氮(N)是植物需求量最大的矿质营养元素,是植物蛋白质、氨基酸、叶绿素、核酸,以及一些具有特殊功能的次生代谢物的重要组分,影响植物生长发育、产量和品质形成、生殖等重要生理过程。此外,N在调节植物对环境的适应方面也起到非常重要的作用[1-2]。近年来,N营养在植物适应高温[3]、盐胁迫[4]、干旱胁迫[5]、重金属胁迫[6]等非生物逆境中的作用越来越受到关注。本研究阐述了氮素形态、水平、氮素分配和同化对植物逆境胁迫适应性的影响,总结了氮素提高植物适应逆境的几种机理以及参与的信号通路,以期为进一步揭示氮素调控植物逆境适应的生理与分子机制提供有价值的参考。
硝态氮和铵态氮是植物利用的2种主要氮源。一般陆生植物以利用硝态氮为主,少数植物如水稻[7]、茶树[8]更偏向于利用铵态氮。自然环境中各种氮素形态处于动态转化和平衡过程中。植物在长期的进化过程中,为适应环境中氮素形态的变化,形成了一套精密的由硝转运蛋白(Nitrate transporter,NRT)和铵转运蛋白(Ammonium transporter,AMT)组成的氮素吸收转运系统,调控植物对氮素的高效吸收和利用[9]。
氮素形态对植物逆境适应的影响与植物种类和胁迫类型有关。对烟草[10]、菊芋[11]、油菜[12]等提供硝态氮较供应铵态氮更有利于增强它们的抗逆能力;而铵态氮对增强水稻耐旱能力以及长春花和西红柿的耐盐能力明显好于硝态氮[7,13-14],但也有研究表明,硝营养水稻较铵营养水稻的耐盐性更强[12,15],可能2种氮形态在植物适应不同逆境中的作用机制不同。然而,对大部分植物来说,硝铵混合氮源对缓解逆境胁迫的伤害作用更有效[10,16-17]。
有机农业因人们对食品安全和生态环境关注度的上升而得到快速发展,农业系统中有机物料越来越多,研究人员也越来越重视可溶性有机态氮在土壤氮供应中的作用[18-19]。甘氨酸(Gly)是菜田土壤中含量最丰富的游离氨基酸之一[20],且其分子量小、结构简单,作为模式氮源被用作植物有机氮的研究[21]。研究表明,甘氨酸可以提高冷害胁迫下水稻的渗透调节能力和抗氧化能力,在一定程度上维持叶片的光合性能而提高其抗逆性[22]。但仇奕之等[23]对高山离子芥试管苗的研究则表明,甘氨酸对冷胁迫和干旱胁迫下的植株均有一定的保护作用,对盐胁迫下植株伤害则未见明显保护作用。
氮素形态在缓解植物逆境胁迫伤害中的作用差异为逆境下植物的氮素营养调控提供了科学依据,但不同氮形态引起的植物对逆境响应差异的生理和分子机制有待进一步揭示。
大量研究表明,适当增加施氮水平能提高植物在逆境下的表现,缓解逆境对植物的伤害,减少产量损失[3,5,22,24]。一般认为,高氮水平通过促进植物发育、增强抗氧化系统、增加游离氨基酸等渗透调节物质等多种途径提高植物对逆境的适应[24-26]。
2.1.1 硝酸盐分配与植物逆境适应 植物吸收的NO3-主要通过木质部转运到地上部进行同化。研究证明,植物体内NO3-分配与植物的抗逆性密切相关。对拟南芥的研究发现,NO3-在根中的分配增加能提高植物抵抗干旱、盐、重金属等多种逆境胁迫的能力[6,27]。目前的观点认为,逆境下NO3-向根中分配增加,即“胁迫诱导的硝酸盐在根中分配”(Stress-initiated nitrate allocation in roots,SINAR)[28]是植物适应逆境的一种普遍机制。编码NO3-转运蛋白的基因NRT1.5和NRT1.8受逆境诱导而表达发生变化,可以改变植物地上部和地下部NO3-的分配。遗传学研究表明,逆境诱导的NRT1.5下调和NRT1.8上调共同调控根中NO3-的积累,从而提高植物的抗逆性[27]。NRT1.1和NO3-调控基因NRG2(NITRATE REGULATORY GENE2)对植物体内NO3-的分配也有调节作用[29]。Xu等[29]认为,NRG2在NRT1.1的上游对NO3-的分配起调控作用。然而,Jian等[6]通过NRG2突变体及其过表达体的研究发现,NRG2在NRT1.1的下游对NRT1.5和NRT1.8进行调控,进而影响逆境下NO3-的分配。还发现,逆境下NO3-分配与细胞的抗氧化能力密切相关,但NO3-分配与抗氧化系统之间相互作用的分子机理还不清楚。此外,逆境下NO3-分配对植物逆境适应的影响是由于其信号功能还是营养功能,仍有待进一步探讨。
目前,关于NO3-分配与植物逆境适应之间关系的研究主要集中于双子叶模式植物拟南芥,在其他双子叶植物以及单子叶植物中是否具有普遍性还缺乏足够的证据支持。单子叶植物水稻虽然是喜铵植物,但由于其根系的泌氧功能,即使在淹水条件下仍有30%的氮是以硝态氮的形式被吸收[30-31]。稻田干旱条件下土壤的通气状况改善,增加了土壤中硝态氮浓度[32]。因此,对硝态氮在水稻耐旱中的作用及其机理研究为解析水稻的耐旱机制可能具有一定的意义。
2.1.2 叶片氮分配与植物逆境适应 植物同化的氮有75%~80%存在于叶绿体中,参与植物的光合作用[33]。一般将叶片氮分为光合器官中的氮和非光合器官中的氮。前者包括与植物光合作用密切相关的可溶性蛋白和膜结合蛋白,根据它们在光合作用过程中的功能不同可分为Rubisco、生物能学和集光复合体3个组分[34];后者主要存在于细胞壁中,与植物的抗逆和叶片寿命有关[35]。
植物通过叶片氮在光合器官与非光合器官之间以及光合器官各组分之间的分配来权衡物质生产和环境适应。植物将更多的氮分配到结构蛋白(如细胞壁结合蛋白)中虽然降低了光合能力,但增加了叶片寿命[35-37]。植物通过调节氮在光合器官各组分之间的分配,协调光能吸收、电子传递和CO2还原等过程,以增强植物对环境的适应能力。如低氮条件下玉米趋向于将更多的氮分配到电子传递和光合磷酸化组分中,以减少光能截获和维持电子传递活性,而高氮下对Rubisco的氮投入增加[38]。CO2浓度升高也能诱导植物氮的重新分配调节Rubisco的合成[39]。在光强由弱变强的过程中,黄瓜叶片氮向光合作用中的输入增加,但分配到集光系统中的氮比例相对下降[40]。对干旱胁迫下水稻叶片氮分配的研究发现,低氮条件下水稻通过减少氮在集光系统中的分配并增加渗透调节系统(游离氨基酸、可溶性蛋白)中的氮来维持光合速率,而高氮条件下,水稻将更多的氮分配到非光合器官中,牺牲光合氮利用效率以增强水分胁迫适应[41]。
硝酸还原酶(NR)是NO3-同化最初的酶,在不同的植物中NR活性受胁迫影响而出现下降或上升[5,42-43],但NR在植物抗逆中的作用目前尚没有一致的结论。
植物体内的NH4+主要来源于根系直接从生长基质中吸收、NO3-还原、蛋白质水解或光呼吸释放的NH3。它们由2种谷氨酰胺合成酶(GS)同工酶进行同化,存在于细胞液中的GS1主要同化由根系直接吸收和蛋白质水解产生的NH4+,位于叶绿体中的GS2主要同化由NO3-还原产生的NH4+和光呼吸释放的NH3[44]。胁迫条件下,植物组织中的NH4+大量积累,对植物产生毒害作用[45]。植物的解铵毒能力决定了植物对逆境的适应能力[46-47]。Nagy等[48]认为,GS可作为植物抗旱性的一个重要代谢指标。NH4+同化增强促进氨基酸的积累,对提高植物的渗透调节能力有重要作用。研究还表明,过表达NR和GS1基因能显著维持植物的N同化能力,并提高植物的抗旱能力[49-50]。逆境下光呼吸过程NH3的释放增加[51]。Singh和Ghosh[52]研究发现,对缺水敏感的水稻品种在水分胁迫下GS活性明显下降,且这种下降是由于GS2活性下降引起。笔者研究也发现,提高GS2表达量可减少铵积累,缓解水分胁迫对水稻光合作用的抑制[53]。可见,维持GS2活性对于提高植物的抗旱能力至关重要[54]。
谷氨酸脱氢酶(GDH)是Glu合成途径的另一个酶,其催化Glu的合成独立于GS/GOGAT途径[55]。逆境下常观察到GDH活性升高[26,56-57],但GDH响应逆境的变化还与植物种类、胁迫类型及强度有关。逆境下GDH为脯氨酸的合成提供Glu,而Wang等[58]研究发现,只有在高盐胁迫时GDH对小麦脯氨酸合成的作用才明显。王志强等[59]也发现,低盐胁迫时GDH活性无明显变化,而高盐胁迫时GDH活性显著增加。GDH对胁迫强度的响应差异可能与胁迫引起的植物氮代谢途径变化有关。
氮的同化需要三羧酸(TCA)循环产生的α-酮戊二酸提供碳骨架。因此,逆境下TCA循环主要酶活性,尤其是异柠檬酸脱氢酶(ICDH)活性与植物的逆境适应能力密切相关。王志强等[59]研究表明,Ca2+缓解小麦盐胁迫伤害的重要机制之一就是Ca2+能增强ICDH活性,促进谷氨酸的合成,为脯氨酸的合成和渗透调节能力的提高起到重要促进作用。
光呼吸是植物在逆境下的重要保护机制。普遍认为,光呼吸对逆境下植物的保护作用主要通过以下3种方式[60]:①作为过剩激发能的替代库,保护光合作用不受光抑制;②防止PSⅡ和PSⅠ之间的初级醌电子受体过度还原,从而维持电子传递系统和依赖于PSⅠ的环式电子传递的平衡;③为光反应和光合磷酸化分别提供电子受体(NADP+)和无机磷,从而促进光能的利用并减轻光抑制。据估计,植物通过光呼吸过程同化的铵比通过原初铵同化过程同化的铵高出一个数量级[61]。光呼吸过程中铵的再同化能力对维持植物体内较低的铵水平、减轻逆境胁迫对植物的伤害至关重要 [62]。前面已提到,负责同化光呼吸产生的NH3的GS2在增强逆境下植物氮同化、缓解植物逆境伤害中起到关键作用。
丝氨酸是光呼吸的标识氨基酸之一,是光呼吸过程中的重要氮库,其代谢的强弱可以作为一种信号上调或下调光呼吸代谢酶[63],从而影响植物的逆境适应能力。在转基因浮萍中过表达拟南芥丝氨酸:乙醛酸氨基转移酶基因(AtAGT1)提高了浮萍的活性氧(ROS)清除能力,增强了其耐盐能力[64]。在水稻上的研究表明[53],高氮水平增强了水分胁迫下丝氨酸代谢,增强了谷胱甘肽-抗坏血酸系统,从而减轻了氧化胁迫伤害;而低氮下水分胁迫阻碍了丝氨酸的代谢,造成丝氨酸积累,减弱了谷胱甘肽-抗坏血酸系统,使氧化胁迫增强。甘氨酸也是光呼吸代谢的重要中间产物,由谷氨酸:乙醛酸氨基转移酶(GGAT)催化合成。GGAT敲减的拟南芥突变体中H2O2、ABA和脯氨酸含量增加,提高了植物适应轻度干旱和低盐胁迫的能力[65]。综上所述,光呼吸的保护作用与氮代谢密切相关。
3 氮素营养提高植物逆境适应的主要生理机制
渗透胁迫下植物较低的水分吸收和传导能力是限制植物生长的主要因素,而氮缓解植物逆境伤害的原因之一是增加植物的水分含量[12]。水孔蛋白作为膜水通道,在控制逆境下植物细胞和组织的水分含量中扮演重要角色[66]。不同形态氮源对水孔蛋白的调节作用不一样。在10% PEG 6000模拟的水分胁迫条件下,NH4+或NH4+/NO3-(50/50)处理的水稻叶片水孔蛋白活性较NO3-处理的高[17]。结果表明,NH4+能更好地维持水稻根系的吸水能力和叶片的水分传导能力,提高水稻的抗旱能力。对水稻等具有通气组织的植物来说,气腔是影响水分在体内传导的重要因素。水分胁迫下,NO3-促进了水稻根系通气组织形成,从而降低了植株根系水力导度,限制了水分在根中的径向运输,表现为吸水能力下降,耐旱性较差[67]。氮形态对水稻根系通气组织形成的影响与pH值有关,在近中性条件下(pH值6.5),水稻根通气组织的发育几乎不受氮形态的影响,而在低pH值条件下,NH4+能加快了籼稻通气组织的形成,NO3-则减缓粳稻和旱稻通气组织的形成[68]。目前,对氮形态调控水孔蛋白活性和根系通气组织形成的机制还没有更深入的报道。此外,NH4+还通过增强逆境下植物的氮同化活性,使植株积累更多的脯氨酸和游离氨基酸,降低植株水势,维持根系的吸水能力[14]。
逆境常导致植物气孔关闭而限制植物的光合作用。植物气孔运动受氮水平的调控[69-70]。研究表明,适度较高的氮水平可提高水稻和玉米的气孔对干旱的敏感性,在一定程度上缓解光合作用的下降[1,71]。NO3-的转运参与了气孔开闭的调节。NO3-双亲和转运蛋白CHL1将NO3-转运至保卫细胞中,提高保卫细胞的NO3-浓度,使保卫细胞发生去极化,从而促使气孔张开,这对增强植物对干旱的敏感性有重要作用[72]。
一般认为,干旱导致木质部汁液成分发生变化,影响根系感受的信号向地上部转导,而NO3-在其中扮演了重要角色[73]。木质部汁液中高浓度的NO3-可通过影响木质部汁液的pH值,调控ABA再分布,从而诱导气孔关闭[1]。由于气孔调节的机理多种多样,NO3-在气孔调节过程中与其他信号分子之间的相互作用机理仍有待进一步研究。
一些研究表明,干旱胁迫下植物的NH4+吸收能力增强,或NH4+培养的植株AMT1基因受到上调,对氮的吸收、同化能力较NO3-培养的植株高,表现出更耐水分胁迫[14,74]。据估算,同化1 mol NO3-需要消耗8~12 mol ATP或1.3~1.9 mol 同化的CO2,而同化1 mol NH4+消耗的能量仅为同化1 mol NO3-的1/4[75-76]。逆境下对NH4+吸收同化能力增强可以节省植物代谢能量,更有利于维持抗氧化酶、氮代谢酶特别是和铵代谢有关酶的活性[18]。
逆境下植物叶片吸收的光能过剩抑制植物光合作用。NO3-的同化主要发生在叶片中,因此,可以直接利用由光合作用产生的还原力,这无疑对增强逆境下叶片的热能耗散、缓解过剩光能对光合作用的抑制具有重要意义[43]。然而,多数逆境条件下NR活性下降[5,42,77],因此,NO3-在热耗散和光合作用保护中的作用仍有待进一步研究。
渗透调节是植物逆境适应的重要生理机制之一。逆境下植物体内一些重要的含氮化合物质如氨基酸和可溶性蛋白积累增加,起到渗透调节作用。脯氨酸在逆境下积累增加被认为是植物渗透调节能力增强的一种体现[78]。但Sánchez等[79]对49个豌豆品种的研究表明,虽然水分胁迫下脯氨酸含量增加了4~40倍,但其对渗透势的贡献很小(仅约1%)。脯氨酸可能通过其他途径保护植物不受水分胁迫的伤害,除了作为渗透调节物质,它还参与氧化还原平衡和能量代谢,也可作为信号分子调控线粒体功能[80]。
NO3-也是一种重要的渗透调节物质,它主要储存在液泡中,其中的NO3-浓度通常比细胞质基质中大一个数量级[81],因此,逆境下NO3-的积累对维持细胞的渗透压也非常重要。Cornic[82]提出,干旱下观察到NR和SPS活性出现可逆的下降可能对植物来说是有利的,因为这样可以使光合细胞中NO3-快速积累,并减少碳水化合物的运出,共同维持细胞的膨压。
胁迫下植物的谷胱甘肽还原酶、谷胱甘肽过氧化酶、过氧化氢酶、超氧化物歧化酶等抗氧化酶的活性普遍提高。氮素形态和水平对植物抗氧化系统也有调节作用。一般来说,高氮水平可增强植物的抗氧化能力,抑制膜质过氧化[83-84],而氮形态对植物抗氧化系统的影响与植物种类有关[12,85]。然而,氮代谢对植物抗氧化系统的调控机制仍不清楚。Xu等[86]对玉米雄穗氮代谢和抗氧化酶活性的研究提出,脯氨酸可能对抗氧化酶有保护作用。
离子失衡是胁迫对植物产生伤害的主要原因之一[87]。研究发现,氮素供应有助于提高大麦地上部分K+含量,降低Na+含量,增加根系中Na+/K+与地上部Na+/K+的比值,即提高大麦根系Na+、K+向地上部运输过程中对K+的选择性,促进K+的向地上部运输量[88]。木质部-韧皮部对盐胁迫下离子平衡起到调控作用。盐胁迫下,硝营养油菜和水稻木质部Na+浓度,韧皮部Na+和K+浓度及水稻木质部K+浓度均高于铵营养植株,可能是硝营养耐盐性高于铵营养的原因之一[16]。王磊等[89]对菊芋的研究也表明,增加硝态氮的比例有利于菊芋幼苗对K+和Ca2+的吸收和向上运输,从而维持地上部较高的K+/Na+和Ca2+/Na+。氮营养维持逆境下的离子平衡与Na+吸收受到限制有关[13],但氮素影响Na+、K+、Ca2+等离子吸收的机制仍有待研究。
ABA信号途径在植物逆境响应中起到关键作用,ROS、NO和MAPK级联等相关分子参与ABA信号途径,调控防御基因的表达。目前的研究表明,氮通过ABA信号途径中的组分传递逆境信号,调控植物的逆境响应。
土壤水分变化引起土壤中养分形态和浓度发生变化,通过植物激素信号影响植物对养分的吸收和对逆境的响应[90]。对干旱下水稻的研究发现,木质部汁液中NO3-浓度提高1~4倍[43]。木质部汁液中NO3-可能作为一种重要的信号物质,影响根系向地上部的信号转导[72]。木质部汁液中NO3-浓度增加使木质部汁液pH值上升,调控ABA分布,诱导气孔关闭[1]。
光呼吸过程是H2O2的重要来源,H2O2诱导植物抗氧化水平上升,提高植物的逆境适应能力。Verslues等[65]通过敲减拟南芥GGAT,提高了SGAT活性,加速了光呼吸的运转,导致H2O2积累增加,进而刺激ABA合成,促进脯氨酸的积累,提高植物抵御水分胁迫的能力。NO可能是H2O2的上游信号物质。研究棉花冷害时发现,外源NO通过促进抗氧化酶活性和抗氧化剂含量的提高,降低H2O2和MDA的积累,保护了细胞膜结构的稳定性,从而减轻了冷害胁迫对棉花光系统Ⅱ的伤害[91]。Cao等[85]研究发现,NH4+提高水稻适应水分胁迫的能力也与NO和H2O2密切相关。NH4+条件下,水分胁迫通过诱导根中NO合成酶,在3 h出现NO的爆发,进而提高了抗氧化水平和降低了ROS含量,维持水稻体内氧化还原平衡,促进植物生长。相反,NO3-导致H2O2大量积累,植物受到的氧化胁迫增加。
NO作为氮代谢的中间产物,参与植物多种逆境响应的信号转导过程[92],其合成受NR和NO合酶(NOS)等的调控,因此,可能与氮的吸收、积累和同化等有关,但目前还缺乏关于逆境下氮营养诱导NO产生的机理研究。
植物的生长史就是一个不断适应外部环境变化的过程。氮代谢作为植物最基础的生理代谢过程之一,与植物逆境适应有着密切关系。充分了解其在植物逆境适应中的作用机制,对平衡植物生长与逆境适应将起到关键作用。在将来的研究中,以下问题值得关注:
①植物吸收的不同形态的氮不仅是植物的重要营养来源,还是植物感受外界环境变化的重要信号分子[72]。目前的研究已证实氮形态是影响植物逆境适应能力的重要因素之一,然而它们在调控植物逆境响应中所扮演的角色可能因植物种类和胁迫类型不同而有所差异。不同氮形态在植物逆境适应中的作用仍有待深入探讨。
②植物氮代谢变化和对逆境的响应受体内多种信号途径的调控。现有的研究表明,铵的积累与清除平衡可能在逆境下植物氮代谢中处于中心地位。植物通过清除过量积累的铵,一方面缓解铵的毒害作用,另一方面为植物提供渗透调节和抗氧化保护物质。然而,铵代谢与逆境诱导的“ABA-H2O2-NO-MAPK”信号转导过程之间的关系还不是十分清楚。氮代谢参与植物逆境响应的信号网络途径还有待进一步研究,这对揭示植物逆境适应的氮营养调控分子机制将起到重要促进作用。
[1] Wilkinson S,Bacon M A,Davies W J. Nitrate signalling to stomata and growing leaves:interactions with soil drying,ABA,and xylem sap pH in maize[J]. Journal of Experimental Botany,2007,58(7):1705-1716. doi:10.1093/jxb/erm021.
[2] Krouk G,Crawford N M,Coruzzi G M,Tsay Y F. Nitrate signaling:adaptation to fluctuating environments[J]. Current Opinion on Plant Biology,2010,13(3):265-272. doi:10.1016/j.pbi.2009.12.003.
[3] Liu K,Deng J,Lu J,Wang X Y,Lu B L,Tian X H,Zhang Y B. High nitrogen levels alleviate yield loss of super hybrid rice caused by high temperatures during the flowering stage[J]. Frontiers in Plant Science,2019,10:357. doi:10.3389/fpls.2019.00357.
[4] Nazar R,Iqbal N,Syeed S,Khan N A. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars[J]. Journal of Plant Physiology,2011,168(8):807-815. doi:10.1016/j.jplph.2010.11.001.
[5] Xiong X,Chang L Y,Khalid M,Zhang J J,Huang D F. Alleviation of drought stress by nitrogen application in Brassica campestris ssp. Chinensis L.[J]. Agronomy,2018,8:66. doi:10.3390/agronomy8050066.
[6] Jian S F,Luo J S,Liao Q,Liu Q,Guan C Y,Zhang Z H. NRT1.1 regulates nitrate allocation and cadmium tolerance in Arabidopsis[J]. Frontiers in Plant Science,2019,10:384. doi:10.3389/fpls.2019.00384.
[7] Gao Y X,Li Y,Yang X X,Li H J,Shen Q R,Guo S W. Ammonium nutrition increases water absorption in rice seedlings(Oryza sativa L.)under water stress[J]. Plant Soil,2010,331:193-201. doi:10.1007/s11104-009-0245-1.
[8] Ruan L,Wei K,Wang L Y,Cheng H,Zhang F,Wu L Y,Bai P X,Zhang C C. Characteristics of NH4+ and NO3- fluxes in tea(Camellia sinensis)roots measured by scanning ion-selective electrode technique[J]. Scientific Report,2016,6:38370. doi:10.1038/srep38370.
[9] Tegeder M,Masclaux-Daubresse C. Source and sink mechanisms of nitrogen transport and use[J]. New Phytologist,2018,217(1):35-53. doi:10.1111/nph.14876.
[10] 周冀衡,王彦亭,余佳斌. 不同基因型烤烟对氮肥形态的适应和在水分胁迫下抗旱性影响的研究[J]. 种子,1999(2):9-12.
Zhou J H,Wang Y T,Yu J B. The study of different fertilizer N forms on flue-cured tobacco drought resistance [J]. Seed,1999(2):9-12.
[11] 王磊,隆小华,郝连香,刘兆普. 氮素形态对盐胁迫下菊芋幼苗PSⅡ光化学效率及抗氧化特性的影响[J]. 草业学报,2012,21(1): 133-140. doi:10.11686/cyxb20120117.
Wang L,Long X H,Hao L X,Liu Z P. Effects of nitrogen form on the photochemical efficiency of PSⅡ and antioxidant characteristics of Jerusalem artichoke seedling under salt stress[J]. Acta Prataculturae Sinica,2012,21(1): 133-140.
[12] Gao L M,Liu M,Wang M,Shen Q R,Guo S W. Enhanced salt tolerance under nitrate nutrition is associated with apoplast Na+ content in canola(Brassica. napus L.)and rice(Oryza sativa L.)plants[J]. Plant Cell Physiology,2016,57(11):141. doi:10.1093/pcp/pcw141.
[13] Ghanem M E,Martínez-Andújar C,Albacete A,Pospíšilov H,Dodd I C,Pérez-Alfocea F,Lutts S. Nitrogen form alters hormonal balance in salt-treated tomato(Solanum lycopersicum L.)[J]. Journal of Plant Growth Regulation,2011,30:144-157. doi:10.1007/s00344-010-9178-4.
[14] Cao X C,Zhong C,Zhu C Q,Zhu L F,Zhang J H,Wu L H,Jin Q Y. Ammonium uptake and metabolism alleviate PEG-induced water stress in rice seedlings[J]. Plant Physiology and Biochemistry,2018,132: 128-137. doi:10.1016/j.plaphy.2018.08.041.
[15] 刘梅,郑青松,刘兆普,郭世伟. 盐胁迫下氮素形态对油菜和水稻幼苗离子运输和分布的影响[J]. 植物营养与肥料学报,2015,21(1): 181-189. doi:10.11674/zwyf.2015.012.
Liu M,Zheng Q S,Liu Z P,Guo S W. Effects of nitrogen forms on transport and accumulation of ions in canola(B.napus L.)and rice(Oryza sativa L.)under saline stress[J]. Journal of Plant Nutrition and Fertilizers,2015,21(1): 181-189.
[16] 宋娜,郭世伟,沈其荣. 不同氮素形态及水分胁迫对水稻苗期水分吸收、光合作用及生长的影响[J]. 植物学通报,2007,24(4):477-483. doi:10.3969/j.issn.1674-3466.2007.04.007.
Song N,Guo S W,Shen Q R. Effects of different nitrogen forms and water stress on water absorption,photosynthesis and growth of Oryza sativa seedlings[J]. Chinese Bulletin of Botany,2007,24(4):477-483.
[17] 隋利,易家宁,王康才,李羽青. 不同氮素形态及其配比对盐胁迫下紫苏生理特性的影响[J]. 生态学杂志,2018,37(11):102-108.
Sui L,Yi J N,Wang K C,Li Y Q. Effects of different forms and ratios of nitrogen on physiological characteristics of Perilla frutescens (L.)Britt under salt stress[J]. Chinese Journal of Ecology,2018,37(11):102-108.
[18] 曹小闯,吴良欢,马庆旭,金千瑜. 高等植物对氨基酸态氮的吸收与利用研究进展[J]. 应用生态学报,2015,26(3):919-929. doi:10.13287/j.1001-9332.20150106.009.
Cao X C,Wu L H,Ma Q X,Jin Q Y. Advances in studies of absorption and utilization of amino acids by plants:A review[J]. Chinese Journal of Applied Ecology,2015,26(3):919-929.
[19] Wang X L,Han R,Tang D,Huang D. Comparison of glycine uptake by pak choi in organic and conventional soil under different glycine concentrations:a pot study[J]. Journal of Plant Nutrition and Soil Science,2015,178(5):768-775. doi:10.1002/jpln.201400587.
[20] Wang X L,Ye J,Perez P G,Tang D,Huang D. The impact of organic farming on the soluble organic nitrogen pool in horticultural soil under open field and greenhouse conditions:a case study[J]. Soil Science and Plant Nutrition,2013,59(2):237-248. doi:10.1080/00380768.2013.770722.
[21] Lipson D A,Raab T K,Schmidt S K,Monson P K. Variation in competitive abilities of plants and microbes for specific amino acids[J]. Biology and Fertility of Soils,1999,29(3):257-261. doi: 10.1007/s003740050550.
[22] Cao X C,Zhong C,Zhu L F,Zhang J H,Sajid H,Wu L H,Jin Q Y. Glycine increases cold tolerance in rice via the regulation of N uptake,physiological characteristics,and photosynthesis[J]. Plant Physiology and Biochemistry,2017,112:251-260. doi:10.1016/j.plaphy.2017.01.008.
[23] 仇奕之,李宜珅,杨鹏军,张旭强,杨宁. 甘氨酸对不同胁迫条件下高山离子芥试管苗的保护作用[J]. 兰州大学学报(自然科学版),2018,54(2):62-69.
Qiu Y Z,Li Y S,Yang P J,Zhang X Q,Yang N. Protective effects of glycine on Chorispora bungeana plantlets under different stresses[J]. Journal of Lanzhou University(Natural Sciences),2018,54(2):62-69.
[24] Iqbal A,Dong Q,Wang X R,Gui H P,Zhang H H,Zhang X L,Song M Z. High nitrogen enhance drought tolerance in cotton through antioxidant enzymatic activities,nitrogen metabolism and osmotic adjustment[J]. Plants,2020,9(2):178. doi:10.3390/plants9020178.
[25] Tran T T,Yamauchi A. Nitrogen application enhanced the expression of developmental plasticity of root systems triggered by mild drought stress in rice[J]. Plant Soil,2014,378:139-152. doi:10.1007/s11104-013-2013-5.
[26] Zhong C,Cao X C,Hu J J,Zhu L F,Zhang J H,Huang J L,Jin Q Y. Nitrogen metabolism in adaptation of photosynthesis to water stress in rice grown under different nitrogen levels[J]. Frontiers in Plant Science,2017,8:1079.doi:10.3389/fpls.2017.01079.
[27] Chen C Z,Lü X F,Li J Y,Yi H Y,Gong J M. Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance [J]. Plant Physiology,2012,159(4):1582-1590.doi:10.2307/23274740.
[28] Zhang G B,Yi H Y,Gong J M. The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation[J]. Plant Cell,2014,26:3984-3998. doi:10.1105/tpc.114.129296.
[29] Xu N,Wang R C,Zhao L F,Zhang C F,Li Z H,Lei Z,Liu F,Guan P Z,Chu Z H,Crawford N M,Wang Y. The Arabidopsis NRG2 protein mediates nitrate signaling and interacts with and regulates key nitrate regulators[J]. Plant Cell,2016,28:485-504. doi:10.1105/tpc.15.00567.
[30] 段英华,张亚丽,沈其荣. 水稻根际的硝化作用与水稻的硝态氮营养[J]. 土壤学报,2004,41(5):803-809.
Duan Y H,Zhang Y L,Shen Q R. Nitrification in rice rhizosphere and the nitrate nutrition of rice[J]. Acta Pedologica Sinica,2004,41(5):803-809.
[31] Kirk G J D. Plant-mediated processes to acquire nutrients:Nitrogen uptake by rice plants [J]. Plant Soil,2001,232:129-134. doi:10.1023/a:1010341116376.
[32] 胡继杰,朱练峰,胡志华,钟楚,林育炯,张均华,曹小闯,James A B,禹盛苗,金千瑜. 土壤增氧方式对其氮素转化和水稻氮素利用及产量的影响[J]. 农业工程学报,2017,33(1):167-174. doi:10.11975/j.issn.1002-6819.2017.01.023.
Hu J J,Zhu L F,Hu Z H,Zhong C,Lin Y J,Zhang J H,Cao X C,James A B,Yu S M,Jin Q Y. Effects of soil aeration methods on soil nitrogen transformation,rice nitrogen utilization and yield[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(1):167-174.
[33] Makino A,Sakuma H,Sudo E,Mae T. Differences between maize and rice in N-use efficiency for photosynthesis and protein allocation[J]. Plant Cell Physiology,2003,44(9):952-956. doi:10.1093/pcp/pcg113.
[34] 史作民,唐敬超,程瑞梅,罗达,刘世荣. 植物叶片氮分配及其影响因子研究进展[J]. 生态学报,2015,35(18):5909-5919. doi:10.5846/stxb201401240184.
Shi Z M,Tang J C,Cheng R M,Luo D, Liu S R. A review of nitrogen allocation in leaves and factors in its effects [J]. Acta Ecologica Sinica,2015,35(18):5909-5919.
[35] Takashima T,Hikosaka K,Hirose T. Photosynthesis or persistence:nitrogen allocation in leaves of evergreen and deciduous Quercus species[J]. Plant Cell Environment,2004,27:1047-1054. doi:10.1111/j.1365-3040.2004.01209.x.
[36] Onoda Y,Hikosada K,Hirose T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency[J]. Functional Ecology,2004,18(3):419-425. doi:10.1111/j.0269-8463.2004.00847.x.
[37] Feng Y L. Nitrogen allocation and partitioning in invasive and native Eupatorium species[J]. Physiologia Plantarum,2008,132(3):350-358.doi:10.1111/j.1399-3054.2007.01019.x.
[38] Mu X H,Chen Q W,Chen F J,Yuan L X,Mi G H. Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage[J]. Frontiers in Plant Science,2016,7:699-709. doi:10.3389/fpls.2016.00699.
[39] Seneweera S. Reduced nitrogen allocation to expanding leaf blades suppresses ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis and leads to photosynthetic acclimation to elevated CO2 in rice[J]. Phtosynthetica,2011,49(1):145-148. doi:10.1007/s11099-011-0006-2.
[40] Trouwborst G,Hogewoning S W,Harbinson J,Ieperen W V. Photosynthetic acclimation in relation to nitrogen allocation in cucumber leaves in response to changes in irradiance[J]. Physiologia Plantarum,2011,142(2):157-169. doi:10.1111/j.1399-3054.2011.01456.x.
[41] Zhong C,Jian S F,Huang J,Jin Q Y,Cao X C. Trade-off of within-leaf nitrogen allocation between photosynthetic nitrogen-use efficiency and water deficit stress acclimation in rice(Oryza sativa L.)[J]. Plant Physiology and Biochemistry,2019,135:41-50. doi:10.1016/j.plaphy.2018.11.021.
[42] 孙园园,孙永健,吴合洲,马均. 水分胁迫对水稻幼苗氮素同化酶及光合特性的影响[J]. 植物营养与肥料学报,2009,15(5):1016-1022.
Sun Y Y,Sun Y J,Wu H Z,Ma J. Effects of water stress on activities of nitrogen assimilation enzymes and photosynthetic characteristics of rice seedlings[J]. Journal of Plant Nutrition and Fertilizers,2009,15(5):1016-1022.
[43] Zhong C,Cao X C,Bai Z G,Zhang J H,Zhu L F,Huang J L,Jin Q Y. Nitrogen metabolism correlates with the acclimation of photosynthesis to short-term water stress in rice(Oryza sativa L.)[J]. Plant Physiology and Biochemistry,2018,125:52-62. doi:10.1016/j.plaphy.2018.01.024.
[44] Thomsen H C,Eriksson D,Møller I S,Schjoerring J K. Cytosolic glutamine synthetase:a target for improvement of crop nitrogen use efficiency[J].Trends in Plant Science,2014,19(10):656-663. doi:10.1016/j.tplants.2014.06.002.
[45] Jian S,Liao Q,Song H,Liu Q,Lepo J E,Guan C,Zhang J,Ismail A M,Zhang Z. NRT1.1-related NH4+ toxicity is associated with a disturbed balance between NH4+ uptake and assimilation[J]. Plant Physiology,2018,178:1473-1488. doi:10.1104/pp.18.00410.
[46] Hoai N T T,Shim I S,Kobayashi K,Kenji U. Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice(Oryza sativa L.)seedlings[J]. Plant Growth Regulation,2003,41:159-164. doi:10.1023/a:1027305522741.
[47] Nguyen H T T,Shim I S,Kobayashi K,Kenji U. Regulation of ammonium accumulation during salt stress in rice(Oryza sativa L.)seedlings [J]. Plant Production Science,2005,8:397-404. doi:10.1626/pps.8.397.
[48] Nagy Z,N meth E,Gu th A,Bona L,Wodala B,Pécsvradi A. Metabolic indicators of drought stress tolerance in wheat:glutamine synthetase isoenzymes and Rubisco [J]. Plant Physiology and Biochemistry,2013,67:48-54. doi:10.1016/j.plaphy.2013.03.001.
[49] Ferrario-Méry S,Valadier M H,Foyer C H. Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA [J]. Plant Physiology,1998,117(1):293-302. doi:10.2307/4278279.
[50] El-Khatib R T,Hamerlynck E P,Gallardo F,Kirby E G. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress[J]. Tree Physiology,2004,24:729-736. doi:10.1093/treephys/24.7.729.
[51] Peterhansel C,Horst I,Niessen M,Blume C,Kebeish R,K rkc oglu S,Kreuzaler F. Photorespiration[J]. The Arabidopsis Book,2010,8:e0130. doi:10.1199/tab.0130.
[52] Singh K K,Ghosh S. Regulation of glutamine synthetase isoforms in two differentially drought-tolerance rice(Oryza sativa L.)cultivars under water deficit conditions [J]. Plant Cell Reports,2013,32:183-193. doi: 10.1007/s00299-012-1353-6。
[53] Zhong C,Bai Z G,Zhu L F,Zhang J H,Zhu C Q,Huang J L,Jin Q Y,Cao X C. Nitrogen-mediated alleviation of photosynthetic inhibition under moderate water stress in rice(Oryza sativa L.)[J]. Environmental and Experimental Botany,2019,157:269-282. doi:10.1016/j.envexpbot.2018.10.021.
[54] Bao A,Zhao Z Q,Ding G D,Shi L,Xu F S,Cai H M. The stable level of glutamine synthetase 2 plays an important role in rice growth and in carbon-nitrogen metabolic balance[J]. International Journal of Molecular Science,2015,16(6):12713-12736. doi:10.3390/ijms160612713.
[55] Masclaux-Daubresse C,Reisdorf-Cren M,Pageau K,Lelandais M,Grandjean O,Kronenberger J,Valadier M H,Feraud M,Jouglet T,Suzuki A. Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco[J]. Plant Physiology,2006,140:444-456. doi:10.1104/pp.105.071910.
[56] 梁太波,王建伟,尹启生,张艳玲,蔡宪杰,过伟民,刘阳. 水分胁迫对烤烟铵同化和生物量的影响[J]. 中国烟草学报,2012,18(3):50-54. doi:10.3969/j.issn.1004-5708.2012.03.009.
Liang T B,Wang J W,Yin Q S,Zhang Y L,Cai X J,Guo W M,Liu Y. Effects of water stress on ammonium assimilation and biomass of flue-cured tobacco[J]. Acta Tabacaria Sinica,2012,18(3):50-54.
[57] 孙园园,孙永健,严奉君,郭翔,杨志远,徐徽,马均. 适度水分胁迫和增硝营养对不同水稻品种幼苗氮代谢的影响[J]. 杂交水稻,2012,27(6):58-65.
Sun Y Y,Sun Y J,Yan F J,Guo X,Yang Z Y,Xu H,Ma J. Effects of moderate water stress and increase of nitrate nitrogen nutrients on nitrogen metabolism in seedlings of different rice varieties[J]. Hybrid Rice,2012,27(6):58-65.
[58] Wang Z Q,Yuan Y Z,Qu J Q,Lin Q H,Zhang C F. Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat(Triticum aestivum)seedlings exposed to different salinity[J]. Journal of Plant Physiology,2007,164:1609-1629. doi:10.1016/j.jplph.2006.05.001.
[59] 王志强,王春丽,王同朝,林同保. 钙离子对盐胁迫小麦幼苗氮代谢的影响[J]. 生态学报,2009,29(8): 327-333.
Wang Z Q,Wang C L,Wang T C,Lin T B. Effects of Ca2+ on nitrogen metabolism in wheat seedlings exposed to salt stress[J]. Acta Ecologica Sinica,2009,29(8): 327-333.
[60] Silva E N,Silveira J A G,Ribeiro R V,Vieira S A. Photoprotective function of energy dissipation by thermal processes and photorespiratory mechanisms in Jatropha curcas plants during different intensities of drought and after recovery[J]. Environmental and Experimental Botany,2015,110:36-45. doi:10.1016/j.envexpbot.2014.09.008.
[61] Wingler A,Lea P J,Quick W P,Leegood R. Photorespiration:metabolic pathways and their role in stress protection [J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2000,355(1402):1517-1529. doi:10.1098/rstb.2000.0712.
[62] Snchez-Rodríguez E,del Mar Rubio-Wilhelmi M,Ríos J J,Leon B B,Rosales M,Melgarejo R,Romero L,Ruiz J M. Ammonia production and assimilation:Its importance as a tolerance mechanism during moderate water deficit in tomato plants[J]. Journal of Plant Physiology,2011,168:816-823. doi:10.1016/j.jplph.2010.11.018.
[63] Timm S,Florian A,Wittmi M,Jahnke K,Hagemann M,Fernie A R,Bauwe H. Serine acts as metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis thaliana[J]. Plant Physiology,2013,162:379-389. doi:10.1104/pp.113.215970.
[64] Yang L,Han H J,Liu M M,Zuo Z J,Zhou K Q,L J C,Zhu Y R,Bai Y L,Wang Y. Overexpression of the Arabidopsis photorespiratory pathway gene,serine:glyoxylate aminotransferase(AtAGT1),leads to salt stress tolerance in transgenic duckweed(Lemna minor)[J]. Plant Cell Tissue and Organ Culture,2013,113(3):407-416. doi:10.1007/s11240-012-0280-0.
[65] Verslues P E,Kim Y S,Zhu J K. Altered ABA,proline and hydrogen peroxide in an Arabidopsis glutamate:glyoxylate aminotransferase mutant[J]. Plant Molecular Biology,2007,64(1-2):205-217. doi:10.1007/s11103-007-9145-z.
[66] Kaldenhoff R,Ribas-Carbo M,Flexas J,Lovisolo C,Heckwolf M,Uehlein N. Aquaporins and plant water balance[J]. Plant Cell Environment,2008,31:658-666. doi:10.1111/j.1365-3040.2008.01792.x.
[67] Yang X X,Li Y,Ren B B,Ding L,Gao C M,Shen Q R,Guo S W. Drought-induced root aerenchyma formation restricts water uptake in rice seedlings supplied with nitrate [J]. Plant & Cell Physiology,2012,53(3):495-504. doi:10.1093/pcp/pcs003.
[68] 汪晓丽,司江英,陈冬梅,封克. 低pH条件下不同氮源对水稻根通气组织形成的影响[J]. 扬州大学学报(农业与生命科学版),2005,26(2):66-70. doi:10.3969/j.issn.1671-4652.2005.02.017.
Wang X L,Si J Y,Chen D M,Feng K. Effects of different nitrogen sources on rice root aerenchyma formation at low pH level[J]. Journal of Yangzhou University(Agricultural and Life Science Edition),2005,26(2):66-70.
[69] McDonald A J S,Davies W J. Keeping in touch:responses of the whole plant to deficits in water and nitrogen supply[J]. Advances in Botanical Research,1996,22:229-300. doi:10.1016/S0065-2296(08)60059-2.
[70] Xiong D L,Yu T T,Zhang T,Li Y,Peng S B,Huang J L. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza[J].Journal of Experimental Botany,2015,66(3):741-748. doi:10.1093/jxb/eru434.
[71] Otoo E,Ishii R,Kumura A. Interaction of nitrogen supply and soil water stress on photosynthesis and transpiration in rice[J]. Japanese Journal of Crop Science,1989,58:424-429.
[72] Guo F Q,Young J,Crawford N M. The nitrate transporter AtNRT1.1(CHL1)functions in stomatal opening and contributes to drought susceptibility in Arabidopsis[J]. Plant Cell,2003,15:107. doi:10.1105/tpc.006312.
[73] Goodger J Q D,Schachtman D P. Nitrogen source influences root to shoot signaling under drought[M]//Pareek A,Sopory S K,Bohnert H J,Govindjee:Abiotic stress adaptation in plants:physiological,molecular and genomic foundation. Springer,Netherlands,2010,165-173. doi:10.1007/978-90-481-3112-9-8.
[74] Meng S,Zhang C,Su L,Li Y,Zhao Z. Nitrogen uptake and metabolism of Populus simonii in response to PEG-induced drought stress[J]. Environmental and Experimental Botany,2016,123:78-87. doi:10.1016/j.envexpbot.2015.11.005.
[75] Bloom A J,Sukrapanna S S,Warner R L. Root respiration associated with ammonium and nitrate absorption and assimilation by barley[J]. Plant Physiology,1992,99:1294-1301. doi:10.2307/4274507.
[76] Salsac L,Chaillou S,Morot-Gaudry J F,Lesaint C. Nitrate and ammonium nutrition in plants[J]. Plant Physiology and Biochemistry,1987,25:805-812.
[77] Xu Z Z,Zhou G S. Nitrogen metabolism and photosynthesis in Leymus chinensis in response to long-term soil drought[J]. Journal of Plant Growth Regulation,2006,25:252-266. doi:10.1007/s00344-006-0043-4.
[78] Singh M,Singh V P,Prasad S M. Responses of photosynthesis,nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation [J]. Plant Physiology and Biochemistry,2016,109:72-83. doi:10.1016/j.plaphy.2016.08.021.
[79] Snchez F J,Manzanares M,de Andres E F,Tenorio J L,Ayerbe L. Turgor maintenance,osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress [J]. Field Crops Research,1998,59(3):225-235. doi:10.1016/S0378-4290(98)00125-7.
[80] Szabados L,Savour A. Proline:a multifunctional amino acid[J]. Trends in Plant Science,2010,15(2):89-97. doi:10.1016/j.tplants.2009.11.009.
[81] Martinoia E,Massonneau A,Frangne N. Transport processes of solutes across the vacuolar membrane of higher plants[J]. Plant & Cell Physiology,2000,41:1175-1186. doi:10.1093/pcp/pcd059.
[82] Cornic G. Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis [J]. Trends in Plant Science,2000,5(5):187-188. doi:10.1016/S1360-1385(00)01625-3.
[83] Fu J,Huang B. Effects of foliar application of nutrients on heat tolerance of creeping bentgrass[J]. Journal of Plant Nutrition,2003,26:81-96. doi:10.1081/pln-120016498.
[84] Khammari I,Galavi M,Ghanbari A,Solouki M,Asgharipour M R,Poorchaman A. The effect of drought stress and nitrogen levels on antioxidant enzymes,proline and yield of Indian senna(Cassia angustifolia L.)[J]. Journal of Medicinal Plants Research,2012,(11):2125-2130. doi:10.5897/JMPR11.1105.
[85] Cao X C,Zhu C Q,Zhong C,Zhang J H,Wu L H,Jin Q Y,Ma Q X. Nitric oxide synthase-mediated early nitric oxide burst alleviates water stress-induced oxidative damage in ammonium-supplied rice roots[J]. BMC Plant Biology,2019,19:108. doi:10.1186/s12870-019-1721-2.
[86] Xu H W,Lu Y,Xie Z M,Song F. Changes in nitrogen metabolism and antioxidant enzyme activities of maize tassel in black soils region of northeast China[J]. Frontiers in Plant Science,2014,5:515. doi:10.3389/fpls.2014.00515.
[87] Zhu J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology,2003,6:441-445. doi:10.1016/S1369-5266(03)00085-2.
[88] 沈其荣,沈振国. 盐胁迫下氮素营养对大麦苗吸收K+、Na+的影响[J]. 土壤通报,1992,23(5): 211-212.
Shen Q R,Shen Z G. Effects of nitrogen nutrition on the absorption of K+ and Na+ in barley seedling exposed to salt stress[J]. Chinese Journal of Soil Science,1992,23(5): 211-212.
[89] 王磊,隆小华,孟宪法,刘兆普,罗以筛. 不同形态氮素配比对盐胁迫下菊芋幼苗生理的影响[J]. 生态学杂志,2011,30(2): 255-261. doi:10.3760/cma.j.issn.1674-635X.2007.01.018.
Wang L,Long X H,Meng X F,Liu Z P,Luo Y S. Effects of different ratios of mineral nitrogen form on Helianthus tuberosus seedlings physiology under salt stress [J]. Chinese Journal of Ecology,2011,30(2): 255-261.
[90] Dodd I C,Puértolas J, Huber K,Pérez-Pérez J G,Wright H,Blackwell M S A. The importance of soil drying and re-wetting in crop phytohormonal and nutritional responses to deficit irrigation[J]. Journal of Experiment Botany,2015,66:2239-2252. doi:10.1093/jxb/eru532.
[91] 杨美森,王雅芳,干秀霞,罗宏海,张亚黎,张旺锋. 外源一氧化氮对冷害胁迫下棉花幼苗生长、抗氧化系统和光合特性的影响[J]. 中国农业科学,2012,45(15): 3058-3067.doi:10.3864/j.issn.0578-1752.2012.15.006.
Yang M S,Wang Y F,Gan X X,Luo H H,Zhang Y L,Zhang W F. Effects of exogenous nitric oxide on growth,antioxidant system and photosynthetic characteristics in seedling of cotton cultivar under chilling injury stress[J]. Scientia Agricultura Sinica,2012,45(15): 3058-3067.
[92] 肖强,郑海雷. 一氧化氮与植物胁迫响应[J].植物生理学通讯,2004,40(3): 379-384.
Xiao Q,Zheng H L. Nitric oxide and plant stress response [J]. Plant Physiology Journal,2004,40(3): 379-384.