大麦株高类性状的遗传分析与QTL定位

姚佳延,于国琦,洪 益,吕 超,许如根

(植物功能基因组学教育部重点实验室,江苏省作物基因组学与分子育种重点实验室,江苏粮食作物现代产业技术协同创新中心,扬州大学 农业科技发展研究院,江苏 扬州 225009)

摘要:为发掘大麦株高类性状的QTL位点,改良大麦品种株高性状。以我国饲用大麦泰兴9425与日本啤酒大麦Naso Nijo构建的177份DH群体及亲本为材料,考查2种环境下参试材料的株高、穗下节间长、穗长3个株高类性状,结合已构建的分子标记连锁图谱,采用基于完备区间作图法的Windows QTL IciMaping V4.1.0.0软件进行QTL定位分析并分析株高类性状的遗传特性。结果表明:株高、穗长、穗下节间长主要受遗传因素控制,同时受试点的生态条件和生产条件影响,3个株高类性状的遗传力分别为78.98%,89.31%,84.50%。株高与穗长、株高与穗下节间长、穗长与穗下节间长均呈极显著正相关,相关系数分别为0.688,0.862和0.600,表明株高越高其穗长、穗下节间长越长。2个试点定位到6个株高QTL、5个穗长QTL及4个穗下节间长QTL,共15个QTL,除第1,6号染色体外,其他染色体上均有分布,LOD值为3.50~32.46,对表型变异的解释率为1.53%~38.30%。其中qPH-4-1qPH-7-2qSL-2-1qSL-2-2qSIL-2-1qSIL-3-2均未见报道,可能为新位点,为大麦株高类性状的改良与分子标记辅助育种奠定基础。

关键词:大麦;株高类性状;QTL定位;DH群体;遗传分析

大麦(Hordeum vulgare L.)种植面积和产量均居世界禾谷类作物第四,仅次于玉米、水稻、小麦[1]。大麦具有适应性强、用途广泛等优点[2-3]。随着我国社会经济发展和居民食物消费结构改进,大麦的利用价值正在被人们重视[4]。株高、穗下节间长和穗长与大麦生物产量及抗倒性密切相关,生物产量是经济产量的基础和高产前提,但株高和生物产量偏高会增加大麦的倒伏风险。不同用途大麦品种的株高类性状的要求不同,青贮大麦要求株高高、穗下节间长,有利于形成高生物产量;籽粒用大麦要求株高矮、穗下节间和穗长长,有利于籽粒高产、稳产。此外,大麦株高类性状与株型构成和抗倒伏性有关。因此,株高类性状是大麦品种改良的重要目标性状[5-6]

大麦矮化育种主要使用的半矮化基因有short culm 1 (hcm1)、semi-brachytic 1 (uzu 1)、semi-dwarf 1 (sdw1denso)、breviarist-atum-e (ari-e)[7]。其中uzu1基因编码一个BR受体(HvBRI1)在我国大麦育种工作中得到了广泛的应用[6, 8]。株高类性状为数量性状,数量性状位点定位是研究数量性状遗传机制的重要手段[9-10]。Ren等[6]与Chen等[11]以株高、穗长、穗下各节间长为指标,在大麦7条染色体上均定位到株高、穗长、穗下节间长等性状相关的QTL。Chutimanitsakun等[12]在大麦2H的156 cM处定位到一个同时控制株高、穗长、产量的主效QTL,在1H、3H、5H、6H上定位到控制穗长的QTL。Wang等[5]在大麦7H的80 cM处定位到贡献率为23.2%的株高QTL。Peighambari等[13]筛选327个分子标记在72个大麦DH系中检测到3个株高QTL及2个穗长QTL。

随着分子标记与连锁图谱的发展,基因定位更加精确[14]。近年来,全基因组单核苷酸多态性(SNP)标记发掘与基因分型及高密度遗传图谱构建技术的发展,促进功能基因定位研究[12, 15]。本研究以我国饲用大麦泰兴9425与日本啤酒大麦Naso Nijo构建的177份DH群体及亲本为材料,构建群体的SNP分子图谱,对株高、穗下节间长和穗长进行遗传分析与QTL定位,为大麦株高类性状的分子标记辅助选择与精细定位奠定基础。

1 材料和方法

1.1 参试材料

以我国饲用大麦泰兴9425与日本啤酒大麦Naso Nijo的杂种F1的花药诱导产生的177个DH系及亲本材料。

1.2 田间设计

2018年将参试材料分别种植于新农场(32°23′N,119°23′E)和盐城市大中农场农科所试验田(33°7′N,120°39′E)。每份材料播种1行,行长1.0 m,行距0.3 m,每行人工点播20粒,3次重复。参照当地大田管理。

1.3 株高类性状调查

在参试材料收获前,每个行选取5株生长一致植株,测量株高(cm)、主穗长(cm)和穗下节间长(cm)。

1.4 DH群体遗传图谱

DH群体遗传图谱由扬州大学大麦研究所提供[16],标记分布情况见表1。该遗传图谱含有1 551个SNP标记,覆盖大麦7条染色体、分布均匀,全长957.09 cM,2个标记间的平均遗传距离为0.61 cM,且各条染色体标记间的平均距离均小于1 cM,分别为0.60,0.95,0.41,0.69,0.68,0.93,0.47 cM。

表1 DH群体遗传图谱基本信息
Tab.1 Basic information of DH population genetic map

染色体Chromosome染色体长度/cMChromosome length标记数Markers193.081552176.101853157.003784105.691535174.91256698.231057152.08319

1.5 数据处理

应用Excel 2016程序对试验数据初步处理,采用SPSS 16.0软件对DH群体进行描述性统计分析、方差分析、相关性分析。利用Windows QTL IciMaping V4.1.0.0 软件(http://www.isbreeding.net/software/)对株高类性状进行QTL定位分析,LOD阈值设定为3.0。

2 结果与分析

2.1 亲本及DH群体株高类性状的表现

亲本及DH群体株高类性状表现见表2。如表2所示,泰兴9425的株高、穗长、穗下节间长均低于Naso nijo,t测验表明,株高和穗长在亲本间差异极显著。DH群体株高、穗长、穗下节间长的变异系数分别为9.52%,11.43%,10.33%。株高、穗长和穗下节间长的遗传力分别为78.98%,89.31%和84.50%。

2.2 DH群体株高类性状的方差分析

DH群体株高类性状的方差分析结果列于表3。从表3可知,3个株高类性状在DH系间的差异均达到极显著水平(P<0.01);穗长和穗下节间长在试点间差异均达到极显著水平(P<0.01);株高和穗下节间长在环境与基因型互作间差异均达极显著水平(P<0.01)。说明大麦株高类性状由基因型、试点气候及栽培条件共同决定的,穗长和穗下节间长较易受试点条件影响。

表2 亲本及DH群体株高类性状的表现
Tab.2 Plant height-related characters performance of parents and DH populations

性状Traits亲本 Parental linesDH系 DH lines泰兴9425Taixing 9425Naso Nijot值 t value均值 Mean变幅 Range变异系数/%CV遗传力/%Heritability株高/cm PH85.0594.994.20∗∗94.1565.03~111.709.5278.98穗长/cm SL6.026.996.81∗∗6.854.45~8.2511.4389.31穗下节间长/cm SIL34.1634.480.4534.2224.43~43.0310.3384.50

注:***分别代表0.05和0.01水平上的显著。表3-4同。

Note: *and ** indicated significant difference at 0.05 and 0.01 level, respectively.The same as Tab.3-4.

表3 DH群体株高类性状的方差分析 (F值)
Tab.3 Analysis of variance on plant height-related
characters in DH population (F value)

变异来源 Variation source自由度df株高 PH穗长 SL穗下节间长 SIL试点 Environment(E) 12.22109.51∗∗25.17∗∗基因型 Genotype(G)17611.45∗∗19.23∗∗12.98∗∗ E×G1762.40∗∗0.931.80∗∗

2.3 株高类性状的相关性分析

株高类性状的相关性分析结果列于表4。由表4可知,株高与穗长、株高与穗下节间长、穗长与穗下节间长均呈极显著正相关(P<0.01)。相关系数分别为0.688,0.862和0.600,表明大麦株高越高,其穗下节间长和穗长越长。

表4 株高类性状的相关性
Tab.4 Correlation coefficients between the
traits of plant height-related characters

性状Traits株高PH穗长SL穗下节间长SIL株高PH1穗长SL0.688∗∗1穗下节间长SIL0.862∗∗0.600∗∗1

2.4 株高类性状的QTL分析

利用Windows QTL Icimapping V4.1.0.0软件,对3个株高类性状进行QTL定位,定位结果见表5。由表5可知,2个环境共定位到6个株高QTL,分别位于2H、3H、4H及7H上,未检测到两试点共同的QTL;两试点均值定位到4个株高QTL,其中位于3H上的qPH-3-1、4H上的qPH-4-1,与大中农场试点的2个株高QTL重演,且qPH-3-1的贡献率较大,在19.98%~38.30%。2个环境共定位到5个穗长QTL,其中QTL位于5H上的qSL-5-1在两试点重演;两试点均值定位到3个穗长QTL,包括位于5H上的qSL-5-1,但其贡献率偏小。2个环境下共定位到4个穗下节间长QTL,位于2H上的qSIL-2-1在两试点重演;两试点均值定位到2个穗下节间长QTL,包括位于2H上的qSIL-2-1,该QTL的贡献率在7.32%~13.94%。除第1,6染色体外,其他染色体上均有分布,LOD值为3.50~32.46,对表型变异的解释率为1.53%~38.30%。其中qPH-4-1qPH-7-2qSL-2-2qSIL-2-1qSIL-3-2均未见报道,可能为新位点。

3 讨论

株高是大麦最重要的性状之一,适宜的株高是确保高产的基础,既可以保证一定的生物产量,也可提高大麦的抗倒性,降低倒伏对大麦产量和品质不良影响[17]。大麦株高由包括穗长及4个左右节间与节构成,大麦穗长与穗型有关,一般垂穗型大麦品种的穗长大于直穗型品种,同一穗型品种间穗型的穗长差异较大[6, 11],穗长的长短影响到穗粒数和粒型。穗下节间长影响到植株上部功能叶的分布与通风透光性,大麦品种的穗下节长度占株高的比例越高,其产量潜力越大。目前已报道的与株高相关的QTL多受环境影响[14],利用多环境定位株高类性状的QTL,可提高定位QTL的稳定性[9, 15]。DH群体是一个永久性群体,可以实现多环境鉴定数量性状,不但可以提高定位基因的基因准确性,也可以分析基因与环境的互作效应[18]。大麦DH群体已广泛用于大麦株高类性状、产量性状、生物抗性和非生物抗性的遗传分析与QTL分析等[19-23]。本研究所用材料即为DH群体永久群体,通过多点鉴定大麦株高类性状,保证定位QTL的稳定性。

表5 株高类性状相关的QTL
Tab.5 QTL for plant height-related characters

性状环境数量性状位点染色体位置/cM标记区间LOD值贡献率/%加性效应/%TraitsEnvironmentQTLChromosomePositionMarker intervalLikelihood of oddR2Additive effect株高扬州大学qPH-2-1235SNP0413~SNP04958.7411.52-2.36PHqPH-2-22141SNP1447~SNP20949.9713.41-3.38qPH-7-1723SNP1764~SNP19413.504.37-1.45qPH-7-27137SNP2033~SNP08413.724.631.54大中农场qPH-3-13155SNP2575~SNP070232.4638.307.33qPH-4-143SNP1118~SNP05563.512.78-1.92均值qPH-2-3218SNP0168~SNP01494.243.42-1.67qPH-3-13155SNP2575~SNP070219.9619.984.18qPH-4-143SNP1118~SNP05563.833.10-1.60qPH-7-3745SNP0053~SNP06507.126.66-2.34穗长扬州大学qSL-2-1214SNP2066~SNP23694.601.53-0.18SLqSL-5-1561SNP2285~SNP21115.331.770.19大中农场qSL-2-2234SNP0494~SNP04139.835.58-0.23qSL-4-1411SNP1120~SNP10333.671.90-0.14qSL-5-1561SNP2285~SNP21118.574.730.21均值qSL-2-3235SNP0413~SNP04957.792.47-0.21qSL-4-2455SNP1822~SNP05093.551.07-0.14qSL-5-1561SNP2285~SNP21116.692.090.19穗下节间长扬州大学qSIL-2-1217SNP0508~SNP030718.2513.23-1.56SIL大中农场qSIL-2-1217SNP0508~SNP03078.497.32-1.13qSIL-3-1352SNP0518~SNP172217.3317.262.52qSIL-3-23150SNP2229~SNP255321.0421.912.02均值qSIL-2-1217SNP0508~SNP030717.1213.94-1.42qSIL-3-33149SNP2229~SNP255312.8310.281.26

本研究结果表明,大麦株高、穗长、穗下节间长的遗传力较高,分别为78.98%,89.31%,84.50%,主要受遗传因素控制,可在杂交育种早代进行较为严格的选择。鉴于株高与穗长和穗下节间长间存在极显著正相关,与前人的研究相同[3, 6, 13]。因此,在对3个性状选择时,应选择株高适宜、穗下节间长占株高比例较大、穗长略长的植株。本研究共检测的6个株高相关QTL中,2H上的qPH-2-1PH-1[7]Qph2.1[21]11_11505[22]距离相近,可能为同一位点。qPH-2-2qPH-7-2分别与Yu等[7]定位到的PH-2PH-7距离较近;3H上的qPH3-1与Schmalenbach等[23]定位的来自野生大麦导入系的QHei.S42IL-3H.a距离较近,可能为同一位点。qPH-4-1qPH-7-2附近未报道相关位点,可能存在新的控制株高的基因。5个穗长QTL中,4H上的qSL-4-1与Islamovic等[3]定位的QTL距离较近;5H定位到qSL-5-1与Lakew等[24]定位QTL位点相同;未见与qSL-2-1qSL-2-2位置相近的穗长QTL报道,可能为新的穗长位点。4个穗下节间长QTL中,3H上的qSIL-3-1与Ren等[6]定位到的Qion3-9距离较近,可能为同一位点;qSIL-3-2附近未报道相关QTL,可能为新的穗下节间长位点;2H上定位到的稳定的qSIL-2-1,贡献率10%左右,该QTL未报道,可能为新的穗下节间长位点,尚需进一步验证。

参考文献:

[1] Schulte D, Close T J, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman A H, Waugh R, Wise R P,Stein N. The international barley sequencing consortium-at the threshold of efficient access to the barley genome[J].Plant Physiology, 2009, 149(1):142-147. doi:10.1104/pp.108.128967.

[2] 陈海华, 董海洲. 大麦的营养价值及在食品业中的利用[J]. 西部粮油科技, 2002, 27(2):34-36. doi: 10.3969/j.issn.1007-6395.2002.02.012.

Chen H H, Dong H Z. The nutritional value of the barley and its application in food industry[J]. China Western Cereals & Oils Technology, 2002, 27(2):34-36.

[3] Islamovic E, Obert D E, Oliver R E, Marshall J M, Miclaus K J, Hang A, Chao S, Lazo G R, Harrison S A, Ibrahim A, Jellen E N, Maughan P J, Brown R H,Jackson E W. A new genetic linkage map of barley (Hordeum vulgare L.) facilitates genetic dissection of height and spike length and angle[J].Field Crops Research, 2013, 154:91-99. doi:10.1016/j.fcr.2013.06.001.

[4] 张融, 李先德. 饲料大麦的应用价值及开发前景[J]. 中国食物与营养, 2015,21(7):29-33. doi: 10.3969/j.issn.1006-9577.2015.07.007.

Zhang R, Li X D. Application value and development prospect of feed barley in China[J]. Food and Nutrition in China, 2015,21(7):29-33.

[5] Wang J M, Yang J M, Jia Q J, Zhu J H, Shang Y, Hua W, Zhou M X. A new QTL for plant height in barley (Hordeum vulgare L.) showing no negative effects on grain yield[J].PLoS One, 2014, 9(2):e90144. doi:10.1371/journal.pone.0090144.

[6] Ren X F, Sun D F, Dong W B, Sun G L, Li C D. Molecular detection of QTL controlling plant height components in a doubled haploid barley population[J].Genetics and Molecular Research, 2014, 13(2):3089-3099. doi:10.4238/2014.April.17.5.

[7] Yu G T, Horsley R D, Zhang B X, Franckowiak J D. A new semi-dwarfing gene identified by molecular mapping of quantitative trait loci in barley[J].Theoretical and Applied Genetics, 2010, 120(4):853-861. doi:10.1007/s00122-009-1216-x.

[8] Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, Takatsuto S, Hoshino T, Watanabe Y. A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor[J].Plant Physiology, 2003, 133(3):1209-1219. doi:10.1104/pp.103.026195.

[9] Pasam R K, Sharma R, Malosetti M, van Eeuwijk F A, Haseneyer G, Kilian B, Graner A. Genome-wide association studies for agronomical traits in a world wide spring barley collection[J].BMC Plant Biology,2012, 12(1):16. doi:10.1186/1471-2229-12-16.

[10] Gyenis L, Yun S J, Smith K P, Steffenson B J, Bossolini E, Sanguineti M C, Muehlbauer G J. Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross[J].Genome, 2007, 50(8):714-723. doi:10.1139/g07-054.

[11] Chen W Y, Liu Z M, Deng G B, Pan Z F, Liang J J, Zeng X Q, Tashi N M, Long H, Yu M Q. Genetic relationship between lodging and lodging components in barley (Hordeum vulgare) based on unconditional and conditional quantitative trait locus analyses[J].Genetics and Molecular Research, 2014, 13(1):1909-1925. doi:10.4238/2014.March.17.19.

[12] Chutimanitsakun Y, Nipper R W, Cuesta-Marcos A, Cistué L, Corey A, Filichkina T, Johnson E A, Hayes P M. Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley[J].BMC Genomics, 2011, 12: 4. doi:10.1186/1471-2164-12-4.

[13] Peighambari S A, Samadi B Y, Nabipour A, Charmet G, Sarrafi A. QTL analysis for agronomic traits in a barley doubled haploids population grown in Iran[J].Plant Science, 2005, 169(6):1008-1013. doi:10.1016/j.plantsci.2005.05.018.

[14] Hori K, Kobayashi T, Shimizu A, Sato K, Takeda K, Kawasaki S. Efficient construction of high-density linkage map and its application to QTL analysis in barley[J].Theoretical and Applied Genetics, 2003,107(5):806-813. doi:10.1007/s00122-003-1342-9.

[15] Ren X F, Wang J B, Liu L P, Sun G L, Li C D, Luo H, Sun D F. SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley[J].Scientific Reports, 2016, 6:31741. doi:10.1038/srep31741.

[16] Fan X Y, Zhu J, Dong W B, Sun Y D, Lü C, Guo B J, Xu R G. Comparative mapping and candidate gene analysis of SSIIa associated with grain amylopectin content in barley (Hordeum vulgare L.)[J].Frontiers in Plant Science, 2017, 8:1531. doi:10.3389/fpls.2017.01531.

[17] Day A D, Dickson A D. Effect of artificial lodging on grain and malt quality of fall-sown irrigated barley[J].Agronomy Journal, 1958, 50(6):338-340. doi:10.2134/agronj1958.00021962005000060015x.

[18] 胡中立, 何瑞锋, 章志宏, 张学富. 分子标记与QTL间连锁的检测与估计:Ⅱ.利用双单倍体(DH)群体[J]. 武汉大学学报(自然科学版), 1997, 43(6):810-814. doi: 10.1007/BF02951625.

Hu Z L, He R F, Zhang Z H, Zhang X F. Methods for detection and estimation of linkage between a marker locus and quantitative trait loci Ⅱ.using double haploid (DH) population[J]. Journal of Wuhan University(Natural Science Edition), 1997, 43(6):810-814.

[19] Obsa B T, Eglinton J, Coventry S, March T, Guillaume M, Le T P, Hayden M, Langridge P, Fleury D. Quantitative trait loci for yield and grain plumpness relative to maturity in three populations of barley (Hordeum vulgare L.) grown in a low rain-fall environment[J].PLoS One, 2017, 12(5):e0178111. doi:10.1371/journal.pone.0178111.

[20] Li J Z, Huang X Q, Heinrichs F, Ganal M W, Röder M S. Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley[J].Theoretical and Applied Genetics, 2005, 110(2):356-363. doi:10.1007/s00122-004-1847-x.

[21] Li J Z, Huang X Q, Heinrichs F, Ganal M W, Röder M S. Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley[J].Genome, 2006, 49(5):454-466. doi:10.1139/g05-128.

[22] Mansour E, Casas A M, Gracia M P, Molina-Cano J L, Moralejo M, Cattivelli L, Thomas W T B, Igartua E. Quantitative trait loci for agronomic traits in an elite barley population for Mediterranean conditions[J].Molecular Breeding, 2014, 33(2):249-265. doi:10.1007/s11032-013-9946-5.

[23] Schmalenbach I, Léon J, Pillen K. Identification and verification of QTLs for agronomic traits using wild barley introgression lines[J].Theoretical and Applied Genetics, 2009, 118(3):483-497. doi:10.1007/s00122-008-0915-z.

[24] Lakew B, Henry R J, Ceccarelli S, Grando S, Eglinton J, Baum M. Genetic analysis and phenotypic associations for drought tolerance in Hordeum spontaneum introgression lines using SSR and SNP markers[J].Euphytica, 2013, 189(1):9-29. doi:10.1007/s10681-012-0674-4.

Genetic Analysis and QTL Mapping of Plant Height-related Characters in Barley

YAO Jiayan, YU Guoqi, HONG Yi, LÜ Chao, XU Rugen

(Key Laboratory of Plant Functional Genomics of the Ministry of Education,Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops,Institutes of Agricultural Science and Technology Development, Yangzhou University,Yangzhou 225009,China)

Abstract In order to discover the QTL of barley plant height-related characters, improve the barley plant height-related characters. Chinese forage barley Taixing 9425 and Japanese beer barley Naso Nijo as well as 177 doubled haploid lines, generated from a cross between Taixing 9425 and Naso Nijo, were used as materials to examine the three plant traits of plant height(PH), internode length under spike(SIL), and spike length(SL) in two environments. Characters, combined with the constructed molecular marker linkage map, using Windows QTL IciMaping V4.1.0.0 software based on the complete interval mapping method for QTL mapping analysis, also the genetic characteristics were analyzed. The results showed that: plant height, spike length, and internode length under spike were mainly controlled by genetic factors, and at the same time affected by the ecological conditions and production conditions of the pilot. The heritability of the three traits was 78.98%, 89.31% and 84.50%, respectively; Plant height was extremely significant positive correlation with the spike length and the internode length under the spike. Plant height and spike length, plant height and the internode length under the spike, and spike length and the internode length under the spike were all significantly positively correlated, with correlation coefficients of 0.688, 0.862 and 0.600, respectively, indicating that the higher the plant height, the longer the spike length and the internode length under the spike. The 2 pilot sites mapped 6 QTL for plant height, 5 QTL for spike length, and 4 QTL for internode length under spike. A total of 15 QTL are located on all chromosomes except chromosomes 1 and 6. The LOD value was 3.50-32.46, the explanation rate of phenotypic variation was 1.53%-38.30%.Among them, qPH-4-1, qPH-7-2, qSL-2-1, qSL-2-2, qSIL-2-1 and qSIL-3-2 have not been reported, and may be new loci. This lay the foundation for the improvement of barley plant height-related characters and molecular marker assisted breeding.

Key words: Barley; Height-related characters;QTL mapping; Double haploid line population; Genetic analysis

收稿日期:2020-12-13

基金项目:国家重点研发计划 (2018YFD1000703;2018YFD1000700);国家大麦青稞产业技术体系建设专项(CARS-05);江苏高校优势学科建设工程项目

作者简介:姚佳延(1995-),男,山西洪洞人,硕士,主要从事大麦遗传育种研究。

通讯作者:许如根(1967-),男,江苏姜堰人,教授,博士,博士生导师,主要从事大麦遗传育种研究。

中图分类号:S512.03;Q78

文献标识码:A

文章编号:1000-7091(2021)02-0028-05

doi:10.7668/hbnxb.20191631