因植株突变类型鉴定
Tab.2 Identification of mutation types of KO-ARF12-1 T0 transgenic plants

株系Lines序列Sequence突变情况Mutations突变类型Mutation typesWTGCTGTCGGTGGAACGATGCGTACCTTCCCGCGGAGATGGGGATAATGAGCAAGKO-ARF12-1-1GCTGTCGGTGGAACGATGCGTACCTTCC-GCGGAGATGGGGATAATGAGCAAG-1双等位突变GCTGTCGGTGGAACGATGCGT-------CGCGGAGATGGGGATAATGAGCAAG-7KO-ARF12-1-2GCTGTCGGTGGAACGATGCGTACC----CGCGGAGATGGGGATAATGAGCAAG-4双等位突变GCTGTCGGTGGAACGATGCG-------CCGCGGAGATGGGGATAATGAGCAAG-7KO-ARF12-1-3GCTGTCGGTGGAACGATGCGTACC----CGCGGAGATGGGGATAATGAGCAAG-4双等位突变GCTGTCGGTGGAACGATGCG-------CCGCGGAGATGGGGATAATGAGCAAG-7KO-ARF12-1-4GCTGTCGGTGGAACGATGCGTACCTTCCCGCGGAGATGGGGATAATGAGCAAG未突变GCTGTCGGTGGAACGATGCGTACCTTCCCGCGGAGATGGGGATAATGAGCAAGKO-ARF12-1-5GCTGTCGGTGGAACGATGCGTACCTTCCCGCGGAGATGGGGATAATGAGCAAG未突变GCTGTCGGTGGAACGATGCGTACCTTCCCGCGGAGATGGGGATAATGAGCAAG

注:斜体碱基. OsARF12靶序列;下划线碱基. PAM序列;短线. 碱基缺失。表3-5同。

Note:Italicized bases are the target sites of OsARF12;Underline bases are the PAM sequence;Short lines are the base deletion;The same as Tab. 3-5.

KO-ARF12-2各转基因植株共有11种突变类型:KO-ARF12-2-12和KO-ARF12-2-15为2条链分别缺失了6 nt与5 nt的纯合突变体;KO-ARF12-2-5为1条链缺失2 nt,KO-ARF12-2-8为1条链插入1 nt,互补链均没有突变的杂合突变体;而其余8株均为双等位突变:KO-ARF12-2-1为1条链插入1 nt,互补链缺失4 nt;KO-ARF12-2-3为1条链缺失1 nt,互补链缺失6 nt;KO-ARF12-2-6、KO-ARF12-2-9和KO-ARF12-2-11为1条链插入1 nt,互补链缺失1 nt;KO-ARF12-2-7为1条链插入1 nt,互补链缺失7 nt;KO-ARF12-2-13为1条链缺失4 nt,互补链缺失5 nt;KO-ARF12-2-14为1条链缺失1 nt,互补链缺失5 nt;KO-ARF12-2-2、KO-ARF12-2-4和KO-ARF12-2-10 2条链均未突变(表3)。

表3 KO-ARF12-2 T0转基因植株突变类型鉴定
Tab.3 Identification of mutation types of KO-ARF12-2 T0 transgenic plants

株系Lines序列Sequence突变情况Mutations突变类型Mutation typesWTAAGGCTGTTTTTCACACCCGGATATCGGTTGGGATGCGGTTCAGGATGTTKO-ARF12-2-1AAGGCTGTTTTTCACACCCGGGATATCGGTTGGGATGCGGTTCAGGATGTT+1双等位突变AAGGCTGTTTTTCACACCCGGAT----GTTGGGATGCGGTTCAGGATGTT-4KO-ARF12-2-2AAGGCTGTTTTTCACACCCGGATATCGGTTGGGATGCGGTTCAGGATGTT未突变AAGGCTGTTTTTCACACCCGGATATCGGTTGGGATGCGGTTCAGGATGTTKO-ARF12-2-3AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTT-1双等位突变AAGGCTGTTTTTCACACCCGGATA------GGGATGCGGTTCAGGATGTT-6KO-ARF12-2-4AAGGCTGTTTTTCACACCCGGATATCGGTTGGGATGCGGTTCAGGATGTT未突变AAGGCTGTTTTTCACACCCGGATATCGGTTGGGATGCGGTTCAGGATGTTKO-ARF12-2-5AAGGCTGTTTTTCACACCCGGATATCGGTTGGGATGCGGTTCAGGATGTTWT杂合突变AAGGCTGTTTTTCACACCCGGATAT--GTTGGGATGCGGTTCAGGATGTT-2KO-ARF12-2-6AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTT+1双等位突变AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTT-1KO-ARF12-2-7AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTT+1双等位突变AAGGCTGTTTTTCACACCCGG-------TTGGGATGCGGTTCAGGATGTT-7KO-ARF12-2-8AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTT+1杂合突变AAGGCTGTTTTTCACACCCGGATATCGGTTGGGATGCGGTTCAGGATGTTWTKO-ARF12-2-9AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTT-1双等位突变AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTT+1KO-ARF12-2-10AAGGCTGTTTTTCACACCCGGATATCGGTTGGGATGCGGTTCAGGATGTT未突变AAGGCTGTTTTTCACACCCGGATATCGGTTGGGATGCGGTTCAGGATGTTKO-ARF12-2-11AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTT-1双等位突变AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTT+1KO-ARF12-2-12AAGGCTGTTTTTCACACCCGG------GTTGGGATGCGGTTCAGGATGTT-6纯合突变AAGGCTGTTTTTCACACCCGG------GTTGGGATGCGGTTCAGGATGTTKO-ARF12-2-13AAGGCTGTTTTTCACACCCGGAT----GTTGGGATGCGGTTCAGGATGTT-4双等位突变AAGGCTGTTTTTCACACCCGGA-----GTTGGGATGCGGTTCAGGATGTT-5KO-ARF12-2-14AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTT-1双等位突变AAGGCTGTTTTTCACACCCGGA-----GTTGGGATGCGGTTCAGGATGTT-5KO-ARF12-2-15AAGGCTGTTTTTCACACCCGGA-----GTTGGGATGCGGTTCAGGATGTT-5纯合突变AAGGCTGTTTTTCACACCCGGA-----GTTGGGATGCGGTTCAGGATGTT

注:红色加粗倾斜碱基为碱基插入。表5同。

Note: Red bold tilt bases are bases insertion. The same as Tab. 5.

2.2 KO-ARF12-1/-2 T1突变体鉴定

采用CTAB法提取OsARF12在T0发生突变的转基因株系叶片DNA,并用Crispr ARF12-1_F、Crispr ARF12-1_R和Crispr ARF12-2_F、Crispr ARF12-2_R对相应的转基因株系DNA进行扩增(图3,4),将产物送往公司测序。测序结果进行比对发现,KO-ARF12-1各突变转基因株系T1 20个单株中,有3种纯合突变、2种双等位突变,共5种突变类型,分别为:1条链缺失1 nt、互补链缺失7nt的双等位突变体有4株;缺失1 nt的纯合突变体有1株;缺失7 nt的纯合突变体有3株;缺失4 nt的纯合突变体有7株;1条链缺失4 nt、互补链缺失7 nt的双等位突变体有5株(表4)。

图3 KO-ARF12-1 T1转基因植株鉴定
Fig.3 Identification of KO-ARF12-1 T1 transgenic plants

表4 KO-ARF12-1 T1转基因植株突变类型鉴定
Tab.4 Analysis and identification of mutation types of KO-ARF12-1 T1 transgenic plants

株系Lines序列Sequence突变情况Mutations突变类型Mutation typesWTGCTGTCGGTGGAACGATGCGTACCTTCCCGCGGAGATGGGGATAATGAGCAAGKO-ARF12-1-1-1GCTGTCGGTGGAACGATGCGTACCTTCC-GCGGAGATGGGGATAATGAGCAAG-1双等位突变GCTGTCGGTGGAACGATGCGT-------CGCGGAGATGGGGATAATGAGCAAG-7KO-ARF12-1-1-3GCTGTCGGTGGAACGCTGCGTACCTTCC-GCGGAGATGGGGATAATGAGCAAG-1纯合突变GCTGTCGGTGGAACGCTGCGTACCTTCC-GCGGAGATGGGGATAATGAGCAAGKO-ARF12-1-1-4GCTGTCGGTGGAACGATGCGT-------CGCGGAGATGGGGATAATGAGCAAG-7纯合突变GCTGTCGGTGGAACGATGCGT-------CGCGGAGATGGGGATAATGAGCAAGKO-ARF12-1-2-1GCTGTCGGTGGAACGATGCGTACC----CGCGGAGATGGGGATAATGAGCAAG-4纯合突变GCTGTCGGTGGAACGATGCGTACC----CGCGGAGATGGGGATAATGAGCAAGKO-ARF12-1-2-4GCTGTCGGTGGAACGATGCGTACC----CGCGGAGATGGGGATAATGAGCAAG-4双等位突变GCTGTCGGTGGAACGATGCG-------CCGCGGAGATGGGGATAATGAGCAAG-7KO-ARF12-1-2-6GCTGTCGGTGGAACGATGCG-------CCGCGGAGATGGGGATAATGAGCAAG-7纯合突变GCTGTCGGTGGAACGATGCG-------CCGCGGAGATGGGGATAATGAGCAAGKO-ARF12-1-3-1GCTGTCGGTGGAACGATGCGTACC----CGCGGAGATGGGGATAATGAGCAAG-4纯合突变GCTGTCGGTGGAACGATGCGTACC----CGCGGAGATGGGGATAATGAGCAAGKO-ARF12-1-3-6GCTGTCGGTGGAACGATGCGTACC----CGCGGAGATGGGGATAATGAGCAAG-4双等位突变GCTGTCGGTGGAACGATGCG-------CCGCGGAGATGGGGATAATGAGCAAG-7

图4 KO-ARF12-2 T1转基因植株鉴定
Fig.4 Identification of KO-ARF12-2 T1 transgenic plants

KO-ARF12-2各突变转基因株系T1 60个单株中,有6种纯合突变、1种杂合突变和4种双等位突变,共11种突变类型,分别为:缺失1,6,2,7,4 nt和插入1 nt的纯合突变体,分别为12,1,6,3,2,10株;1条链插入1 nt、互补链未突变的杂合突变体3株;1条链插入1 nt、互补链缺失4 nt,1条链插入1 nt、互补链缺失1 nt,1条链缺失4 nt、互补链缺失5 nt和1条链缺失1 nt、互补链缺失5 nt的双等位突变体分别为6,9,4,4株(表5)。

2.3 KO-ARF12-1/-2 T2突变体表达量分析

以T2 2种不同靶位点的6种不同基因型纯合突变体KO-ARF12-1-1-3(缺失1 nt)、KO-ARF12-1-2-1(缺失4 nt)、KO-ARF12-1-2-6(缺失7 nt)及KO-ARF12-2-5-2(缺失2 nt)、KO-ARF12-2-11-4(插入1 nt)、KO-ARF12-2-15-5(缺失5 nt)(图5-A)为研究材料,选取大田正常生长条件下叶片样品提取总RNA,反转录并定量分析发现,除KO-ARF12-2-11-4,其他各突变体株系中OsARF12表达量与野生型相比均显著下降(P<0.05)(图5-B)。

表5 KO-ARF12-2 T1转基因植株突变类型鉴定
Tab.5 Analysis and identification of mutation types of KO-ARF12-2 T1 transgenic plants

株系Lines序列Sequence突变情况Mutations突变类型Mutation typesWTAAGGCTGTTTTTCACACCCGGATATCGGTTGGGATGCGGTTCAGGATGTTKO-ARF12-2-1-1AAGGCTGTTTTTCACACCCGGGATATCGGTTGGGATGCGGTTCAGGATGTT+1双等位突变AAGGCTGTTTTTCACACCCGGAT----GTTGGGATGCGGTTCAGGATGTT-4KO-ARF12-2-3-2AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTT-1纯合突变AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTTKO-ARF12-2-3-5AAGGCTGTTTTTCACACCCGGATA------GGGATGCGGTTCAGGATGTT-6纯合突变AAGGCTGTTTTTCACACCCGGATA------GGGATGCGGTTCAGGATGTTKO-ARF12-2-5-2AAGGCTGTTTTTCACACCCGGATAT--GTTGGGATGCGGTTCAGGATGTT-2纯合突变AAGGCTGTTTTTCACACCCGGATAT--GTTGGGATGCGGTTCAGGATGTTKO-ARF12-2-6-1AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTT+1双等位突变AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTT-1KO-ARF12-2-7-4AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTT+1纯合突变AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTTKO-ARF12-2-7-1AAGGCTGTTTTTCACACCCGG-------TTGGGATGCGGTTCAGGATGTT-7纯合突变AAGGCTGTTTTTCACACCCGG-------TTGGGATGCGGTTCAGGATGTTKO-ARF12-2-8-1AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTT+1杂合突变AAGGCTGTTTTTCACACCCGGATATCGGTTGGGATGCGGTTCAGGATGTTWTKO-ARF12-2-8-2AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTT+1纯合突变AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTTKO-ARF12-2-9-1AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTT-1纯合突变AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTT

5(续)

株系Lines序列Sequence突变情况Mutations突变类型Mutation typesKO-ARF12-2-9-2AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTT+1纯合突变AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTTKO-ARF12-2-11-1AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTT-1纯合突变AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTTKO-ARF12-2-11-2AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTT-1双等位突变AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTT+1KO-ARF12-2-11-4AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTT+1纯合突变AAGGCTGTTTTTCACACCCGGATATCGAGTTGGGATGCGGTTCAGGATGTTKO-ARF12-2-13-1AAGGCTGTTTTTCACACCCGGATAT----TGGGATGCGGTTCAGGATGTT-4纯合突变AAGGCTGTTTTTCACACCCGGATAT----TGGGATGCGGTTCAGGATGTTKO-ARF12-2-13-5AAGGCTGTTTTTCACACCCGGAT----GTTGGGATGCGGTTCAGGATGTT-4双等位突变AAGGCTGTTTTTCACACCCGGA-----GTTGGGATGCGGTTCAGGATGTT-5KO-ARF12-2-14-1AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTT-1纯合突变AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTTKO-ARF12-2-14-5AAGGCTGTTTTTCACACCCGGATATCG-TTGGGATGCGGTTCAGGATGTT-1双等位突变AAGGCTGTTTTTCACACCCGGA-----GTTGGGATGCGGTTCAGGATGTT-5

A. 突变体突变类型;B. 野生型和突变体中OsARF12表达量;不同字母表示不同株系间达到5%显著差异水平。图6同。
A. Mutation types of mutants;B. Expression levels of OsARF12 in wild type and mutants;
Different letters indicated that significant difference among different lines(P<0.05).The same as Fig. 6.

图5 OsARF12突变体突变类型及表达量分析
Fig.5 Analysis of mutation types and OsARF12 expression levels of mutants

2.4 OsARF12对水稻株高的影响

为研究OsARF12对水稻农艺性状的影响,于灌浆期将突变体株系和野生型株系进行比较,结果表明,KO-ARF12-1/-2的株高均显著降低(图6-A、C),各突变体株系株高与野生型相比分别减少了16.59%,16.63%,16.06%和14.94%,13.15%,18.39%(图6-C)。进一步对水稻各茎节间长度进行统计分析发现,与野生型相比,KO-ARF12-1/-2显著降低了第3和第4茎节间长度,其中第4茎节间降低幅度最大(图6-B、D),降低的幅度为23.46%(P<0.05),其次为第3茎节间,降低的幅度为21.91%(P<0.05),而第1和第2茎节间长度与对照无显著差异(P>0.05)。

A-B. OsARF12突变体和野生型表型对比;
C-D. 突变体和野生型株高、茎节间长度分析;D中不同茎节间长度的方差分析分开进行。
A-B. Phenotype comparison of OsARF12 mutants and wild type;C-D. Analysis of plant height and internode length of mutants and wild type;The analysis of variance of different internode length in D was carried out separately.

图6 OsARF12对水稻株高的影响
Fig.6 Effects of OsARF12 on plant height

3 结论与讨论

现代农业发展中,对突变体进行基因功能研究已经成为一种重要的研究手段。2013年CRISPR/Cas9技术成功应用于定点突变水稻基因[23],2014年CRISPR/Cas9技术被证实可高效编辑水稻特异基因,并且基因突变能够稳定遗传[22],极大地促进了水稻突变体库的建立。本研究利用CRISPR/Cas9技术分别对OsARF12的第1、第2个外显子靶序列进行定点编辑,获得了OsARF12多种类型的突变体。其中,KO-ARF12-1 T0 3种突变类型,T1 5种突变类型;KO-ARF12-2 T0 11种突变类型,T1 11种突变类型,为研究OsARF12对水稻农艺性状影响奠定基础。

通过对KO-ARF12-1/-2 2种突变体材料中OsARF12的表达量进行鉴定发现,CRISPR/Cas9基因编辑技术显著降低了OsARF12的表达量。且与对照相比,KO-ARF12-1/-2株高显著降低(P<0.05),表明OsARF12在一定程度上正向调节水稻的株高性状。已有研究借助T-DNA插入或者是Tos17插入的arf12突变体研究发现,OsARF12可能介导根形态和磷诱导的生长素信号反应;Qi等[24]发现,OsARF12改变铁调节蛋白(OsMIR)和铁调节转运蛋白1(OsIRT1)的丰度,导致铁含量的改变。本研究通过CRISPR/Cas9基因编辑技术创制了OsARF12突变体,研究了其在调节水稻株高方面的重要作用,丰富了水稻生长素响应因子OsARF12的生物学功能。

水稻的株高受众多激素以及它们之间的相互作用调控,OsMADS57功能的缺失降低了GA的活性,导致株高降低[25]OsMED14_1与转录因子YABBY5TDRMADS29互作,参与调节生长素的动态平衡,进而调控水稻株高[26];miR1848靶向OsCYP51G3调节水稻中植物甾醇和BR的生物合成,影响水稻株高[27]。本研究通过CRISPR/Cas9技术对生长素响应因子OsARF12进行编辑,可能通过影响其生长素调控路径,进而导致株高降低。水稻株高由各茎节间长度组成,水稻抗倒伏能力与近基部茎节间长度呈负相关关系[28]。本研究表明,各突变类型的突变体与野生型相比,第1和第2茎节间长度无显著差异,第3和第4茎节间长度显著(P<0.05)降低,且第4茎节间降幅最大,表明突变体植株越靠近基部,其茎节间长度缩短幅度越大,这对提高水稻的抗倒伏能力有重要作用,但KO-ARF12突变体中不同节间长度改变的内在机制需要进一步研究。

参考文献:

[1] Ljung K. Auxin metabolism and homeostasis during plant development[J]. Development ,2013,140(5):943-950. doi:10.1242/dev.086363.

[2] Bohn-Courseau I. Auxin:A major regulator of organogenesis[J]. Comptes Rendus Biologies,2010,333(4):290-296. doi:10.1016/j.crvi.2010.01.004.

[3] 蒋素梅,陶均,李玲. 早期生长素响应蛋白在生长素信号转导中的作用[J].植物生理学通讯,2005,41(1):125-130.

Jiang S M,Tao J,Li L. The roles of early auxin response proteins in auxin signal transduction[J]. Plant Physiology Communications,2005,41(1):125-130.

[4] Ulmasov T,Hagen G,Guilfoyle T J. ARF1,a transcription factor that binds to auxin response elements[J]. Science,1997,276(5320):1865-1868. doi:10.1126/science.276.5320.1865.

[5] Okushima Y,Overvoorde P J,Arima K,Alonso J M,Chan A,Chang C,Ecker J R,Hughes B,Lui A,Nguyen D,Onodera C,Quach H,Smith A,Yu G X,Theologis A. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana:Unique and overlapping functions of ARF7 and ARF19[J]. The Plant Cell,2005,17(2):444-463. doi:10.1105/tpc.104.028316.

[6] Ellis C M,Nagpal P,Young J C,Hagen G,Guilfoyle T J,Reed J W. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana[J]. Development,2005,132(20):4563-4574. doi:10.1242/dev.02012.

[7] Pekker I,Alvarez J P,Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity[J]. The Plant Cell,2005,17(11):2899-2910. doi:10.1105/tpc.105.034876.

[8] Cheng Z J,Wang L,Sun W, Zhang Y,Zhou C,Su Y H,Li W,Sun T T,Zhao X Y,Li X G,Cheng Y F,Zhao Y D,Xie Q,Zhang X S. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3[J]. Plant Physiology,2013,161(1):240-251. doi:10.1104/pp.112.203166.

[9] Hardtke C S,Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development [J]. The EMBO Journal,1998,17(5):1405-1411. doi:10.1093/emboj/17.5.1405.

[10] Nagpal P,Ellis C M,Weber H,Ploense S E,Barkawi L S,Guilfoyle T J,Hagen G,Alonso J M,Cohen J D,Farmer E E,Ecker J R,Reed J W. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation[J].Development,2005,132(18):4107-4118. doi:10.1242/dev.01955.

[11] Goetz M,Vivian-Smith A,Johnson S D,Koltunow A M. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis[J]. The Plant Cell,2006,18(8):1873-1886. doi:10.1105/tpc.105.037192.

[12] Okushima Y,Fukaki H,Onoda M,Theologis A,Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis[J]. The Plant Cell,2007,19(1):118-130. doi:10.1105/tpc.106.047761.

[13] Wang J W,Wang L J,Mao Y B,Cai W J,Xue H W,Chen X Y. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis[J]. The Plant Cell,2005,17(8):2204-2216. doi:10.1105/tpc.105.033076.

[14] Wang D K,Pei K M,Fu Y P,Sun Z X,Li S J,Liu H Q,Tang K,Han B,Tao Y Z. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa)[J]. Gene,2007,394(1/2):13-24. doi:10.1016/j.gene.2007.01.006.

[15] Waller F,Furuya M,Nick P. OsARF1,an auxin response factor from rice,is auxin-regulated and classifies as a primary auxin responsive gene[J]. Plant Molecular Biology,2002,50(3):415-425. doi:10.1023/A:1019818110761.

[16] Attia K A,Abdelkhalik A F,Ammar M H,Wei C,Yang J S,Lightfoot D A,El-Sayed W M,El-Shemy-H A. Antisense phenotypes reveal a functional expression of OsARF1,an auxin response factor,in transgenic rice[J]. Current Issues in Molecular Biology,2009,11(S1):29-34. doi:10.21775/9781912530069.04.

[17] Hu Z J,Lu S J,Wang M J,He H H,Sun L,Wang H R,Liu X H,Jiang L,Sun J L,Xin X Y,Kong W,Chu C C,Xue H W,Yang J S,Luo X J,Liu J X. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice [J]. Molecular Plant,2018,11(5):736-749. doi:10.1016/j.molp.2018.03.005.

[18] Shen C J,Yue R Q,Yang Y J,Zhang L,Sun T,Tie S G,Wang H Z. OsARF16 is involved in cytokinin-mediated inhibition of phosphate transport and phosphate signaling in rice (Oryza sativa L.)[J]. PLoS One,2014,9(11):e112906. doi:10.1371/journal.pone.0112906.

[19] Chen S H,Zhou L J,Xu P,Xue H W. SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling[J]. PLoS Genetics,2018,14(11):e1007829. doi:10.1371/journal.pgen.1007829.

[20] Zhang S N,Wang S K,Xu Y X,Yu C L,Shen C J,Qian Q,Geisler M,Jiang D A,Qi Y H. The auxin response factor,OsARF19,controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1[J]. Plant Cell & Environment,2015,38(4):638-654. doi:10.1111/pce.12397.

[21] Ran F A, Hsu P D, Wright J, Agarwala V, Scott D A, Zhang F. Genome engineering using the CRISPR-Cas9 system[J]. Nature Protocols,2013,8(2):2281-2308. doi:10.1038/nprot.2013.143.

[22] Zhang H,Zhang J S,Wei P L,Zhang B T,Gou F,Feng Z Y,Mao Y F,Yang L,Zhang H,Xu N F,Zhu J K. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant Biotechnology Journal,2014,12(6):797-807. doi:10.1111/pbi.12200.

[23] Feng Z Y,Zhang B T,Ding W N,Liu X D,Yang D L,Wei P L,Cao F Q,Zhu S H,Zhang F,Mao Y F,Zhu J K. Efficient genome editing in plants using a CRISPR/Cas system[J].Cell Research,2013,23(10):1229-1232. doi:10.1038/cr.2013.114.

[24] Qi Y H,Wang S K,Shen C J,Zhang S N,Chen Y,Xu Y X,Liu Y,Wu Y R,Jiang D A. OsARF12, a transcription activator on auxin response gene,regulates root elongation and affects iron accumulation in rice (Oryza sativa)[J].The New Phytologist,2012,193(1):109-120. doi:10.1111/j.1469-8137.2011.03910.x.

[25] Chu Y L,Xu N,Wu Q,Yu B,Li X X,Chen R R,Huang J L. Rice transcription factor OsMADS57 regulates plant height by modulating gibberellin catabolism[J].Rice,2019,12(1):1-14. doi:10.1186/s12284-019-0298-6.

[26] Malik N,Ranjan R,Parida S K,Agarwal P,Tyagi A K. Mediator subunit OsMED14_1 plays an important role in rice development [J].The Plant Journal,2020,101(6):1411-1429. doi:10.1111/tpj.14605.

[27] Xia K F,Ou X J,Tang H D,Wang R,Wu P,Jia Y X,Wei X Y,Xu X L,Kang S H,Kim S K,Zhang M Y. Rice microRNA osa-miR1848 targets the obtusifoliol 14α-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress[J]. The New Phytologist,2015,208(3):790-802. doi:10.1111/nph.13513.

[28] Kashiwagi T,Ishimaru K. Identification and functional analysis of a locus for improvement of lodging resistance in rice[J].Plant Physiology,2004,134(2):676-683. doi:10.1104/pp.103.029355.

Construction of Rice OsARF12 Mutant Based on CRISPR/Cas9 Technology

DU Xiangxiang,ZHAO Yafan,ZHAO Chenyun,ZHAO Shuaibing,LI Yuan,CHENG Yuan,ZHAO Quanzhi,DU Yanxiu,SUN Hongzheng,SUN Huwei,PENG Ting

(Collaborative Innovation Center of Henan Grain Crops,Key Laboratory of Rice Biology in Henan Province,Henan Agricultural University,Zhengzhou 450046,China)

Abstract In order to study the role of rice auxin response factor OsARF12 in the growth and development of rice,two different exon mutation targets of OsARF12 were designed by CRISPR/Cas9 gene editing technology,respectively. The specific sequences including mutation targets were synthesized and linked with intermediate vector sgRNA,and then recombined with the final vector Cas9 to obtain two independent expression vectors with different mutation targets. The single clone which was sequenced successfully was introduced into japonica rice variety Nipponbare by Agrobacterium tumefaciens mediated method to obtain transgenic plants, and the mutation types of mutant plants were analyzed by sequencing results. There were three homozygous mutations and two biallelic mutations in T1 mutant KO-ARF12-1, with a total of five mutation types; There were 6 homozygous mutations, 4 biallelic mutations and 1 heterozygous mutation in KO-ARF12-2. The mutant lines with deletion of 1 nt, deletion of 4 nt, deletion of 7 nt and deletion of 2 nt, insertion of 1 nt, deletion of 5 nt were selected as the research objects. The results of fluorescence quantitative PCR showed that the expression of OsARF12 in the mutants was significantly lower than that in the wild type. Compared with the wild type,the plant height of the two mutants with different mutation types decreased significantly, with a decrease range of 13.15%-18.39%; There was no significant difference in the length of the first and second internodes, but the length of the third and fourth internodes decreased significantly by 21.91% and 23.46%. The OsARF12 mutant created by CRISPR/Cas9 can regulate the internode extension and plant height, which is of great significance to improve the molecular regulation mechanism of auxin response factor in rice.

Key words: Rice; OsARF12;CRISPR/Cas9;Gene editing;Plant height

收稿日期:2021-01-18

基金项目:国家自然科学基金项目(31871554);河南省高校科技创新人才支持计划(21HASTIT037);河南省青年人才托举工程项目(2019HYTP024);河南省水稻产业技术体系项目(S2012-04-G02);河南农业大学高层次人才——拔尖人才支持计划项目

作者简介:杜想想(1996-),男,河南信阳人,硕士,主要从事水稻分子生物学研究。

通讯作者:彭 廷(1985-),男,河南桐柏人,教授,博士,主要从事水稻分子生理生态研究。

中图分类号:S511.03;Q78

文献标识码:A

文章编号:1000-7091(2021)03-0007-08

doi:10.7668/hbnxb.20191896