不同籽粒颜色藜麦品种的核型分析

权有娟1,2,刘 博1,2,袁飞敏3,李 想1,2,陈志国1

(1.中国科学院 西北高原生物研究所,中国科学院高原生物适应与进化重点实验室,青海省作物分子育种重点实验室,青海 西宁 810008;2.中国科学院大学,北京 100049;3.西北农林科技大学,陕西 杨凌 712100)

摘要:为了明确青海省主推藜麦品种的染色体数目和核型特征,以柴达木黑-1(简称黑藜麦)、柴达木白-1(简称白藜麦)及柴达木红-1(简称红藜麦)3种不同籽粒颜色的藜麦品种为材料,对其根尖采用普通压片法进行制片,经冰水混合物预处理、卡诺固定液固定、45%醋酸酸解、火焰干燥压片、镜检、DAPI染色、荧光显微镜拍照等步骤进行核型分析。结果表明:3种颜色的供试品种染色体数均为4n=36条,未发现非整倍体或多倍体现象。黑藜麦的核型公式为4n=36=32m(4AST)+4sm,染色体相对长度组成为4n=36=2L+18M2+12M1+4S;白藜麦的核型公式为4n=36=34m(4SAT)+2sm,染色体相对长度组成为4n=36=2L+20M2+14M1;红藜麦的核型公式为2n=36=34m(4SAT)+2sm,染色体相对长度组成为4n=36=6L+8M2+14M1+8S。3个品种的核型不对称系数分别是58.20%,58.22%,58.72%,核型均为2B类型,表明这些品种较为进化。3个品种均具有2对随体,但位置存在差异,可能与藜麦异源起源、自花授粉等因素有关。该研究可为藜麦杂交育种、倍性育种、种质资源鉴定和基因定位等研究提供细胞学基础。

关键词:藜麦;染色体;核型;籽粒颜色

藜麦,又称南美藜、藜谷、藜米、奎奴亚藜等,属于苋科(Amaranthaceae)藜亚科(Chenopodioideae)藜属(Chenopodium),是原产于南美洲安第斯山区的一种粮食作物。藜麦被称为假谷物,虽然它不属于禾本科,但是籽粒可以像禾本科植物那样磨成面粉[1]。由于藜麦籽粒中具有丰富的营养成分,包括多种人体必需的氨基酸、含量高于其他谷物的蛋白质、脂肪、矿物质、淀粉、维生素以及异黄酮等[2-7],被联合国 FAO认定为唯一完美营养食品,有“未来的超级谷物”、“营养黄金”、“有机谷类之王”等美誉[8-9]

藜麦对环境的适应性很广,具有较强的耐盐、抗旱、抗寒能力,在世界各大洲均有种植。根据藜麦在海拔和纬度的分布将其分为5种生态型:山谷型、高地型、盐滩型、高温湿润气候带型、海平面型。生产中高地型、盐滩型及不同类型间的杂交种较常用。藜麦具有非常丰富的表型和基因型遗传资源,尤其是籽粒颜色,多达66种,最常见的有红、白、黑3种[10]

我国引进种植藜麦的时间较短,目前,在青海、甘肃、山西等地区大面积种植。对藜麦的研究最近一二十年才开始起步,主要集中在藜麦生理、栽培、引种试种、分子机制等方面[11-14]。在细胞学方面研究较少,尤其是核型研究相对匮乏。利用青海自己育成的品种柴达木黑-1、柴达木白-1和柴达木红-1,采用普通压片法对3个藜麦品种的核型进行研究,旨在为藜麦的系统进化、亲缘关系、基因组原位杂交等研究提供细胞学资料,并为藜麦品种选育、杂交育种、品质改良等提供科学依据。

1 材料和方法

1.1 试验材料

本试验中3个栽培藜麦品种由青海省海西州海藜(海杭)农业科技有限公司提供,分别为柴达木白-1(简称白藜麦)、柴达木黑-1(简称黑藜麦)和柴达木红-1(简称红藜麦),均为该公司自主培育的商业藜,见图1。

黑藜麦株高大于2 m,花序紧凑,呈深绿色,为复穗状花序。籽粒饱满,较大,千粒质量可达3.89 g,种子含膳食纤维及抗氧化剂最高,易于和其他谷物混合并用于冷食(调制色拉),特别适合老年人,高血压及糖尿病患者。

白藜麦植株较高,一般大于2 m,花序颜色为浅紫色,具有球形复总状花序。籽粒较大,千粒质量为3.93 g,种子口感柔和,含极高的维生素E,适合婴幼儿食用。

红藜麦植株2.5~3.0 m,花序介于紧凑和松散型,呈深紫色。籽粒千粒质量达3.54 g。种子含较高的复合维生素B,具亮丽色泽,易于和糙米混合及用于冷食。

供试种子于2018年种植在德令哈市柯鲁克镇,并于当年9月底收获备用。核型分析试验于2018年冬季至2019年春季在中国科学院高原生物适应与进化重点实验室进行。

图1 3种不同籽粒颜色藜麦品种及对应的株型

Fig.1 Three quinoa varieties with different seed color and their corresponding plant types

1.2 试验方法

中期染色体的制备:将3个藜麦品种的种子培养至根长1.0~1.5 cm,用冰水混合物在4 ℃条件下预处理24 h,乙醇∶冰醋酸(3∶1)固定至少30 min,取根尖的分生区部分,45%乙酸火焰干燥压片,用相差显微镜镜检。将一个视野下有多个清晰的中期分裂相的片子放于-80 ℃冰箱中冷冻至少30 min,经干燥后用DAPI染色,用Leica荧光显微镜观察、拍照[15]。用Photoshop cc 2015、Excel 2018进行后期的图像处理及染色体长度、臂比等的计算。根据李懋学等[16]方法统计至少30 个细胞,如果85% 以上细胞具有的恒定一致的染色体数即为该种的染色体数,然后分别选用5个分散良好的中期染色体在Image J软件中进行测量分析,得到核型数据。核型分类的依据分别采用Levan等[17]的划分标准,核型不对称系数参照Arano[18]的方法。

2 结果与分析

2.1 黑藜麦的染色体核型

染色体计数结果表明,黑藜麦的体染色体数目为36条,染色体分成4组:L组(第1对)、M2组(第2,3,4,5,6,7,8,9,10对)、M1组(第11,12,13,14,15,16对)、S组(第17,18对);其染色体相对长度组成为4n=36=2L+18M2+12M1+4S。染色体核型公式为:2n=36=32m(4AST)+4sm,由32条中部着丝粒染色体,4条近中部着丝粒染色体组成;染色体总长度的相对长度变化为3.64%~6.45%,着丝粒指数为30.69%~49.75%,臂比值为1.05~2.26,最长染色体与最短染色体之比为2.39;臂比大于2的染色体有4条,占全染色体的11.11%,核型分类属于2B类型,核型不对称系数为58.20%。另外,还观察到在2,6号染色体的短臂上具有随体(表1、图2)。

表1 黑藜麦的染色体参数

Tab.1 Chromosome parameters of black quinoa

注:随体长度未计算在内。表2-3同。

Note:The length of the satellites were not taken into account.The same as Tab.2-3.

序号 Chromosome number 相对长度/% Relative length长臂 Long arm短臂 Short arm总长度 Total arm臂比值Ratio着丝粒指数/%Centromere index 类型Type13.782.676.451.4241.40m23.742.526.261.4840.26m(AST)34.172.026.192.0632.63sm43.592.546.131.4141.44m53.852.246.091.7236.78m64.201.866.062.2630.69sm(AST)73.142.175.311.4540.86m82.712.595.301.0548.87m93.052.245.291.3642.34m103.341.945.281.7236.74m113.001.804.881.6736.89m122.452.344.791.0548.85m132.292.044.331.1247.11m142.282.014.291.1346.85m152.301.974.271.0646.14m162.001.983.981.1749.75m172.011.863.871.0848.06m181.881.763.641.0748.35m

图2 黑藜麦的核型图及核型模式图

Fig.2 Karyotype and idiogram of black quinoa

2.2 白藜麦的染色体核型

体细胞染色体数目为36条。其染色体分成3组:L组(第1对)、M2组(第2,3,4,5,6,7,8,9,10对)、M1组(第11,12,13,14,15,16,17,18对);染色体相对长度组成为4n=36=2L+20M2+14M1。染色体核型公式为:2n=36=34m(4AST)+2sm,由34条中部着丝粒染色体,2条近中部着丝粒染色体组成;染色体总长度的相对长度变化为4.57%~7.88%,着丝粒指数为31.35%~48.96%,臂比值为1.04~2.19,最长染色体与最短染色体之比为2.44;臂比大于2的染色体有2条,占全染色体的5.56%,核型分类属于2B类型,核型不对称系数为58.22%。在3,5号染色体的短臂上观察到随体(表2、图3)。

表2 白藜麦的染色体参数

Tab.2 Chromosome parameters of white quinoa

序号Chromosome number 相对长度/% Relative length长臂 Long arm短臂 Short arm总长度 Total arm 臂比值Ratio着丝粒指数/%Centromere index类型Type15.412.477.882.1931.35sm23.842.756.591.4041.73m34.032.496.521.6238.19m(AST)43.872.576.441.5139.90m53.712.406.111.5539.28m(AST)63.702.376.071.5639.04m73.652.315.961.5838.76m83.322.445.761.3642.36m93.262.395.671.3642.15m103.242.355.621.3741.81m113.012.365.371.2841.99m122.932.315.241.2744.08m132.952.265.211.3143.38m142.792.305.091.2145.19m152.782.265.041.2344.84m162.492.394.881.0448.96m172.502.224.721.1347.03m182.342.234.571.0548.50m

图3 白藜麦的核型图及核型模式图

Fig.3 Karyotype and idiogram of white quinoa

2.3 红藜麦的染色体核型

体细胞染色体数目也为36条。其染色分成4组:L组(第1,2,3对)、M2组(第4,5,6,7对)、M1组(第8,9,10,11,12,13,14对)、S组(第15,16,17,18对);其染色体相对长度组成为4n=36=6L+8M2+14M1+8S。藜麦染色体核型公式为:2n=36=34m(4AST)+2sm,由34条中部着丝粒染色体,2条近中部着丝粒染色体组成,染色体总长度的相对长度变化为2.28%~5.89%,着丝粒指数为28.40%~50.92%,臂比值为1.04~2.52,最长染色体与最短染色体之比为3.26;臂比大于2的染色体有2条,占全染色体的5.56%,核型分类属于2B类型,核型不对称系数为58.72%。在2,8号染色体的其中一条同源染色体的短臂上观察到随体(表3、图4)。

图4 红藜麦的核型图及核型模式图

Fig.4 Karyotype and idiogram of red quinoa

3 讨论

藜麦中期染色体的制片方法不尽相同,尤其是预处理的方法差别较大,例如,Bhargava等[19]用8-羟基喹啉水溶液预处理,结果较好;何燕等[20]采用0.002 mol/L 8-羟基喹啉、0.05%秋水仙素、冰水混合物和0.1%秋水仙素等预处理,发现用0.1%秋水仙素在5 ℃条件下离体根尖处理3 h效果最佳,本试验中试过将藜麦用笑气(NO)在0.5~0.8 MPa下处理2.0,2.5,3.0 h等,但结果不理想。而在4 ℃冰水混合物下处理24 h,取出后放置于卡诺固定液(无水乙醇∶冰乙酸=3∶1)中至少30 min,就可以在45%醋酸溶液下制片,效果好,相比于前两者制备中期染色体的步骤,此方法更安全、省时,简便、省试剂。

表3 红藜麦的染色体参数

Tab.3 Chromosome parameters of red quinoa

序号Chromosome number 相对长度/% Relative length长臂 Long arm短臂 Short arm总长度 Total arm臂比值Ratio着丝粒指数/%Centromere index类型Type13.122.775.891.1347.03m23.322.495.811.3342.86m(AST)33.581.425.002.5228.40sm42.312.154.461.0748.20m52.292.124.411.0848.07m62.352.024.371.1646.22m72.541.554.091.6437.90m82.291.363.651.6837.26m(AST)92.311.233.541.8834.75m102.171.303.471.7037.46m112.291.173.461.9633.82m121.921.493.411.2943.70m13 1.881.443.321.3143.37m142.061.233.291.6737.38m151.691.122.811.5139.86m161.671.112.781.5039.93m171.201.122.321.0746.28m181.151.112.281.0450.92m

本试验中3个不同籽粒颜色藜麦品种的染色体数和Bhargava等[19]及何燕等[20]的研究结果一致,均为36条,均由中部着丝粒染色体和近中部着丝粒染色体组成,染色体基数为9,均为四倍体,未发现非整倍体或多倍体现象。植物进化过程中,核型趋向于向不对称的方向发展[21]。本研究中3个品种的核型不对称系数相似,分别为58.20%,58.22%,58.72%,并且都属于2B类型,说明这些藜麦品种较为进化。3个品种中均含有2对随体,其中,黑藜麦中随体分别在2,6号染色体上,而白藜麦中随体位于3,5号染色体上,红藜麦中则在2,8号上,而目前国内外关于藜麦核型研究报道中大部分情况下随体都位于1对染色体上,大多位于2,3,8,12,15号的短臂上,也有品种中出现2对随体的情况。这种品种间的差异可能与藜麦异源起源[22]、自花授粉[23]导致染色体形态变化(主要是倒位和易位)、外部环境变化有关。

参考文献:

[1] Christian E Z,Vasco C,Jorge P,Luz G P,Bettit S R,Jose A T,Martha I,Kristian H L,Ursula G B.Estimation of composition of quinoa(Chenopodium quinoa Willd.)grains by near-infrared transmission spectroscopy[J].LWT-Food Science and Technology,2017,79 :126-134.doi: 10.1016/j.lwt.2017.01.026.

[2] Friedman M.Nutritional value of proteins from different food sources.a review[J].Journal of Agriculture and Food Chemistry,1996,44(1):6-29.doi:10.1021/jf9400167.

[3] Alvarez-Jubete L, Arendt E K, Gallagher E. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients[J].International Journal of Food Sciences and Nutrition,2009,60(4):240-257.doi: 10.1080/09637480902950597.

[4] Stefano C, Antonella B, Lucia B, Mirella Z, Carlo V L C, Graziella A.The content of proteic and non-proteic(free and protein-bound)tryptophan in quinoa and cereal flours [J].Food Chemistry,2007,100(4):1350-1355.doi: 10.1016/j.foodchem.2005.10.072.

[5] Thoufeek A, inghal S, Kulkarni R, Pal M. Physicochemical and functional properties of Chenopodium quinoa starch[J].Carbothydrate Polymers,1996,31(1):99-103.doi: 10.1016/S0144-8617(96)00034-3.

[6] Miranda M,Vega-Galvez A,Jorquera E,Lopez J,Martinez E A.Antioxidant and antimicrobial activity of quinoa seeds(Chenopodium quinoa Willd.)from three geographical zones of Chile[M].Boca Raton:Brown Walker Press,2013:83-86.

[7] Hitomi A, Chen Y C,Tang H J, Mayumi S, Katsumi W, Toshio M. Food components in fractions of quinoa seed [J].Food Science and Technology,2002,8(1):80-84.doi: 10.3136/fstr.8.80.

[8] González J, Bruno M, Valoy M, Prado F.Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten quinoa cultivars grown under drought[J].Journal of Agronomy and Crop Science,2011,197(2):144-151.doi:10.1111/j.1439-037X.2010.00446.x.

[9] González J, Bruno M, Valoy M, Prado F.Quinoa-a review[J].Czech Journal of Food Science,2009,27(27):71-79.doi:http://dx.doi.org/.

[10] 任贵兴,译.藜麦研究进展和可持续生产[M].北京:科学出版社,2018:6-100.

Translated by Ren G X. Quinoa improvement and sustainable production[M].Beijing:Science Publishing House,2018:6-100.

[11] 刘文瑜,何斌,杨发荣,吕玮,王旺田,黄杰,魏玉明,金茜,陈玉祥.不同品种藜麦幼苗对干旱胁迫和复水的生理响应[J].草业科学,2019,36(10):2656-2666.doi:10.11829/j.issn.1001-0629.2018-0698.

Liu W Y,He B,Yang F R,Lü W,Wang W T,Huang J,Wei Y M,Jin Q,Chen Y X.Physiological responses of different varieties of Chenopodium quinoa seedlings to drought stress and rehydration[J].Pratacultural Science,2019,36(10):2656-2666.

[12] 杨发荣,刘文瑜,黄杰,魏玉明.河西地区2个藜麦品种引种试验研究[J].草地学报,2018,26(5):1273-1276.doi:10.11733/j.issn.10070435.2018.05.034.

Yang F R,Liu W Y,Huang J,Wei M Y.Experimental study on introduction of two quinoa varieties in Hexi region[J]. Acta Grassland Sinica,2018,26(5):1273-1276.

[13] 魏玉明,杨发荣,刘文瑜,黄杰,金茜,王昶.陇东旱塬区复种不同藜麦品种(系)的适应性初步评价[J].西北农业学报,2020,29(5):674-686.doi:10.7606/j.issn.1004-1389.2020.05.004.

Wei Y M,Yang F R,Liu W Y,Huang J,Jin Q,Wang C.Preliminary evaluation on the adaptability of multiple cropping different quinoa varieties(Lines)in the arid Plateau of Eastern Gansu[J].Acta Agriculturae Boreali-occidentalis Sinica,2020,29(5):675-686.

[14] 陆敏佳,蒋玉蓉,陆国权,陈国林,毛前.利用SSR标记分析藜麦品种的遗传多样性[J].核农学报,2015,29(2):260-269.doi:1000-8551(2015)02-0260-10.

Lu M J,Jiang Y R,Lu G Q,Chen G L,Mao Q.Analysis of genetic diversity of Chenopodium by SSR Marker[J].Journal of Nuclear Agricultural Sciences,2015,29(2):260-269.

[15] 喻凤.苜蓿近缘种属的比较细胞遗传学研究[D].北京:中国科学院大学,2017.

Yu F.Comparative cvtogentics on Medicago sttiva L.and related species[D].Beijing:University of Chinese Academy of Sciences,2017.

[16] 李懋学,陈瑞阳.关于植物核型分析的标准化问题 [J].植物科学学报,1985,3(4):297-302.

Li M X,Chen R Y.A suggestion on the standarization of karyotype analysis in plant[J].Journal of Plant Science, 1985,3(4):297-302.

[17] Levan A,Fredga K,Sagndberg A.Nomenclature for centromeric position on chromosomes[J].Hereditas, 2009,52(2):201-220.doi:10.1111/j.1601-5223.1964.tb01953.x.

[18] Arano H.Cytological studies in subfamily carduoideae( compositae)of Japan Ⅶ[J].Shokubutsugaku Zasshi,1962,75(892):401-410.doi:10.15281/jplantres1887.76.219.

[19] Bhargava A,Shukla S,Ohri D.Karyotypic studies on some cultivated and wild species of Chenopodium(Chenopodiaceae)[J].Genetic Resources and Crop Evolution, 2006,53(7):1309-1320.doi:10.1007/s10722-005-3879-8.

[20] 何燕,邓永辉,李梦寒,冯西博,卓嘎.藜麦品系的染色.数目及核型分析[J].西南大学学报(自然科学版),2019,41(1):27-31.doi:10.13718/j.cnki.xdzk.2019.01.004.

He Y,Deng Y X,Li M H,Feng X B,Zhuo G.Chromosome number and karyotype analysis of quinoa(Chenopodium quinoa Willd.)[J].Journal of Southwest University(Natural Science Edition),2019,41(1):27-31.

[21] 魏尊征,殷选红,熊敏,王贤,周涤.3个彩色马蹄莲引进品种的核型分析[J].植物遗传资源学报,2012,13(4):650-654.doi:10.3969/j.issn.1672-1810.2012.04.024.

Wei Z Z,Yin X H,Xiong M,Wang X,Zhou D.Karyotypic analysis of three Zantedeschia hybrid cultivars [J].Journal of Plant Genetic Resources,2012,13(4):650-654.

[22] Wilson H D.Crop/weed gene flow:Chenopodium quinoa Willd.and C.berlandieri Moq.[J].Theoretical and Applied Genetic,1990,86:642-648.doi:10.1007/BF00838721.

[23] Risi J,Galwey N W.The Chenopodium grains of the andes:Inca crops for modern agriculture.in advances in applied biology[M].London:Academic press,1990:145-216.

Karyotype Analysis of C.quinoa Varieties with Different Seed Color

QUAN Youjuan1,2,LIU Bo1,2,YUAN Feimin3,LI Xiang1,2,CHEN Zhiguo1

(1.Northwest Plateau Institute of Biology,Chinese Academy of Science,Key Laboratory of Adaptation and Evolution of Plateaubiota, Chinese Academy of Sciences,Key Laboratory of Crop Molecular Breeding in Qinghai Provinces,Xining 810008,China;2.University of Chinese Academy of Sciences,Beijing 100049,China;3.Northwest Agriculture and Forestry University,Yangling 712100,China)

Abstract In order to determine the chromosome number and karyotype characteristics of the main Chenopodium varieties in Qinghai Province,three quinoa varieties with different seed colors Qaidam black-1(abbreviated as black quinoa),Qaidam white-1(abbreviated as white quinoa)and Qaidam red-1(abbreviated as red quinoa)were used as materials,and their root tips were sliced by using squashing method.Karyotype analysis was carried out through the steps of ice-water mixture pretreatment,Carnot fixed solution,45% acetic acid hydrolysis,flame drying and pressing,microscopic examination,DAPI staining,fluorescence microscope photography etc.The results showed that:The chromosome numbers of the three color varieties were all 4n=36,and no aneuploid or polyploid phenomenon was found.The karyotype formula and the relative length composition of chromosome of black quinoa were 4n=36=32m(4AST)+ 4sm,4n=36=2L+18M2+12M1+ 4S;the karyotype formula and the relative length of chromosome of white quinoa were 4n=36=34m(4SAT)+ 2sm,4n=36=2L+20M2+14M1;the karyotype formula and the relative length of chromosome of red quinoa were 4n=36=34m(4SAT)+2sm,4n=36=6L+8M2+14M1+8S.All varieties belong to 2B type and the asymmetry index were 58.20%,58.22% and 58.72%,respectively,indicating that these varieties were more evolved.All the three varieties have two pairs of satellite,but there were differences in loction,which may be related to the heterologous origin of quinoa,self-pollination and other factors.This study can provide cytological basis for cross breeding,ploidy breeding,germplasm resource identification and gene mapping of C.quinoa.

Key words: Chenopodium quinoa Willd.;Chromosome;Karyotypic analysis; Seed color

中图分类号:S512.03

文献标识码:A

文章编号:1000-7091(2020)增刊-0072-06

doi:10.7668/hbnxb.20191704

收稿日期:2020-09-01

基金项目:中国科学院种子创新研究院项目(INASEED);海西州财政支持农业项目(HXNM001);青海省种子工程项目(2019016);青海省重点研发与转化计划项目(2020-NS-045)

作者简介:权有娟(1994-),女,青海西宁人,在读硕士,主要从事植物遗传育种研究。

通讯作者:陈志国(1963-),男,吉林公主岭人,研究员,博士,主要从事小麦等作物遗传育种研究。