溶解氧、pH值、氨氮、硝酸盐氮和亚硝酸盐氮等是养殖水质指标的重要参数,直接影响水生生物健康[1]。水产养殖过程中水质可影响养殖品种的成活率、生长特征等[2],同时养殖品种和养殖密度同样会影响水质[3-4]。网箱养殖方式中,密度胁迫影响鱼类生长状况和水质条件[5-6]。有研究表明,克氏螯虾高密度养殖不仅抑制生长同时造成养殖水质恶化[7];墨吉明对虾随养殖密度增加存活率降低,水质参数变化幅度增加[8]。罗非鱼养殖模式、养殖密度等与水质参数指标间存在密切关系[9]。水体中氨氮含量过高不仅引起水质恶化,而且会造成水生生物死亡[10]。罗非鱼氨氮急性暴露试验表明,氨氮诱导罗非鱼代谢系统及功能基因的应答变化[11]。Mota等[12]研究表明,循环水养殖系统中总氮含量对大鳞鲆生长影响要高于pH值,高浓度总氮(50 mg/L)和低pH值(5.7)组中大鳞鲆生长指标要显著低于对照组和低总氮(0.5 mg/L)、低pH值组。硝酸盐氮(299.4±5.8)mg/L 28 d暴露可导致斑石鲷体质量下降、死亡率和血浆硝酸盐氮浓度增加,同时产生组织病理学损伤[13]。
水产养殖过程中投喂、肥水、施药等活动所引起的自污染[14]不仅限制养殖品种生长与存活,同样会增加养殖成本,并造成环境污染。养殖水体具有一定自身净化能力,但当养殖密度过高时养殖水体自身净化能力有限,如不能妥善解决将引起水体富营养化、缺氧等状况发生[15]。养殖水体微生物多样性与养殖环境中物质能量代谢密切相关,菌群结构及多样性与养殖品种、养殖密度、水质参数等均密切相关。本研究开展了养殖密度试验,通过水质指标测定和养殖水体生物多样性分析确定罗非鱼养殖过程中自污染的形成,探讨通过合理的养殖密度降低养殖过程中自污染,提高养殖品种品质。
罗非鱼(Oreochromis niloticus)饲养于北京市水产科学研究所小汤山基地,选取规格一致(体质量(25.75 ± 6.89)g,体长(11.77 ± 0.57)cm)罗非鱼作为试验对象,每天投喂2次,分别于9:00和15:00各投喂1次,投喂量为鱼总质量3%。
设置罗非鱼养殖密度梯度,0.8 m3养殖池中分别放置低密度(30尾),中密度(60尾)和高密度(120尾),每个养殖密度设3个平行。养殖水体氨氮、硝态氮、亚硝态氮、浊度等由美国哈希DR900便携式多参数比色计测定。温度、溶解氧、pH值和硬度由美国哈希HQ40d便携式多参数分析仪测定。养殖水体参数指标每3 d检测1次。30 d养殖试验结束后,测量罗非鱼体长、体质量等生长指标,取其肝脏和鳃用于组织病理学分析,取4 L养殖水体用0.22 μm滤膜过滤,滤膜冻存于-80 ℃用于微生物群落多样性分析。
肝脏和鳃组织样品保存于4%多聚甲醛(南京建城),按照脱水、包埋、切片、复水、染色和封片等一系列步骤进行组织切片制备[16]。通过Olympus BX51进行显微观察,通过Olympus U-TV0.63XC进行显微拍照。
水体菌群多样分析通过细菌16S rDNA V3-V4区扩增,Illumina Miseq平台测序及数据分析获得。引物序列:Primer1 5′-3′:GTACTCCTACGGGAGGCAGCA;Primer2 5′-3′:GTGGACTACHVGGGTWTCTAAT。扩增程序如下:94 ℃,5 min;94 ℃,30 s,50 ℃,30 s,72 ℃,60 s,30次循环;72 ℃,7 min,4 ℃。
试验数据通过IBM SPSS Statistics 21软件进行分析,并制作载荷图;SigmaPlot 12.0用于制作水质指标变化图。
不同养殖密度对罗非鱼体长、体质量、肥满度、肝脏指数等生长指标存在影响(表1)。30 d养殖试验结果表明,随养殖密度增加,罗非鱼体长、体质量、肥满度、肝脏指数均呈现下降趋势,虽未达显著差异(P>0.05),但这一趋势可能随养殖时间延长而更显著。
表1 罗非鱼养殖密度试验生长指标
Tab.1 Growth indexes of tilapia in different density culture
注:同列相同字母表示无显著性差异(P>0.05)。
Note:The same lowercase letters in the same column indicate no significant difference(P>0.05).
样品Samples体长/cmBody length体质量/gWeight肥满度Condition factor肝脏指数Hepatic index低密度 Low density12.7±1.5a39.6±6.0a1.9±0.2a1.15±0.40a中密度 Medium density12.6±1.5a36.3±5.1a1.8±0.1a1.03±0.38a高密度 High density12.5±1.4a33.8±3.6a1.7±0.1a0.76±0.21a
不同养殖密度罗非鱼肝脏和鳃等器官外观无异常。组织病理学结果显示,不同养殖密度对罗非鱼肝脏组织无显著影响,但鳃组织存在变化(图1)。低密度养殖组鳃丝排列正常,中密度养殖组鳃小叶变形扭曲、部分末端膨大甚至鳃小叶脱落,高密度养殖组未观测到鳃小叶。鳃是水生动物重要的呼吸器官,也是环境污染物的直接接触器官。郝小凤等[17]发现氨氮对泥鳅存在急性毒性,且泥鳅的死亡率与水体氨氮浓度呈正相关,同时21 d氨氮亚慢性暴露可导致泥鳅鳃组织损伤。水体中的高浓度的氨氮可导致草鱼鳃组织细胞排列和结构异常[18],团头鲂幼鱼鳃组织96 h内随氨氮胁迫时间延长,鳃组织损伤加重[19]。养殖水体中的氨氮、亚硝态氮等物质可以导致鱼类鳃组织损伤、降低载氧能力。
A.低密度养殖组罗非鱼肝脏组织;B.中密度养殖组罗非鱼肝脏组织;C.高密度养殖组罗非鱼肝脏组织;D.低密度养殖组罗非鱼鳃;E.中密度养殖组罗非鱼鳃;F.高密度养殖组罗非鱼鳃。
A.Tilapia hepatic tissue in low density culture group;B.Tilapia hepatic tissue in medium density culture group;C.Tilapia hepatic tissue in high density culture group;D.Tilapia gill tissue in low density culture group;E.Tilapia gill tissue in medium density culture group;F.Tilapia gill tissue in high density culture group.
图1 罗非鱼不同密度养殖组肝脏及鳃组织切片
Fig.1 Slices of hepatic and gill tissue of tilapia cultured with different densities
不同罗非鱼养殖密度对养殖水体溶解氧、pH值、电导率、氨氮、亚硝酸盐氮和硝酸盐氮的影响规律基本一致(图2)。养殖水体中溶解氧含量随养殖密度增加而降低(P<0.05),pH值随养殖密度增加而降低,电导率随养殖密度增加而升高。养殖周期内,高密度组水体氨氮含量高于低密度和中密度组,但15 d后不同养殖密度组的养殖水体中氨氮含量均下降,养殖水体中氨氮含量随养殖时间延长呈下降趋势。养殖周期内从第15 d至第27 d,高密度养殖组中亚硝酸盐氮和硝酸盐氮含量远高于低密度和中密度组(P<0.05);第30 d高密度组养殖水体中亚硝酸盐氮含量较第27 d显著下降,但硝酸盐氮含量仍呈增加趋势。强俊等[20-21]发现罗非鱼养殖密度与氨氮、亚硝酸盐等存在互作效应。水质参数相关系数矩阵(表2)及载荷图(图3)显示,随养殖密度增加指标间相关性有所变化。不同养殖密度组水体硝酸盐氮和亚硝酸盐氮均为中等强度相关;低密度和高密度组溶解氧与氨氮呈负中等强度相关,中密度组中溶解氧与氨氮呈负极强相关。养殖环境中,氨氮通过微生物作用转化为亚硝酸盐氮,过量的亚硝酸盐进入鱼体后可导致鱼类血红蛋白携氧能力下降,甚至功能性贫血[22]。
16S rDNA测序结果表明中密度组OUT数目最多,但不同养殖密度水体中细菌的丰富度和多样性无显著差异(表3),进一步分析发现不同养殖密度对罗非鱼养殖水体中菌属种类无影响,但不同养殖密度组的养殖水体菌属丰度有差异。养殖水体排名前10的菌属分别为黄杆菌属、新鞘脂菌属、hgcl_clade、大单胞菌属、沉积物杆菌属、伯克氏菌属、鲸杆菌属、多核菌属、红杆菌属和假单胞菌属(表4)。黄杆菌属在罗非鱼养殖水体中为优势细菌,其比例高于新鞘脂菌属、hgcl_clade、大单胞菌属、沉积物杆菌属等。黄杆菌属在生活污水处理、污染物降解中多有应用[23-24];Ottowia具有反硝化能力[25],是废水中的优势菌属之一[26-27];嗜冷硝化菌(Candidatus nitrotoga)可适应在低温环境下生长,可替代Nitrospira的菌属[28]。中华绒螯蟹养殖水体中可培养优势细菌属中亦有假单胞菌属和黄杆菌属[29],但黄杆菌属和假单胞菌属的潜在致病性亦不可忽视。新鞘脂菌属具有广泛的存在性,在湖泊[30]、温泉[31]等水体中多有检出,部分新鞘脂菌属和假单胞菌属细菌亦具有反硝化能力[32]。hgcl_clade属于放线菌门,具有广泛的分布[33-35],据报道在鱼菜共生养殖池塘中亦是主要菌属[36]。本研究中养殖水体富含无机氮,水体中优势菌属具有污染物降解能力,可见水体自净能力与微生物群落有密切联系。
同次采样中不同字母表示显著性差异(P<0.05,n=3)。
Different letters in the same sampling times represent significant difference(P<0.05,n=3).
图2 罗非鱼养殖水体水质指标变化
Fig.2 Changes of water quality indicators of tilapia aquaculture
表2 不同养殖密度组水质指标相关系数矩阵
Tab.2 Correlation matrix of water quality indicators at different rearing densities
组别Group水质指标Water quality index溶解氧Dissolved oxygenpH值pH value电导率Conductivity氨氮Ammonia nitrogen亚硝酸盐氮Nitrite nitrogen硝酸盐氮Nitrate nitrogen低密度溶解氧 1.0000.2730.028-0.463**0.0210.356*Low densitypH值0.2731.0000.411*0.0820.1840.110电导率0.0280.411*1.0000.0890.2940.180氨氮-0.463**0.0820.0891.000-0.088-0.478**亚硝酸盐氮0.0210.1840.294-0.0881.0000.467**硝酸盐氮0.356*0.1100.180-0.478**0.467**1.000中密度溶解氧 1.0000.3450.091-0.818**-0.719**-0.192Medium densi-typH值0.345*1.0000.393*0.071-0.194-0.107电导率0.0910.393*1.0000.150-0.136-0.293
表2(续)
注:*.P < 0.05;**.P < 0.01。
组别Group水质指标Water quality index溶解氧Dissolved oxygenpH值pH value电导率Conductivity氨氮Ammonia nitrogen亚硝酸盐氮Nitrite nitrogen硝酸盐氮Nitrate nitrogen氨氮-0.818**0.0710.1501.0000.649**0.169亚硝酸盐氮-0.719**-0.194-0.1360.649**1.0000.577**硝酸盐氮-0.192-0.107-0.2930.1690.577**1.000高密度溶解氧 1.0000.1760.247-0.484**0.2060.528**High densitypH值0.1761.0000.1320.226-0.386*-0.279电导率0.2470.1321.0000.2710.040-0.120氨氮-0.484**0.2260.2711.000-0.371*-0.461**亚硝酸盐氮0.206-0.386*0.040-0.371*1.0000.436**硝酸盐氮0.528**-0.279-0.120-0.461**0.436**1.000
A.低密度组水质参数载荷,lowDO、lowEC、lowpH、lowNH3N、lowNO2N和lowNO3N分别代表低密度组溶解氧、电导、pH值、氨氮、亚硝酸盐氮和硝酸盐氮;B.中密度组水质参数载荷,mediumDO、mediumEC、mediumpH、mediumNH3N、mediumNO2N和mediumNO3N分别代表中密度组溶解氧、电导、pH值、氨氮、亚硝酸盐氮和硝酸盐氮;C.高密度组水质参数载荷,highDO、highEC、highpH、highNH3N、highNO2N和highNO3N分别代表高密度组溶解氧、电导、pH值、氨氮、亚硝酸盐氮和硝酸盐氮。
A.Load diagram of water quality indicators in low density,lowDO,lowEC,lowpH,lowNH3N,lowNO2N and lowNO3N represent dissolved oxygen,conductivity,pH value,ammonia nitrogen,nitrite nitrogen and nitrate nitrogen,respectively;B.Load diagram of water quality indicators in medium density,mediumDO,mediumEC,mediumpH,mediumNH3N,mediumNO2N and mediumNO3N represent dissolved oxygen,conductivity,pH value,ammonia nitrogen,nitrite nitrogen and nitrate nitrogen,respectively;C. Load diagram of water quality indicators in high density,highDO,highEC,highpH,highNH3N,highNO2N and highNO3N represent dissolved oxygen,conductivity,pH value,ammonia nitrogen,nitrite nitrogen and nitrate nitrogen,respectively.
图3 不同密度养殖水体水质参数载荷
Fig.3 The spot of the first and second principal component scores of water quality indicators
表3 在97%相似度水平上样品中细菌的丰富度和多样性指数
Tab.3 Richness and diversity index of bacteria in samples at the 97% similarity level
注:同列不相同字母表示有显著性差异(P < 0.05)。
Note:Different lowercase letters in the same column indicate significant difference(P < 0.05).
样品Samples可操作分类单元OTUsChao1值Chao1香农指数Shannon辛普森指数Simpson低密度 Low density1 026±121a1 548.50±138.77a5.26±0.64a0.89±0.05a中密度 Medium density1 447±170b1 547.93±430.67a5.46±0.80a0.90±0.02a高密度 High density1 176±179a1 296.30±253.31a4.36±1.40a0.82±0.14a
养殖密度梯度试验表明,罗非鱼生长指标未达显著性差异,但呈现出随养殖密度增加而下降,这一趋势很可能随养殖周期延长明显。有研究表明,黄颡鱼增重率、特定生长率等指标随养殖密度增加而降低,水体中亚硝态氮含量增加[37]。罗非鱼肝脏组织无显著变化,但随养殖密度增加鳃组织呈现损伤。有研究表明,氨氮暴露可导致团头鲂[19]、对虾[38]等水生动物鳃组织发生病理学损伤,亚硝酸盐氮也可导致多种水生动物鳃组织损伤[39-40]。因此,中密度和高密度组罗非鱼鳃组织损伤与养殖水体中氨氮和亚硝酸盐氮相关。罗非鱼高密度养殖组水体中亚硝酸盐氮和硝酸盐氮含量随时间增加呈增加趋势,但氨氮含量显著降低,这一结果与养殖水体菌群结构相关。养殖水体中具有硝化作用的菌群可以较好地
表4 罗非鱼养殖水体中细菌多样性及丰度
Tab.4 Bacterial diversity and abundance in aquaculture water of tilapia %
序号Number属类Genus低密度Low density中密度Mediumdensity 高密度Highdensity 1黄杆菌属 18.9520.3315.102新鞘脂菌属5.2514.5012.933hgcl_clade6.3312.6512.144大单胞菌属1.471.5111.835沉积物杆菌属4.081.043.536伯克氏菌属0.657.180.737鲸杆菌属2.422.321.488多核菌属1.510.691.579红杆菌属0.020.762.8810假单胞菌属0.222.570.8711气单胞菌属2.380.100.0312Nordella1.780.070.0013不可培养的0.570.700.5014琼胶分解0.930.360.1215贪噬菌0.690.280.3816噬菌蛭弧菌属0.570.450.2017Candidatus_Aqui-luna0.440.090.6818Fluviicola0.030.011.0619氢噬胞菌属0.310.240.4520拟杆菌 0.400.370.2121Pseudarcicella0.870.020.0122木洞菌属0.420.270.0423嗜冷硝化菌0.040.010.6724生丝微菌属0.250.350.0725厌氧粘细菌0.040.210.3626罗尔斯通氏菌0.050.200.3527硫化细菌0.040.220.3030Reyranella0.100.240.1731苯基杆菌属0.050.100.3632未分类菌属43.1524.1224.2733其他5.998.036.69
控制水体中氨氮含量[41],微生物群落可促进养殖废水中的氮转化。不同养殖密度的水体中菌群丰度存在差异,其中优势菌属主要以黄杆菌属、新鞘脂菌属、hgcl_clade、大单胞菌属等为主,而上述菌属多具备污染物降解能力,这一特性与水体自净能力相关。中、低密度养殖组水质参数无显著差异,但高密度组中无机氮类含量要高于其他两组。因此,过高的养殖密度不利于鱼类生长,罗非鱼中等养殖密度下保证足够的供氧量可促进水体中无机氮的降解,结合有效的水处理可保证鱼类生长,也能带来最大化的经济效应。
[1] Wang C,Li Z,Pan Z L,Li D L. A High-performance optoelectronic sensor device for nitrate nitrogen in recirculating aquaculture systems[J]. Sensors,2018,18(10):3382.doi:10.3390/s18103382.
[2] 侯文杰,臧维玲,刘永士,张煜,杨明,侯文彬,戴习林,丁福江. 室内凡纳滨对虾养殖密度对水质与生长的影响[J]. 安徽农业大学学报,2010(2):108-113.doi:10.13610/j.cnki.1672-352x.2010.02.037.
Hou W J,Zang W L,Liu Y S,Zhang Y,Yang M,Hou W B,Dai X L,Ding F J. Effects of stoking densities on growth and water quality in Litopenaeus vannamei indoor culture[J]. Journal of Anhui Agricultural University,2010(2):108-113.
[3] 李倩,周志明,杭小英,胡延尖,辛建美,王阿忠,屠银华. 南美白对虾不同养殖密度水质变化规律与养殖效益的分析[J]. 中国农学通报,2014,30(2):100-104. doi: 10.11924/j.issn.1000-6850.2013-2177.
Li Q,Zhou Z M,Hang X Y,Hu Y J,Xin J M,Wang A Z,Tu Y H. Analysis of water quality changes under different breeding density and breeding benefit of Penaeus vannamei[J]. Chinese Agricultural Science Bulletin,2014,30(2):100-104.
[4] 张晓雁,李罗新,危起伟,张先锋,沈丽,张艳珍,杨道明,栾钢,刘健伟. 养殖密度对中华鲟行为、免疫力和养殖环境水质的影响[J]. 长江流域资源与环境,2011,20(11):1348-1354. doi:1004-8227(2011)11-1348-07.
Zhang X Y,Li L X,Wei Q W,Zhang X F,Shen L,Zhang Y Z,Yang D M,Luan G,Liu J W. Effects of cultureing density on behavior and immunity of captive Acipenser sinensis and on the water quality of their living pool[J]. Resources and Environment in the Yangtze Basin,2011,20(11):1348-1354.
[5] 李磊,平仙隐,王鲁民,黄艇,王磊,刘永利,蒋玫,宋炜. 铜合金围栏养殖大黄鱼海域水质综合评价与分析[J]. 海洋渔业,2019,41(1):100-106. doi:10.13233/j.cnki.mar.fish.2019.01. 012.
Li L,Ping X Y,Wang L M,Huang T,Wang L,Liu Y L,Jiang M,Song W. Assessment of sea water quality in Larimichthys crocea farm cultured with copper alloy fence[J]. Marine Fisheries,2019,41(1):100-106.
[6] 袁美云,邹作宇,刘双凤,李德鹏,王祖晨,吕延玲,董宏伟. 养殖密度对网箱养殖匙吻鲟稚鱼生长的影响[J]. 渔业现代化,2012,39(4):33-36. doi:doi: 10.3969/j.issn.1007-9580.2012.04. 007.
Yuan M Y,Zhou Z Y,Liu S F,Li D P,Wang Z C,Lü Y L,Dong H W.Effects of stocking density on growth of juvenile Polyodon spathuln reared in net cage[J]. Fishery Modernization,2012,39(4):33-36.
[7] 刘国兴,李玲,彭刚,李佳佳,严维辉,唐建清. 放养密度对克氏原螯虾生长和养殖水质的影响[J]. 江西农业学报,2014,26(4):86-89.doi:10.3969/j.issn.1001-8581.2014.04.024.
Liu G X,Li L,Peng G,Li J J. Effects of stocking density on growth of Procambarus clarkii and aquaculture water quality[J]. Acta Agriculturae Jiangxi,2014,26(4):86-89.
[8] 王博,秦海鹏,廖栩峥,胡世康,赵吉臣,何子豪,陈兆明,孙成波. 养殖密度对生物絮团养殖系统中墨吉明对虾免疫,生长和水质的影响[J]. 渔业现代化,2019,46(6):61-67.doi:10.3969/j.issn.1007-9580.2019.06.010.
Wang B,Qin H P,Liao Y Z,Hu S K,Zhao J C,He Z H,Chen Z M,Sun C B. Effects of stocking density on immunity,growth and water quality of Fenneropenaeus merguiensis cultured under biofloc system[J]. Fishery Modernization,2019,46(6):61-67.
[9] 沈夏霜,秦振发,谭芸,郭忠宝,罗永巨. 吉富罗非鱼四种养殖模式对水质的影响[J]. 水产科技情报,2019,46(1):16-19. doi:10.16446/j.cnki.1001-1994.2019.01.003.
Shen X S,Qin Z F,Tan Y,Guo Z B,Luo Y J. Effect of four culture modes on water quality for GIFT Orechromis niloticus[J]. Fisheries Science & Technology Information,2019,46(1):16-19.
[10] Yu H H,Yang L,Li D L,Chen Y Y. A hybrid intelligent soft computing method for ammonia nitrogen prediction in aquaculture[J]. Information Processing in Agriculture,2020. doi:10.1016/j. inpa.2020.04.002.
[11] Zhu Z X,Jiang D L,Li B J,Qin H,Meng Z N,Lin R H,Xia J H. Differential transcriptomic and metabolomic responses in the liver of Nile Tilapia(Oreochromis niloticus)exposed to Acute Ammonia[J]. Marine Biotechnology,2019,21(4):488-502. doi:10.1007/s10126-019- 09897-8.
[12] Mota V C,Hop J,Sampaio L A,Heinsbroek L,Verdegem M C J,Eding E H,Verreth J A J. The effect of low pH on physiology,stress status and growth performance of turbot(Psetta maxima L.)cultured in recirculating aquaculture systems[J]. Aquaculture Research,2018,49:3456-3467. doi:10.1111/are.13812.
[13] Schrader K K,Davidson J W,Summerfelt S T. Summerfelt. Evaluation of the impact of nitrate-nitrogen levels in recirculating aquaculture systems on concentrations of the off-flavor compounds geosmin and 2-methylisoborneol in water and rainbow trout(Oncorhynchus mykiss)[J]. Aquacultural Engineering,2013,57:126-130. doi:10.1016/j.aquaeng.2013.07.002.
[14] 杨萍萍. 水产养殖业自身污染现状及改善措施[J]. 畜禽业,2019,30(5):46. doi: 10.19567/j. cnki.1008-0414.2019.05.027.
Yang P P.Current situation and improvement measures of aquaculture self pollution[J].Livestock and Poultry Industry,2019,30(5):46.
[15] 殷汝新,殷守仁. 微生态技术对养殖水体富营养化的调控研究[J].中国水产,2015(6):83-85. doi: 10.3969/j.issn.1002-6681.2015.06.036.
Yin R X,Yin S R.Study on the regulation of micro ecological technology on eutrophication of aquaculture water[J].China Fisheries,2015(6):83-85.
[16] Zhu L F,Li W,Zha J M,Li N,Wang Z J. Chronic thiamethoxam exposure impairs the HPG and HPT axes in adult Chinese rare minnow(Gobiocypris rarus):docking study,hormone levels,histology,and transcriptional responses[J]. Ecotoxicology and Environmental Safety,2019,185(15):109683. doi:10.1016/j.ecoenv.2019.109683.
[17] 郝小凤,刘洋,凌去非. 氨氮对泥鳅的急性毒性及对其肝、鳃组织超微结构的影响[J]. 水生态学杂志,2012,33(5):101-107. doi:10.15928/j.1674-3075.2012.05.002.
Hao X F,Liu Y,Ling Q F. Acute toxicity test of ammonia nitrogen and effects of ammonia-N stress on the ultrastructure of gill and liver of Misgurnus anguillicaudatus[J]. Journal of Hydroecology,2012,33(5):101-107.
[18] Zhou X,Dong Y W,Wang F,Dong S L. The effect of high ammonia concentration on gill structure alternation and expression of SOD and HSP90 genes in grass carp,Ctenopharynogodon idella[J]. Acta Hydrobiologica Sinica,2013,37(2):321-328. doi:10.7541/2013.21.
[19] 张武肖,孙盛明,戈贤平,朱健,李冰,廖凌鸿,夏斯蕾,章琼,江晓浚. 急性氨氮胁迫及毒后恢复对团头鲂幼鱼鳃、肝和肾组织结构的影响[J]. 水产学报,2015,39(2):233-244. doi:10.3724/sp.j.1231.2015.59462.
Zhang W X,Sun S M,Ge X P,Zhu J,Li B,Liao L H,Xia S L,Zhang Q,Jiang X J. Acute effects of ammonia exposure on histopathology of gill,liver and kidney in juvenile Megalobrama amblycephala and the post-exposure recovery[J]. Journal of Fisheries of China,2015,39(2):233-244.
[20] 强俊,徐跑,何杰,王辉,李瑞伟. 氨氮与拥挤胁迫对吉富品系尼罗罗非鱼幼鱼生长和肝脏抗氧化指标的联合影响[J]. 水产学报,2011,35(12):1837-1848. doi:10.3724/SP.J.1231. 2011.17530.
Qiang J,Xu P,He J,Wang H,Li R W. The combined effects of external ammonia and crowding stress on growth and biochemical activities in liver of(GIFT)Nile tilapia juvenile(Oreochromis niloticus)[J]. Journal of Fisheries of China,2011,35(12):1837-1848.
[21] 强俊,杨弘,马昕羽,王辉,徐跑,何杰,朱志祥. 基于响应曲面法研究亚硝酸盐与养殖密度对吉富罗非鱼幼鱼生长与肝脏抗氧化力的影响[J].海洋与湖沼,2015,46(5):1166-1174.doi:10.11693/hyhz20150200041.
Qiang J,Yang H,Ma X Y,Wang H,Xu P,He J,Zhu Z Y. [J]. Using response surface methodology of determine effects of chronic nighte exposure and stocking density on growth of GIFT tilapia Oreochromis niloticus Juveniles[J]. Oceanologia Et Limmologia Sinca,2015,46(5):1166-1174.
[22] 李金亮,周玲,赖秋明. 养殖水体中亚硝酸盐氮的降解试验[J].中国水产,2009(6):58-60. doi: 10.3969/j.issn.1002-6681.2009.06.033.
Li J L,Zhou L,Lai Q M.Degradation of nitrite nitrogen in aquaculture water[J].China Fisheries,2009(6):58-60.
[23] 贲岳,陈忠林,徐贞贞,齐飞,叶苗苗,沈吉敏,姜安玺. 低温生活污水处理系统中耐冷菌的筛选及动力学研究[J]. 环境科学,2008(11):199-203. doi:10.13227/j.hjkx.2008.11.025.
Ben Y,Chen Z L,Xu Z Z,Qi F,Ye M M,Shen J M,Jiang A X. Selection and kinetic mechanism of psychrotrophs in low temperature wastewater treatment[J]. Environmental Science,2008(11):199-203.
[24] 郑宗林,王广军,郑曙明. 二氧化氯对草鱼池塘环境异养菌数量及区系组成的影响[J]. 动物医学进展,2015(6):68-73. doi:10.3969/j.issn.1007-5038.2015.06.014.
Zheng Z L,Wang G J,Zheng S M. Effects of chlorine dioxide on the number of heterotrophic bacteria and flora composition in grass carp(Ctenopharyngodon idellus)pond[J]. Progress in Veterinary Medicine,2015(6):68-73.
[25] Liu T,Mao Y J,Shi Y P,Quan X. Start-up and bacterial community compositions of partial nitrification in moving bed biofilm reactor[J]. Applied Microbiology & Biotechnology,2017,101(6):2563-2574. doi:10.1007/s00253-016-8003-9.
[26] Wang B,Zhao M Y,Guo Y Y,Peng Y Z,Yuan Y. Long-term partial nitritation and microbial characteristics in treating low C/N ratio domestic wastewater[J]. Environmental Science Water Research & Technology,2018,4(6):820-827. doi:10.1039/C8EW00009C.
[27] Joshi D R, Zhang Y, Tian Z, Gao Y X, Yang M Y.Performance and microbial community composition in a long-term sequential anaerobic-aerobic bioreactor operation treating coking wastewater[J]. Applied Microbiology & Biotechnology,2016,100(18):8191-8202. doi:10.1007/s 00253-016-7591-8.
[28] 韩梅,高伟,崔福义. 对BAF预处理低温水源水系统中硝化细菌的识别[J]. 给水排水,2017,43(9):16-20. doi:10.3969/j.issn.1002-8471.2017.09.004.
Han M,Gao W,Cui F Y. Identification of nitrifying bacteria in biological aerated filter in pretreatment of polluted raw water at low temperature[J]. Water & Wastewater Engineering,2017,43(9):16-20.
[29] 马文元,吴旭干,张小明,赵庆,刘灿,龙晓文,成永旭,张庆华. 育肥饲料中虾青素含量对雄性中华绒螯蟹肠道和鳃部可培养优势细菌数量和组成的影响[J].水产学报,2016,40(9):1416-1430. doi:10.11964/jfc.20160210289.
Ma W Y,Wu X G,Zhang X M,Zhao Q,Liu C,Long X W,Cheng Y X,Zhang Q H. Effect of dietary astaxanthin on culture-based dominant bacterial community isolated from the intestinal tract and gills of male Chinese mitten crab(Eriocheir sinensis)[J]. Journal of Fisheries of China,2016,40(9):1416-1430.
[30] 郑有坤. 大水面放养水葫芦对富营养化湖泊水体可培养细菌群落结构的影响[J]. 微生物学通报,2015,42(1):42-53. doi:10.13344/j.microbiol.china.140385.
Zheng Y K. Effect of large-scale planting water hyacinth on cultivable bacterial community structure in the eutrophic lake[J].Microbiology China,2015,42(1):42-53.
[31] 刘丽,张科,李冰洁,李明灿,陈秋,郑新华,王福安,周云霞. 河南鲁山五大温泉水细菌多样性分析[J]. 微生物学通报,2018,45(6):1219-1227. doi: 10.13344/j.microbiol.china.170690.
Liu L,Zhang K,Li B J,Li M C,Chen Q,Zheng X H,Wang F A,Zhou Y X. Bacterial diversity analysis of five hot spring in Henan Lushan[J]. Microbiology China,2018,45(6):1219-1227.
[32] 周石磊,黄廷林,白士远,何秀秀. 贫营养好氧反硝化菌的分离鉴定及其脱氮特性[J]. 中国环境科学,2016,36(1):240-250. doi:10.3969/j.issn.1674-5906.2010.09.025.
Zhou S L,Huang Y L,Bai S Y,He X X. Isolation,identification,and nitrogen removal characteristics of oligotrophic aerobic denitrifiers[J]. China Environmental Science,2016,36(1):240-250.
[33] Aguilar P,Dorador C,Vila I,Sommaruga R. Bacterioplankton composition in tropical high-elevation lakes of the Andean plateau[J]. Fems Microbiology Ecology,2018,94:1-9. doi:10.1093/femsec/fiy004.
[34] 张磊. 巢湖水体细菌群落结构及多样性研究[J]. 水生态学杂志,2018,39(6):52-57. doi:10.15928/j.1674-3075.2018.06.008.
Zhang L. Bacterial community structure and diversity in Chaohu Lake[J]. Journal of Hydroecology,2018,39(6):52-57.
[35] 刘峰,冯民权,王毅博.汾河入黄口夏季微生物群落结构分析[J]. 微生物学通报,2019,46(1):54-64. doi:10.13344/j.microbiol.china.180252.
Liu F,Feng M Q,Wang Y B. Microbial community structure of estuary of the Fenhe River into the Yellow River in summer[J]. Microbiology,2019,46(1):54-64.
[36] 李建柱,侯杰,张鹏飞,柳尧全,夏闰红,马徐发. 空心菜浮床对鱼塘水质和微生物多样性的影响[J]. 中国环境科学,2016,36(10):3071-3080. doi:10.3969/j.issn.1000-6923.2016. 10.033.
Li J Z,Hou J,Zhang P F,Liu R Q,Xia R H,Ma X F. Influence on water quality andmicrobial diversity in fish pond by Ipomoea aquatica floating-bed[J]. China Environmental Scienc,2016,36(10):3071-3080.
[37] 赵忠波,汪帆,吴巧婉,胡伟华,邵韦涵,顾贝易,张诚明,全德文,樊启学. 放养密度对黄颡鱼的生长性能和养殖水体水质的影响[J]. 中国农学通报,2016,32(23):37-42. doi: 10.11924/j.issn.1000-6850.casb16030025.
Zhao Z B,Wang F,Wu Q W,Hu W H,Shao W H,Gu B Y,Zhang C M,Quan D W,Fan Q X. Stocking density affecting growth performance of yellow catfish(Pelteobagrus fulvidraco)and water quality[J]. Chinese Agircultural Science Bulletin. 2016,32(23):37-42.
[38] 傅纯洁,尼倩,葛溧,郑伟,董志国,葛红星. 氨氮对对虾毒性的风险评估[J]. 水产养殖,2019,40(2):40-43.doi: 10.3969/j.issn.1004-2091.2019.02.015.
Fu C J,Ni Q,Ge L,Zheng W,Dong Z G,Ge H X.Risk assessment of toxicity of ammonia nitrogen to shrimp[J]. Journal of Aquaculture,2019,40(2):40-43.
[39] 宫春光,张薇,张建业,殷蕊,孙桂清,于清海,石艳洁. 亚硝酸盐氮急性胁迫对斑尾复鰕虎鱼组织结构的影响[J]. 河北渔业,2018,8:11-13,49. doi: 10.3969/j.issn.1004-6755.2018.08. 002.
Gong C G,Zhang W,Zhang J Y,Yin R,Sun G Q,Yu Q H,Shi Y J .Effects of acute nitrite nitrogen stress on the tissue structure of goby goby[J].Hebei Fisheries,2018,8:11-13,49.
[40] 刘海侠,孙海涛,刘晓强,周宏超. 亚硝酸盐中毒鲤的血液和组织病理学研究[J]. 淡水渔业,2010,40(3):67-71.doi: 10.3969/j.issn.1000-6907.2010.03.012.
Liu H X,Sun H T,Liu X Q,Zhou H C. Study on hematology and histopathology of acute toxicity test of nitrite in Cyprinus carpio[J].Freshwater Fisheries,2010,40(3):67-71.
[41] 罗国芝,曹宝鑫,陈晓庆,谭洪新.循环水养殖系统中几种常用的固定膜式生物过滤器[J].渔业现代化,2018,45(1):5-11. doi: 10.3969/j.issn.1007-9580.2018.01.002.
Luo G Z,Cao B X,Chen X Q,Tan H X.Review of several types of frequently-used fixed-film biological filters in recirculating aquaculture systems[J]. Fishery Modernization,2018,45(1):5-11.