高纺锤树形下2个中间砧富士苹果生长与叶片光合特性的比较

王 骞1,蔡华成1,王淑婷1,张小军2,高敬东1,杜学梅1,李春燕1,郝燕燕2,杨廷桢1

(1.山西农业大学 果树研究所,山西 太谷 0308002.山西农业大学 园艺学院,山西 太谷 030801)

摘要:为了明确SH1和Y-1矮化中间砧对富士苹果幼树生长及叶片光合作用的影响,为生产上矮化砧的选择利用提供理论依据,以分别嫁接在SH1和Y-1中间砧上的长富2号苹果树为材料,比较研究了2种中间砧对富士幼树生长、枝类组成和叶片光合指标的影响。结果表明,SH1、Y-1中间砧富士周年生长趋势基本一致,但Y-1春秋梢生长和新梢长度均显著低于SH1,短枝比率显著高于SH1,果实着色指数、硬度、可溶性固形物含量和固酸比均有显著提高。SH1、Y-1中间砧富士叶片净光合速率(Pn)的日变化和年动态变化趋势存在差异,生长前期SH1组合叶片Pn高于Y-1,生长后期Y-1组合叶片Pn显著高于SH1;光响应参数和叶绿素荧光参数分析表明,生长前期Y-1的光饱和点(LSP)低于SH1、光补偿点(LCP)高于SH1,非光化学猝灭系数(NPQ)极显著高于SH1,光系统Ⅱ(PSⅡ)原初光能转化效率(Fv/Fm)、光合电子传递量子效率(ΦPSⅡ)和表观电子传递速率(ETR)极显著低于SH1,生长后期Y-1的LSP、ΦPSⅡ和ETR显著高于SH1,Y-1的叶绿素含量和净光合速率生长前期显著低于SH1,生长后期极显著高于SH1;不同中间砧木对嫁接品种生长和叶片光合特性的影响具有较大差异。Y-1中间砧富士树体矮化早花特性和易成型性均优于SH1,在生长前期Y-1中间砧富士叶片成熟滞后于SH1,叶片光合效能较低,而生长后期Y-1中间砧富士叶片光合色素积累、Fv/Fm等指标高于或显著高于SH1;总体Y-1中间砧富士叶片光合效能显著高于SH1,并能有效控制秋梢生长,有利于后期营养积累和花芽的形成。

关键词:苹果;SH1;Y-1;净光合速率;叶绿素荧光

矮砧集约高效栽培是苹果生产栽培的必然趋势,具有优质高效、结果早、便于机械化操作等优点,利用矮化砧木是实现矮密栽培的主要手段,但不同矮化砧木对嫁接品种树体生长和叶片光合特性的影响存在显著差异[1-9]。选择适宜的矮化砧木是矮砧密植栽培成功的前提。目前,我国矮化砧木的应用以国外引入的M系(M26、M9、T337)为主,应用面积占矮化苹果总面积的70%;国内选育的SH系占15%;GM256占5%;其他砧木占10%。由于国外引进砧木适应性存在风险,不能满足我国不同产区的多样化需求,系统评价国内自主选育的砧木品系对嫁接品种生长习性、生理特性的影响,以筛选适应我国不同产区生产的砧穗组合,对实现苹果产业结构调整、保障我国苹果产业的健康可持续发展具有重要意义[10-14]。SH1和Y-1为山西省农业科学院果树研究所选育的本土砧木品种,其中,SH1苹果矮化砧木砧穗亲和性好、抗逆性强、综合性状优良[15],目前已在山西、山东和陕西等13个省市自治区广泛栽植,种植面积达10万hm2,已形成一套高效栽培管理模式,是当前黄土高原苹果产区的主推砧木;Y-1苹果矮化砧木是Y系砧木中综合性状突出的单系之一,2013年通过山西省农作物品种审定委员会审定,作为中间砧嫁接品种具有矮化性状突出、早花效果明显、抗逆性强等特点[12],应用前景广阔。本试验比较了SH1、Y-1矮化中间砧嫁接长富2号幼树的新梢生长、枝类组成及叶片光合特性,分析了2种矮化砧木对富士树体生长和光合指标的影响,旨在为2种矮化砧木在生产上的利用和选择提供理论依据。

1 材料和方法

1.1 试验材料

供试材料为矮化中间砧长富2号(Malus.domestica Borkh.Fuji Nagafu No.2)苹果四年生幼树,基砧均为八棱海棠(Malus × robusta (Carrire) Rehder),中间砧分别为SH1、Y-1矮化中间砧。

1.2 试验方法

试验在山西农业大学果树研究所苹果矮砧示范园(112°20′E、37°15′N)进行,海拔为820 m,果园株行距为1.2 m×4.0 m,行内生草、树下起垄覆膜,全部采用细长纺锤形管理。试验采用随机区组设计,选取正常生长的四年生SH1和Y-1矮化中间砧长富2号苹果树各5株为试材,单株为1小区,挂牌标记。

1.3 测定指标及方法

1.3.1 树体生长量测定 于2017年5月28日开始,树体外围随机选取5个一年生枝条挂牌,每25 d测定新梢长度(卷尺)和粗度(数显游标卡尺)1次,共测定6次,所得数据取平均值,秋季落叶后统计枝条数量,并计算枝类组成比例。

1.3.2 光合指标测定 随机选取植株东部外围、地上1.2 m新梢无缺损、无病虫危害的基部第5~7片叶挂牌标记,于7月1日和8月28日分别测定标记叶片的光合生理指标,主要包括:净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间CO2浓度(Ci),初始荧光(Fo)、最大荧光(Fm)、可变荧光(Fv=Fm-Fo)和PS Ⅱ最大光化学量子产量 (Fv/Fm)、PSⅡ实际量子产量(ΦPSⅡ)、电子传递速率(ETR)、光化学猝灭(qP)和非光化学猝灭(NPQ),光响应参数光饱和点(LSP)、光补偿点(LCP)和最大光合速率(Pnmax)的拟合参考宋哲、叶子飘等[16-18]的方法进行;于5月28日开始,每25 d测定1次净光合速率Pn(叶室内光照强度设定1 000 μmol/(m2·s)),共测定6次,如遇阴雨天气,向后顺延,另采集无病害、完整叶片30片带回实验室测定叶绿素含量,具体参考高俊凤、薛思嘉等[19-20]的方法进行。

1.4 数据分析

采用Excel 2010和SAS 7.8软件进行数据整理、制图及差异显著性分析。

2 结果与分析

2.1 SH1和Y-1中间砧对富士幼树生长的影响

调查结果表明,SH1和Y-1中间砧富士均为7月上旬春梢停长,7月下旬抽生秋梢,周年生长趋势基本一致;SH1新梢长度、新梢粗度增长速度高于Y-1。由表1可知,SH1新梢粗度除5月28日表现低于Y-1外,7月1日之后始终比Y-1高,7月31日之后二者之间差异不显著;而全年新梢长度SH1分别较Y-1高36.38%(2017)和40.38%(2018),表明SH1中间砧富士幼树树势强于Y-1。

表1 SH1和Y-1中间砧富士幼树新梢周年生长比较
Tab.1 Comparison of SH1 and Y-1 interstocks on annual growth in Fuji new shoots cm

项目Item年份Year中间砧Interstock测定日期/(月-日)Dateofdetermination05-2807-0107-3108-2509-1710-07新梢长度2017SH122.64±2.67Aa50.10±2.56Aa53.44±3.45Aa64.67±3.54Aa65.72±5.74Aa65.67±8.24AaLengthofY-121.68±2.27Aa36.73±2.23Bb38.72±2.59Bb46.50±3.03Bb47.00±3.65Bb46.78±4.71Bbnewshoots2018SH127.20±2.32Aa48.20±2.54Aa55.00±4.88Aa79.00±4.59Aa89.60±6.03Aa98.80±8.06AaY-122.43±2.21Aa38.64±2.16Bb44.29±3.42Bb61.43±3.88Bb68.05±4.12Bb74.43±4.68Bb新梢粗度2017SH13.64±0.55Aa5.79±0.64Aa6.69±0.77Aa7.43±0.82Aa7.46±0.88Aa7.46±0.89AaDiameterofY-13.90±0.56Aa4.94±0.62Ab6.16±0.63Aa6.36±0.68Aa6.81±0.71Aa6.98±0.72Aanewshoots2018SH13.35±0.81Aa4.20±0.83Aa4.76±0.84Aa4.87±0.87Aa5.22±0.86Aa5.75±0.88AaY-13.43±0.72Aa4.15±0.71Aa4.40±0.78Aa4.59±0.63Aa4.79±0.68Aa5.17±0.78Aa

注:不同大写字母表示0.01水平差异极显著;不同小写字母表示0.05水平差异显著。表2-6同。
Note:Different capital letters show significant difference at the 0.01 level and small letters show significant difference at the 0.05 level. The same as Tab.2-6.

由表2可知,2个中间砧富士幼树的新梢生长差异显著,Y-1春秋梢长度Y-1均显著低于SH1;节间长度(春梢)Y-1与SH1差异不显著,而节间长度(秋梢)Y-1极显著低于SH1;Y-1枝条上部/基部值高于SH1,表明Y-1控制秋梢生长能力强于SH1。

表2 SH1和Y-1中间砧对富士幼树新梢生长的影响
Tab.2 Effect of SH1 and Y-1 interstocks on new shoots growth in Fuji cm

年份Year中间砧Interstock新梢长度Lengthofnewshoots新梢粗度Diameterofnewshoots节间长度Internodelength春梢Springshoots秋梢Autumnshoots总长Totallength基部Base上部Upper上部/基部值Upper/Basevalue春梢Springshoots秋梢Autumnshoots2017SH139.58±4.73a26.12±3.22a65.70±8.24Aa7.46±0.88a4.20±0.67a0.56±0.13a2.34±0.08a1.62±0.08AaY-130.74±4.11b16.04±3.19b46.78±4.71Bb6.81±0.83a3.57±0.58a0.52±0.08a2.38±0.03a0.26±0.06Bb2018SH151.38±5.22a47.42±3.48a98.80±8.06Aa7.82±0.85a4.38±0.58a0.56±0.08a2.82±0.05a1.82±0.05AaY-140.25±4.16b34.18±3.37b74.43±4.68Bb6.65±0.79b3.42±0.55a0.51±0.06a2.76±0.07a0.58±0.06Bb

由表3可知,Y-1中间砧富士幼树长枝占比显著低于SH1,2017, 2018年分别为SH1的54.66%,74.04%;中短枝比例较高,2017,2018年分别为SH1的89.50%,84.14%,与SH1差异不显著;而短枝比率Y-1显著高于SH1,表明Y-1中间砧富士易成型性较SH1高。

表3 不同中间砧对富士枝类组成的影响
Tab.3 Effect of different interstocks on branch composition of Fuji %

年份Year中间砧Interstock长枝占比Longshootsratio中短枝占比Middleshootsratio短枝占比Shortshootsratio2017SH119.22±0.14Aa36.31±0.24Aa44.47±0.36AbY-110.52±0.18Ab25.04±0.22Aa64.44±0.42Aa2018SH121.42±0.16Aa21.05±0.28Aa57.53±0.38AbY-115.86±0.15Ab16.52±0.24Aa67.62±0.36Aa

SH1和Y-1中间砧对果实的外观和内在品质影响存在差异,由表4 可知,与SH1相比,Y-1中间砧富士着色指数、果实硬度、可溶性固形物含量和固酸比均有显著提高,表明Y-1中间砧提高富士果实品质的效果优于SH1。

表4 不同中间砧对富士果实品质的影响
Tab.4 Effect of different interstocks on Fuji fruit quality

年份Year中间砧Interstock硬度/(g/cm2)Hardness着色指数/%Coloringindex可溶性固形物含量/%Solublesolids可滴定酸含量/%Titratableacid固酸比SSC/TA2017SH110.8±0.13Ab86.0±2.02Ab14.79±0.25Ab0.23±0.02Aa63.31±2.49AbY-111.5±0.42Aa96.0±2.16Aa15.46±0.48Aa0.22±0.02Aa69.09±4.12Aa2018SH110.05±0.24Aa91.2±1.84Ab16.30±0.28Ab0.25±0.02Aa65.20±2.57AbY-110.43±0.45Aa96.2±1.88Aa17.10±0.27Aa0.22±0.02Ab74.35±4.15Aa

2.2 SH1和Y-1中间砧对富士苹果叶片光合指标的影响

SH1和Y-1中间砧富士苹果叶片光合速率周年变化差异明显,其中,SH1 Pn周年变化为单峰曲线,Y-1为双峰曲线;生长前期SH1叶片Pn显著高于Y-1,生长后期SH1叶片Pn迅速降低,Y-1叶片Pn在9-10月较为稳定,出现第2次高峰,分别较SH1高27.21%,33.18%,且差异达极显著水平(表5),表明树体生长后期Y-1中间砧富士叶片光合速率能维持在较高的水平,更有利于积累营养物质,促进花芽的形成,这可能是生产中Y-1中间砧长富2号容易形成花芽的原因之一。

表5 不同中间砧富士叶片Pn周年变化
Tab.5 The annual changes of Pn in Fuji leaves with different interstocks

项目Item中间砧Interstocks测定日期/(月-日)Dateofdetermination05-2807-0107-3108-2509-1710-0710-28Pn周年变化SH112.7±0.05Aa16.4±0.08Aa15.7±0.08Aa12.6±0.05Aa10.5±0.05Bb9.8±0.06Bb5.5±0.06AbAnnualchangeofPnY-110.9±0.04Ab15.6±0.04Aa15.8±0.05Aa13.0±0.04Aa13.1±0.04Aa13.0±0.04Aa7.0±0.05Aa

不同时期SH1和Y-1中间砧富士苹果叶片Pn日变化也存在明显差异。由表6可知,生长前期SH1中间砧富士叶片Pn仅在9:20出现峰值,而Y-1分别于9:20和13:20出现峰值,且在9:20以后SH1组合的Pn均高于Y-1,11:20时差异达极显著水平,表明生长前期Y-1中间砧富士叶片容易受到强光抑制,而同时期SH1中间砧富士叶片对强光的利用优于Y-1。生长后期SH1和Y-1中间砧富士叶片Pn均在9:20出现峰值,Y-1中间砧富士叶片Pn比SH1组合高49.37%,两者差异极显著,表明生长后期Y-1中间砧富士叶片光合能力强于SH1。

由图1可知,SH1和Y-1中间砧富士叶片的光响应参数在不同生长阶段有较大差异,生长后期SH1中间砧富士叶片光响应参数较生长前期明显下降,而Y-1中间砧富士叶片光响应参数较生长前期大部分时段均升高,且相同时期组合之间也存在显著差异,生长前期SH1中间砧富士苹果叶片LSP、Pnmax显著高于Y-1,LCP显著低于Y-1,生长后期Y-1的LSP、LCP、Pnmax均大于SH1,且LCP较SH1高117%,且差异达极显著水平,说明生长前期SH1中间砧富士叶片对光环境的适应性强,光合能力强于Y-1;生长后期Y-1中间砧富士叶片光合能力强于SH1,但利用弱光的能力较SH1差。

由图2可知,SH1和Y-1矮化中间砧富士苹果叶片的叶绿素荧光参数间存在显著差异,同一矮化砧不同生长时期叶绿素荧光参数差异也明显。其中,生长前期,SH1矮化中间砧富士苹果叶片Fv/Fm、ΦPSⅡ、ETR极显著高于Y-1,NPQ较Y-1高107.50%,表明同时期SH1中间砧富士叶片吸收光能用于热耗散的比例低于Y-1,光合能力显著高于Y-1;生长后期SH1矮化中间砧富士苹果叶片Fv/Fm、ΦPSⅡ、ETR、qP极显著降低,NPQ较前期增加了79.52%,Y-1组合叶片Fv/Fm极显著升高,ΦPSⅡ有所升高但差异不显著、ETR、qP极显著降低,NPQ较前期降低了14.19%,表明生长后期,Y-1中间砧富士叶片光能利用和实际光能转换效率显著高于SH1。

表6 不同中间砧对富士叶片Pn周年变化和日变化比较
Tab.6 The daily changes of Pn in Fuji leaves with different interstocks

项目Item中间砧Interstocks测定日期/(月-日)Dateofdetermination7:209:2011:2013:2015:2017:20Pn日变化07-01SH110.27±0.32Aa16.03±0.36Aa15.46±0.27Aa10.66±0.31Aa6.71±0.34Aa2.90±0.25AaDiurnaldynamicY-111.27±0.25Aa13.76±0.32Ab8.50±0.31Bb8.96±0.26Aa3.60±0.29Bb1.78±0.33AachangeofPn08-25SH15.37±0.34Aa10.74±0.37Bb9.77±0.33Bb5.63±0.33Aa2.80±0.24Bb1.22±0.34AaY-16.62±0.28Aa16.05±0.30Aa14.43±0.38Aa6.52±0.32Aa4.67±0.28Aa1.16±0.28Aa

不同大写字母表示0.01水平差异极显著;不同小写字母表示0.05水平差异显著。图2同。
Different capital letters show significant difference at the 0.01 level and small letters show significant difference at the 0.05 level.
The same as Fig.2.
图1 不同中间砧富士叶片光响应参数比较
Fig.1 Comparison of light response parameters of Fuji leaves with different interstocks

图2 不同中间砧富士叶片叶绿素荧光参数比较
Fig. 2 Comparison of chlorophyll fluorescence parameters of Fuji leaves with different interstocks

由图3可知,SH1和Y-1中间砧富士苹果叶片的各种光合色素含量均呈先增加后降低的变化趋势,但其峰值出现时间不同,SH1组合叶片光合色素含量峰值出现在7月1日,Y-1则出现于7月31日,且峰值之后Y-1组合叶片光合色素含量均高于SH1,类胡萝卜素含量在7-9月Y-1显著高于SH1,表明Y-1中间砧富士苹果叶片成熟滞后于SH1,叶绿素含量下降的速度低于SH1,Y-1组合具有较强的抵御逆境能力。

图3 不同中间砧富士苹果叶片光合色素周年动态变化
Fig.3 The annual dynamic changes of photosynthetic pigments in Fuji apple leaves with different interstocks

3 结论与讨论

苹果嫁接树的各种生理生化特性受到中间砧、基砧及嫁接品种特性与生长环境等多种因素的影响,不同中间砧对嫁接树体生长、枝类组成的影响差异较大[8-14]。赵同生等[1]对9种矮化中间砧宫崎短枝富士的研究表明,不同矮化中间砧组合的树体生长势、枝类组成、早花早果性和果实品质有明显差异。李海燕[8]、里程辉[9]的研究也得出相似结论。本试验中,Y-1中间砧富士新梢生长尤其是秋梢生长极显著低于SH1,短枝比例显著高于SH1,果实硬度、可溶性固形物含量、着色指数、固酸比均高于或显著高于SH1,表现出更好的易成型性和易早花性,表明随着中间砧矮化程度的提高,能有效限制嫁接品种新梢的生长,促进中短果枝的形成,果实品质提高效果明显,这与杨廷桢等[12]的研究结果一致。

光合作用是植物生产力构成的主要因素,受品种、光、温、水分等多种生理生态因子的影响[21-36]。李海燕[8]对6中矮化中间砧华红苹果的光合特性进行比较,认为不同矮化中间砧组合的光饱和点、光补偿点、强弱光的适应能力及光合潜力存在差异;里程辉[9]系统研究了3种矮化中间砧对岳冠成龄树光合生理特性的影响,结果表明,不同矮化中间砧能够影响嫁接品种的Pn,随着砧木的矮化性增加 Pn 值降低。本试验中,SH1、Y-1中间砧富士叶片Pn的日变化和年动态变化均呈现先升后降的趋势,但其光响应参数和叶绿素含量、叶绿素荧光参数存在显著差异。生长前期SH1中间砧富士叶片光合色素峰值出现明显早于Y-1,同等栽植密度下叶片成熟度高,对光环境的利用范围较广,Fv/Fm极显著高于Y-1,SH1总体光合效能高于Y-1,营养的快速积累促进植株生长,使SH1组合新梢生长显著高于Y-1;生长后期随着Y-1叶片逐渐成熟,光合色素积累高于SH1,Fv/Fm显著高于SH1,叶片衰老延后,总体光合效能Y-1显著高于SH1,而且Y-1能够有效控制秋梢生长、促进树体从营养生长向生殖生长的转变,有利于养分的积累和花芽的形成。可见,不同中间砧富士叶片光合特性与植株生长具有一定的相关性,其根本与中间砧的调控途径有关,具体作用机制有待进一步研究。

根据砧穗组合光合特性采用合理的栽植密度和配套管理措施,能够有效提高果品质量和产量[37]。本研究结果表明,SH1、Y-1作中间砧嫁接长富2号,其生长量和光合特性存在差异,SH1中间砧富士前期生长快速,叶片成熟早,对光的利用范围较Y-1广,Y-1中间砧能够在生长后期有效控制长富2号新梢生长、提升叶片光合作用效率、有利于营养物质的积累和花芽的形成,促进果实发育和品质的提升,生产中应考虑2个中间砧对富士生长和光合特性的差异,制定合理的栽植密度,为果园丰产稳产打好基础。

参考文献:

[1] 赵同生,赵国栋,张朝红,张新生,杨凤秋,陈东玫,赵永波,付友.不同矮化中间砧对宫崎短枝富士树体生长、产量和品质的影响[J]. 果树学报,2016,33(11):1379-1387.doi:10.13925/j.cnki.gsxb.20160127.

Zhao T S,Zhao G D,Zhang C H,Zhang X S,Yang F Q,Chen D M,Zhao Y B,Fu Y. Effect of dwarfing interstocks on tree growth,yields and fruit quality of Miyazakifuji apple[J]. Journal of Fruit Science,2016,33(11):1379-1387.

[2] 陈学森,韩明玉,苏桂林,刘凤之,过国南,姜远茂,毛志泉,彭福田,束怀瑞.当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见[J].果树学报,2010,27(4):598-604.doi:10.13925/j.cnki.gsxb.2010.04.038

Chen X S,Han M Y,Su G L,Liu F Z,Guo G N,Jiang Y M,Mao Z Q,Peng F T,Shu H R. Discussion on today′s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China[J]. Journal of Fruit Science,2010,27(4):598-604.

[3] 马宝焜,徐继忠,孙建设.关于我国苹果矮化密植栽培的思考[J]. 果树学报,2010,27(1):105-109.doi:10. 13925/j.cnki.gsxb.2010.01.020

Ma B K,Xu J Z,Sun J S. Consideration for high density planting with dwarf rootstocks in apple in China[J]. Journal of Fruit Science,2010,27(1):105-109.

[4] abajeveienē G,Kviklys D, Kviklienē ūté A, Duchoviskis P. Rootstock effect on photosynthetic pigment system formation in apple tree leaves[J]. Sodininkysteir Dar Zininkyste,2006,25(4):79-87.

[5] 贾梯.矮化砧苹果树叶片构造及光合作用的研究[J]. 北京农学院学报,1995,10(2):23-28. doi:10.13473/j.cnki.issn.1002-3186.1995.02.004.

Jia T. The leag sructrue of apple trees on dwarfing stocks and its influence on photosyntuests[J]. Journal of Beijing Agricultural College,1995,10(2):23-28.

[6] Fallahi E,Colt W M,Fallahi B,Chun I J. The importance of apple rootstocks on tree growth,yield,fruit quality,leaf nutrition,and photosynthesis with an emphasison Fuji[J]. Horttechnology,2002,12(1):38-44.doi:10.21273/HORTTECH.12.1.38.

[7] Sotiropoulos T E. Performance of the apple (Malus domestica Borkh)cultivar imperial double red delicious grafted on five rootstocks[J]. Horticultural Science,2008,35(1):7-11.

[8] 李海燕.不同矮化中间砧华红苹果幼树生理特性的研究[D].北京:中国农业科学院,2013.

Li H Y. Study on the physiological characteristics of huahong apple young trees in different dwarfing interstocks[D].Beijing:Chinese Academy of Agricultural Sciences,2013.

[9] 里程辉.三种矮化中间砧对岳冠苹果植株生产性能影响的比较研究[D].沈阳:沈阳农业大学,2018.

Li C H.Comparative studies on effect of production performance of three dwarfing interstocks in Yueguan apple[D]. Shenyang:Shenyang Agricultural University,2018.

[10] 韩明玉.苹果矮砧集约高效栽培模式[J].果农之友2009,9:12.

Han M Y.Intensive apple orchard systems[J].Fruit Growers Friend,2009 (9):12.

[11] 韩振海.苹果矮化密植栽培—理论与实践[M].北京:科学出版社,2011:11-13.

Han Z H.Apple dwarfing planting:theory and practice[M]. Beijing:Science Press,2011:11-13.

[12] 杨廷桢,高敬东,田歌,王骞,蔡华成,杜学梅,弓桂花,李鲲鹏,刘君,崔启志.苹果早果矮化砧木-Y-1的选育[J]. 果树学报,2013,30(6):1083-1085.doi:10.13925/j.cnki.gsxb.2013.06.029.

Yang T Z,Gao J D,Tian G,Wang Q,Cai H C,Du X M,Gong G H,Li K P,Liu J,Cui Q Z.Y-1,a new early-fruiting and dwarfing rootstock for apple[J]. Journal of Fruit Science,2013,30(6):1083-1085.

[13] 张晨光,赵德英,袁继存,徐锴,程存刚,闫帅.富士苹果幼树叶片内源激素与矿质营养年动态变化分析[J].果树学报,2017,34(3):303-311.doi:10.13925/j.cnki.gsxb.20160296.

Zhang C G,Zhao D Y,Yuan J C,Xu K,Cheng C G,Yan S.Annual dynamic analysis of leaf endogenous hormones and mineral nutrition on young Fuji apple trees[J].Journal of Fruit Science,2017,34(3):303-311.

[14] 何平,李林光,王海波,常源升.5个矮化中间砧对沂水红富士苹果生长、结果和叶片矿质元素积累的影响[J].中国农业科学,2018,51(4):750-757.doi:10.3864/j.issn.0578-1752.2018.04.014.

He P,Li L G,Wang H B,Chang Y S. Effects of five dwarfing interstocks on shoot growth,fruiting and accumulation of mineral elements in leaves of Yishui red Fuji apple[J]. Scientia Agricultura Sinica,2018,51(4):750-757.

[15] 杨廷桢,田建保,高敬东,李登科,牛自勉,邵嘉鸣,王骞,郜晓梦,蔡华成,邵开基,张忠仁.新型苹果矮化砧木-SH1的选育[J].果树学报,2012,29(2):308-309.doi:10.13925/j.cnki.gsxb.2012.02.026.

Yang T Z,Tian J B,Gao J D,Li D K,Niu Z M,Shao J M,Wang Q,Gao X M,Cai H C,Shao K J,Zhan Z R.Breeding of a new apple dwarfing rootstock-SH1[J]. Journal of Fruit Science,2012,29(2):308-309.

[16] 宋哲,李天忠,徐贵轩,谷大军,何明莉,张春波.光质对红富士苹果果实着色的影响[J].生态学报,2009,29(5):2304-2311.doi:10.3321/j.issn:1000-0933.2009.05.015.

Song Z,Li T Z,Xu G X,Gu D J,He M L,Zhang C B.Effect of different light spectra on the surface coloration of Red Fuji apple[J]. Acta Ecologica Sinica,2009,29 (5):2304-2311.

[17] 叶子飘.光响应模型在超级杂交稻组合-Ⅱ优明86中的应用[J].生物学杂志,2007,26(8):1323-1326. doi:10.13292/j.1000-4890.2007.0226.

YE Z P. Application of light-response model in estimating the photosynthesis of super-hybrid rice combination-Ⅱ Youming 86[J].Chinese Journal of Biology,2007,26(8):1323-1326.

[18] 叶子飘,于强.一个光合作用光响应新模型与传统模型的比较[J].沈阳农业大学学报,2007,38(6):771-775.doi:10.3969/j.issn.1000-1700.2007.06.001.

Ye Z P,Yu Q. Comparison of a new model of light response of photosynthesis with traditional models[J]. Journal of Shenyang Agricultural University,2007,38(6):771-775.

[19] 高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006:71-77.

Gao J F.Guidance of plant physiology experiments[M]. Beijing:Higher Education Press,2006:71-77.

[20] 薛思嘉,杨再强,朱丽云,李军.黄瓜花期高温胁迫对叶片衰老特性和内源激素的影响[J].生态学杂志,2018,37(2):409-416. doi:10.13292/j.1000-4890.201802.003.

Xue S J,Yang Z Q,Zhu L Y,Li J.Effects of high temperature stress on senescence and endogenous hormone of cucumber during flowering period[J]. Chinese Journal of Ecology,2018,37(2):409-416.

[21] 王刚,袁德义,邹锋,熊欢,朱周俊,刘智强,欧阳芬.修剪强度对锥栗叶片生理及产量的影响[J].植物生理学报,2017,53(2):264-272. doi:10.13592/j.cnki.ppj.2016.0353.

Wang G,Yuan D Y,Zou F,Xiong H,Zhu Z J,Liu Z Q,Ouyang F. Effects of different pruning intensity on leaf physiology and yield in Castanea henryi[J]. Plant Physiology Journal,2017,53 (2):264-272.

[22] 许大全,丁勇,武海.田间小麦叶片光合效率日变化与光合“午睡”的关系[J].植物生理学,1992,18(3):279-284.

Xu D Q,Ding Y,Wu H. Relationship between diurnal variations of photosynthetic efficiency and midday depression of photosynthetic rate in wheat leaves under field conditions[J]. Acta Phytoghysiologica Sinic,1992,18(3):279-284.

[23] 许大全.光合作用午睡现象的生态、生理与生化[J].植物生理学通讯,1990,26(6):5-10.

Xu D Q.Ecology,physiology and biochemistry of midday depression of photosynthesis[J]. Plant Physiology Communications,1990,26(6):5-10.

[24] 彭永宏,章文才.猕猴桃的光合作用[J].园艺学报,1994,21(2):151-157.

Peng Y H,Zhang W C.Studies on the photosynthesis in kiwifruit leaves[J]. Acta Horticulturae Sinica,1994,21(2):151-157.

[25] 王雷存.密植苹果树改形修剪技术研究[D].杨凌:西北农林科技大学,2006.

Wang L C.The technique research of modifying canopies on dengely planted apple trees[D]. Yangling:Northwest Agriculture and Forestry University,2006.

[26] Trieu N B,陈宇,林小琴,丁国昌,Huong P V,林思祖.不同种源越南杉木幼龄期叶绿素荧光特征比较[J].四川农业大学学报,2016,34(1):34-38. doi:10.16036/j.issn.1000-2650.2016.01.007.

Trieu N B,Chen Y,Lin X Q,Ding G C,Huong P V,Lin S Z. Chlorophyll fluorescence characteristics of vietnam between different Chinese Fir provenances[J]. Journal of Sichuan Agricultural University,2016,34 (1):34-38.

[27] 许申平,王莹博,张燕,李霞,崔波.不同蜜露分泌类型蝴蝶兰叶片的光合生理特性研究[J].植物生理学报,2017,53(3):445-453.doi:10.13592/j.cnki.ppj.2016.0414.

Xu S P,Wang Y B,Zhang Y,Li X,Cui B.Research of photosynthetic physiological indices of different kinds of honey-dew secretion in Phalaenopsis leaves[J]. Plant Physiology Journal,2017,53(3):445-453.

[28] 徐凯,郭延平,张上隆.不同光质对草莓叶片光合作用和叶绿素荧光的影响[J].中国农业科学,2005,38(2):369-375.doi:10.3321/j.issn:0578.1752.2005.02.024.

Xu K,Guo Y P,Zhang S L.Effect of light quality on photosynthesis and chlorophyll fluorescence in strawberry leaves[J].Scientia Agricultura Sinica,2005,38(2):369-375.

[29] 孙永江,王金欢,耿庆伟,邢浩,翟衡,杜远鹏.不同浓度臭氧处理对赤霞珠葡萄叶片光系统Ⅱ功能的影响[J].植物生理学报,2015(11):1947-1954.doi:10.13592/j.cnki.ppj.2015.0393.

Sun Y J,Wang J H,Geng Q W,Xing H,Zhai H,Du Y P. Effects of different concentrations of ozone stress on photosynthetic system Ⅱ in Vitis vinifera cv.Cabernet Sauvignon[J]. Plant Physiology Communications,2015(11):1947-1954.

[30] Zhi Z W,Ye Q Y,Yuan B Z,Yu F B,An K W,Xu H D.Alleviation of drought stress in Phyllostachys edulis by N and P application[J].Scientific Reports,2018,8(1):1-9.doi:10.1038/s41598-017-18609-y.

[31] 唐礼俊,李渤生,唐崇钦,匡廷云,汤佩松,伍孝贤.华山松叶绿素荧光诱导动力学参数的地理变异及其与树高生长的关系[J].植物生态学报,1997,21(5):474-479.

Tang L J,Li B S,Tang C Q,Kuang T Y,Tang P S,Wu X X. Geographical variation in the parameters of chlorophyll fluorescence induction kinetics of Pinus armandi and its relations with the growth of tree height[J]. Chinese Journal of Plant Ecology,1997,21(5):474-479.

[32] 林世青,许春辉,张其德,徐黎,毛大璋,匡廷云.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,1992,9(1):1-16.

Lin S Q,Xu C H,Zhang Q D,Xu L,Mao D Z,Kuang T Y.Some application of chlorophyll fluorescence kinetics to plant stress physiologyphy toecology and agricultural modernization[J]. Chinese Bulletin of Botany,1992,9(1):1-16.

[33] Yang S,Meng D Y,Hou L L,Li Y,Guo F,Meng J J,Wan S B,Li X G. Peanut violaxanthin de-epoxidase alleviates the sensitivity of PSⅡ photoinhibition to heat and high irradiance stress in transgenic tobacco[J]. Plant Cell Rep,2015,34(8):1417-1428.doi:10.1007/s00299-015-1797-6.

[34] 董媛,蔡华成,杨廷桢,王艳芳,张建成,张小军,高燕,张彬,郝燕燕.SH1和Y-1中间砧对长富苹果营养生长的比较研究[J].山西农业大学学报(自然科学版),2017,37(6):425-429.doi:10.13842/j.cnki.issn1671-8151.2017. 06.008.

Dong Y,Cai H C,Yang T Z,Wang Y F,Zhang J C,Zhang X J,Gao Y,Zhang B,Hao Y Y. The comparative study of vegetative growth of Nagafu 2 apple on SH1 and Y-1 dwarfing interstocks[J]. Journal of Shanxi Agricultural University(Natural Science Edition), 2017,37(6):425-429.

[35] Kramer D M,Avenson T J,Edwards G E.Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions[J]. Trends in Plant Science,2004,9(7):349-357.doi:10.1016/jtplants.204.05.001.

[36] 史宝胜,徐继忠,马宝焜,郭润芳,李晓东.SH系砧木光合作用特性的研究[J].河北农业大学学报,2001,24(4):54-57.doi:10.3969/j.issn.1000-1573.2001.04.016.

Shi B S,Xu J Z,Ma B K,Guo R F,Li X D. The study of photosynthetjc character to SH stocks [J]. Journal of Agricultural University of Hebei,2001,24(4):54-57.

[37] 李超.不同苜蓿品种叶绿素荧光及水分生理特性的比较研究[D].北京:中国农业科学院,2012.

Li C.Study on comparisons of chlorophyll fluorescence and water relations of different alfalfa varieties[D]. Beijing:Chinese Academy of Agricultural Sciences,2012.

Comparision on Growth and Photosynthetic Characteristics of Fuji Apple with Two Intermediate Rootstocks under High Spindle

WANG Qian1,CAI Huacheng1,WANG Shuting1,ZHANG Xiaojun2,GAO Jingdong1,DU Xuemei1,LI Chunyan1,HAO Yanyan2,YANG Tingzhen1

(1.Pomology Institute,Shanxi Agricultural University,Taigu 030800,China;2.College of Horticulture,Shanxi Agricultural University,Taigu 030801,China)

AbstractTo understand the effects of SH1 and Y-1 dwarfing interstocks on the growth and leaf photosynthesis of Fuji apple saplings,and provide theoretical basis for the selection and utilization of dwarfing interstocks in production,the Fuji Nagafu 2 apple trees grafted on SH1 and Y-1 interstocks were used to study the effects of two kinds of interstocks on the growth,branch composition and leaf photosynthetic indexes of young Fuji trees. The results showed that the annual growth trend of Fuji on SH1 and Y-1 interstocks was basically the same,but the growth of spring and autumn shoots and the length of new shoots of Y-1 were significantly lower than that of SH1,and the ratio of short branches was significantly higher than that of SH1,and the fruit color index,hardness,soluble solids and solid acid ratio significantly increased. The diurnal and annual dynamic trends of net photosynthetic rate(Pn)of Fuji Nagafu 2 were different between SH1 and Y-1 interstocks. The Pn of leaf in SH1 in the early growth period was higher than in Y-1,but the Pn of leaf in Y-1 in the later growth period was significantly higher than in SH1,analysis of light response parameters and chlorophyll fluorescence parameters showed that the light saturation point(LSP)of Y-1 in the early growth period was lower than SH1,the compensation point(LCP)was higher than SH1,non photochemical quenching coefficient (NPQ)was significantly higher than SH1,and the primary light energy conversion efficiency (Fv/Fm),photosynthetic electron transfer quantum efficiency (ΦPSⅡ)and apparent electron transfer rate (ETR)of Y-1 were significantly lower than that of SH1 in the early growth stage,and the LSP,PSⅡ,Etr,the chlorophyll content and net photosynthetic rate of Y-1 were significantly higher than those of SH1 at the later growth stage. Different intertstocks had great effects on the growth and leaf photosynthetic characteristics of grafted varieties. Some characteristics of Fuji Nagafu 2 grafted onto Y-1 were better than that of SH1,such as dwarfing,early flowering,easy shaping. In the early growth period,the leaf maturity of Fuji Nagafu 2 in Y-1 lags behind in SH1,so the photosynthetic efficiency of the leaves was low. In the late growth period,the photosynthetic pigment accumulation and Fv/Fm of leaves in Y-1 were higher or significantly higher than that of SH1,and it could effectively control the growth of autumn shoots,which was beneficial to the accumulation of nutrients and the formation of flower buds.

Key words:Apple;SH1;Y-1;Net photosynthetic rate;Chlorophyll fluorescence

中图分类号:S661.1

文献标识码:A

文章编号:1000-7091(2021)01-0108-08

doi:10.7668/hbnxb.20191389

收稿日期:2020-11-04

基金项目:农业部专项(CARS-27);山西省农业科学院优势课题组项目(YCX2018D2YS17);山西省科技成果转化引导专项(201804D131055);山西省农业科学院特色农业技术攻关项目(YGG17035);山西省重点研发计划项目(201903D211001-1)

作者简介:王 骞(1979-),男,山西汾西人,副研究员,硕士,主要从事苹果砧木选育及应用研究。

通讯作者:

郝燕燕(1972-),女,山西闻喜人,教授,博士,主要从事果树逆境生理与分子生物学研究。

杨廷桢(1965-),男,山西沁源人,研究员,主要从事苹果矮砧资源评价、新品种选育及栽培技术研究。