藜麦(Chenopodium quinoa Willd.),亦称南美藜、奎奴亚藜、印第安麦,系苋科藜亚科藜属一年生草本植物[1-2]。原产于南美洲安第斯山脉,距今约有5 000多年的栽培历史,是当地印加人备受推崇的传统食物之一[3-4]。藜麦是一种假谷类作物[5],籽粒类似于谷物,营养价值极高,富含丰富的蛋白质、氨基酸、膳食纤维、矿物质等多种营养成分,被联合国粮农组织(FAO)认定为一种单体植物即可满足人体基本营养需求的食物,因而被国际营养学家称为“超级谷物”[6-7]。藜麦资源丰富,具有耐干旱、耐盐碱、耐土壤贫瘠等非生物学特性[8-9],被广泛引种到美国、加拿大和欧洲等多个国家和地区[10-11]。20世纪80年代,我国西藏农牧学院在林芝地区开展引种试验并试种成功[12]。自2008年以来,我国才开始较大面积地种植藜麦[13]。青海于2013年开始藜麦引种,并在民和县试种成功,随后在海西州德令哈、格尔木、乌兰、都兰地区开始较大面积种植[14-15]。
都兰地处柴达木盆地南缘,属于典型的高原大陆性气候,日照充足,昼夜温差大,与原产地安第斯山脉气候接近,非常适宜藜麦种植。但当地的藜麦种植者及加工商,往往只关注藜麦品种的籽粒色泽、大小,却忽视了藜麦内在营养品质,对开拓市场十分不利。联合国粮农组织(FAO)近期在藜麦标准草案中对藜麦品质做了规范,国际植物新品种保护联盟(UPOV)农作物技术工作组第四十五届会议也对藜麦品质提出明确要求。因此,对柴达木盆地(都兰地区)的藜麦品种开展营养品质评价非常必要,这对解决当地藜麦生产加工、提高商品率,逐步走向国内外市场具有重大意义。
主成分分析法是通过少数几个综合指标或因素来代表众多指标或因素,进行分层综合的一种分析方法。目前,该方法被广泛应用在小麦、水稻和玉米[16-18]等作物的品质性状研究。针对藜麦品质的研究,国外主要侧重于藜麦营养成分的组成、功能活性等方面[19-20]。而我国藜麦研究才刚刚起步,以往对藜麦营养品质的评价缺乏整体性、客观性,存在商业化运作模式下对某一营养成分的过分夸大,误导消费者。针对以上问题,本研究对都兰地区种植的12个藜麦品种(系)进行水分、灰分、淀粉、脂肪、粗纤维、总糖、蛋白质、β-葡聚糖、微量元素和氨基酸含量的测定,通过主成分分析、聚类分析对藜麦营养品质进行综合评价,以期客观公正评价柴达木盆地藜麦品质现状,并找出适宜柴达木盆地种植的优质藜麦品种(系),为藜麦特色品种培育和高附加值产业的开发提供科学依据。
供试藜麦品种(系)中贡杂3号、4号、5号和6号引自西藏农牧学院,青藜1号、三江2号来自青海三江沃土生态农业科技有限公司,rell来自清华博众生物技术有限公司,西宁藜麦、QLM01来自青海西宁昆盛农业科技开发有限公司,1591、614915HX、天马HX来自海西海藜农业科技有限公司。所有品种均参加青海藜麦省级区域试验。
田间试验在青海省海西州都兰县进行。试验重复3次,采用随机区组排列。播种前整地,施足底肥,采用穴播方式,株距15 cm,行距20 cm,小区面积20 m2。待幼苗长至15 cm左右开始间苗(间苗2次),最后保证每穴1苗。苗期和生长中期按照大田要求进行中耕除草和水肥管理,待藜麦收获后,各品种(系)去除虫蚀、霉变籽粒,将三重复混匀,四分法取样作品质分析样品。
籽粒水分灰分、淀粉、脂肪、粗纤维、总糖、蛋白质、β-葡聚糖、微量元素和氨基酸含量等,所有测定由中国科学院西北高原生物研究所分析测试中心完成。
采用SPSS 22.0对数据进行相关、主成分和聚类分析。
通过测定比较,各品种(系)之间的营养成分存在差异,总糖和β-葡聚糖的变化最大,变异系数在20%以上;灰分、淀粉、粗纤维、蛋白质含量也存在较大的差异,变异系数在10%~20%;水分、脂肪的差异较小,变异系数在10%以下,表明不同藜麦品种(系)受遗传因素的影响较大(表1)。
从微量元素看,各品种(系)之间含量各有不同,贡杂4号的Ca、K含量最高,天马HX的P、Fe、Al含量最高,1591的Mg、Mn、Sr、S含量最高,QLM01的Na含量最高,614915HX的Cu、Zn含量最高,贡杂6号的B含量最高。品种(系)间含量差异极大,K、Mg、Na、Fe的变异系数超过了1,Ca、P、Mn、Al、Sr、S的变异系数均超过了50%,只有Cu、B、Zn的变异系数相对较低,其中Zn变异系数为29.18%。综合分析可知,不同藜麦品种(系)因受遗传因素的影响,在同一生态环境下对各微量元素的吸收差异较大,这有利于筛选出富含某一种或某几种微量元素的藜麦品种,进行功能性食品的开发(表2)。就氨基酸成分而言,各品种(系)总量之间差异不大,平均含量11.08%,变异系数为8.50%。但各种氨基酸成分含量在品种间差异较大,其中蛋氨酸(MET)的变异程度最大,变异系数为18.81%;苯丙氨酸(ILE)的变异系数最小,为5.27%。相对于其他藜麦品种(系)而言,西宁藜麦的天冬氨酸(ASP)、谷氨酸(GLU)、丝氨酸(SER)、甘氨酸(GLY)、精氨酸(ARG)、苏氨酸(THR)、脯氨酸(PRO)、缬氨酸(VAL)、半胱氨酸(CYS)、亮氨酸(LEU)和组氨酸(HIS)等的含量最高,可以培育成富含氨基酸的藜麦品种,供藜麦高附加值产品开发利用(表3)。
表1 供试藜麦品种(系)营养成分及变异系数
Tab.1 Nutrients and variation coefficients of the quinoa varieties (lines) tested %
品种Variety水分Moisture灰分Ash淀粉Starch脂肪Fat粗纤维Crude fiber总糖Total sugar蛋白质Proteinβ-葡聚糖β-glucan贡杂3号 Gongza No.38.623.1017.006.003.3012.8114.001.27贡杂4号 Gongza No.48.643.2016.605.804.1012.6712.701.42贡杂5号 Gongza No.58.623.3018.705.404.8013.9012.701.89贡杂6号 Gongza No.68.553.6019.505.204.0014.7210.801.56西宁藜麦 Xining quinoa7.323.7020.805.003.4011.4314.301.95青藜1号 Qingli No.17.313.6021.805.702.8013.8914.501.84三江2号 Sanjiang No.27.343.8019.605.304.3011.1013.801.66rell7.204.2020.005.902.6023.8315.301.58614915HX7.264.4020.405.503.1012.8015.301.9315917.373.7025.004.703.2012.6115.201.79QLM017.274.4022.105.003.5014.2315.701.71天马HX Tianma HX7.464.4025.504.603.3014.0014.702.83平均值 Average value7.753.7820.585.343.5314.0014.081.79标准差 Standard deviation0.640.472.730.460.643.291.420.39变异系数 Coefficient of variation8.2512.4413.298.6118.2423.4710.0721.80
从表4可知,藜麦籽粒水分含量与灰分、蛋白质含量呈极显著负相关,与淀粉含量呈显著负相关,与粗纤维含量呈显著正相关,与姚有华等[21]的研究结果相似;脂肪含量与淀粉含量呈极显著负相关,与β-葡聚糖含量呈显著负相关;灰分含量与淀粉含量、蛋白质含量均呈显著正相关;淀粉含量与β-葡聚糖含量呈极显著正相关,蛋白质含量与粗纤维含量呈显著负相关。
品种(系)间各营养成分含量相关性较强,进一步对12个藜麦品种(系)的各营养指标进行主成分分析,结果见表5。前2项指标特征根值大于1,累积贡献率76.542%,但小于80%。从图1可知,特征根值下降速率从第4项开始逐渐变缓,综合表5和图1,选取前3项指标进行主成分分析。
不同藜麦品种(系)间各营养成分的主成分载荷值见表6。由表5,6综合分析可知,主成分F1对总遗传信息的贡献率最大,占51.761%,说明淀粉的特征向量载荷值最大(需正向选择),其次为水分(需负向选择);主成分F2的贡献率为24.781%,主要包含了脂肪和总糖,二者都要进行正向选择;主成分F3的贡献率为9.519%,其中总糖的特征向量载荷值最大,需正向选择;其次为蛋白质,需负向选择。根据分析结果可知,在优质品种选育时一次选择性状指标应为低水分含量和高淀粉含量;二次选择性状指标应为高脂肪含量和高总糖含量;三次选择性状指标应为高总糖含量和低蛋白质含量。这样的选择既高效、快捷,又增加可预知性。
表2 供试藜麦品种(系)微量元素及变异系数
Tab.2 Trace elements and variation coefficients of the quinoa varieties (lines) tested mg/kg
品种VarietyCaKPMgNaCuFeMnAlBSrSZn贡杂3号 Gongza No.3476.305 292.001 884.001 210.008.005.1756.6111.469.5937.401.094.1912.05贡杂4号 Gongza No.4490.506 306.002 534.001 734.0058.615.2927.6116.327.5338.521.675.4819.79贡杂5号 Gongza No.5245.604 481.002 083.001 292.007.423.6619.456.7813.6237.120.983.479.54贡杂6号 Gongza No.6354.206 282.002 693.001 697.004.983.0664.9713.2015.9942.802.186.0817.84西宁藜麦 Xining quino-a244.005 169.002 356.001 703.0010.324.4534.6511.848.9040.361.696.4613.87青藜1号 Qingli No 1299.805 702.002 606.001 886.0023.202.987.6014.465.5542.451.657.1518.71三江2号 Sanjiang No.2367.705 650.002 859.001 756.0023.703.335.2113.578.5641.551.045.549.82rell376.804 755.002 549.001 545.003.323.774.6913.6211.2638.990.834.9911.17614915HX8.50123.8034 736.9019 599.40492.607.40109.50254.2018.187.373.0918.8721.6015918.90110.4044 799.6023 509.90426.906.79144.30283.5022.5211.954.5421.2015.80QLM018.4096.2033 546.0020 934.60553.705.39117.80231.3016.9911.623.2720.819.86天马HX Tianma HX8.20125.9045 349.7022 631.50338.307.35167.50235.0041.9510.882.8620.3618.21平均数 Average value240.743 674.4414 833.028 291.53162.594.8963.3292.1015.0530.082.0710.3814.86标准差 Standard deviation186.992 681.7918 596.049 923.56220.231.6257.60118.039.8514.651.157.414.33变异系数/%77.6772.98125.98119.68135.4533.1490.97128.1565.4348.6855.2471.4029.18Coefficient of variation
表3 供试藜麦品种(系)氨基酸及变异系数
Tab.3 Amino acids and variation coefficients of the quinoa varieties (lines) tested %
品种VarietyASPGLUSERGLYARGTHRPROALAVALMETCYSILELEUPHEHISLYSTYR氨基酸总量Total amino acids贡杂3号 Gongza No.31.091.950.570.841.140.700.620.60.390.100.070.320.340.540.330.950.1610.71贡杂4号 Gongza No.41.011.740.500.801.000.650.570.560.360.110.060.360.380.510.310.930.1810.03贡杂5号 Gongza No.51.031.820.500.771.080.640.590.560.370.100.060.370.410.520.310.900.1810.20贡杂6号 Gongza No.60.931.580.450.700.900.580.540.510.340.090.050.350.350.440.280.810.159.04西宁藜麦 Xining quinoa1.222.130.630.881.290.770.740.690.440.130.070.350.600.600.371.210.2212.34青藜1号 Qingli No.11.192.010.600.851.190.770.710.700.440.150.060.340.510.610.341.140.2111.84三江2号 Sanjiang No.21.181.990.620.831.220.760.700.690.420.150.060.330.530.590.351.240.2611.90rell1.161.980.590.821.200.730.680.660.430.150.050.330.510.580.341.160.2411.60614915HX1.091.890.550.791.050.690.720.640.410.120.050.320.530.560.311.100.2211.0615911.131.900.590.821.070.740.730.660.420.140.050.330.520.580.321.170.2411.41QLM011.141.950.610.831.150.740.710.670.420.160.050.330.530.580.331.230.2511.68天马HX Tianma HX1.071.940.570.781.070.690.740.660.390.150.050.310.530.540.321.090.2311.13平均值 Average value1.101.910.570.811.110.710.670.630.400.130.060.340.480.550.331.080.2111.08标准差 Standard deviation0.080.140.060.050.110.060.070.060.030.020.010.020.080.050.020.140.040.94变异系数7.277.429.805.719.598.3310.639.698.0818.8113.745.2717.748.627.1013.3717.078.50Coefficient of variation
表4 供试藜麦品种(系)营养成分间的相关系数
Tab.4 Nutrients and correlation coefficients of the quinoa varieties (lines) tested
注:*. P<0.05;**. P<0.01。表8,12同。
Note:* .P<0.05;** .P<0.01.The same as Tab.8,12.
指标Index水分Moisture灰分Ash淀粉Starch脂肪Fat粗纤维Crude fiber总糖Total sugarβ-葡聚糖β-glucan灰分 Ash-0.769**淀粉 Starch-0.666*0.626*脂肪 Fat0.359-0.437-0.801**粗纤维 Crude fiber0.613*-0.451-0.414-0.100总糖 Total sugar-0.1640.312-0.0020.335-0.441β-葡聚糖 β-glucan-0.4140.5610.744**-0.682*-0.120-0.096蛋白质 Protein-0.796**0.623*0.522-0.149-0.680*0.1800.279
表5 营养成分相关系数的特征根及贡献率
Tab.5 Latent root and contribution rate of nutrients correlation coefficient
主成分Principal component特征根Latent root贡献率/% Contribution rate 累积贡献率/% Cumulative contribution rate F14.14151.76151.761F21.98324.78176.542F30.7629.51986.062F40.4335.41691.478F50.3173.95795.435F60.1912.39097.825F70.1381.72499.549F80.0360.451100.000
表6 主成分载荷值和得分系数
Tab.6 Loading value of principal components and score coefficients
指标Index载荷值 Loading value得分系数 Score coefficientF1F2F3F1F2F3水分 Moisture-0.883-0.2000.220-0.433 9-0.142 10.252 0灰分 Ash0.8590.0980.2110.422 10.069 60.241 7淀粉 Starch0.884-0.3140.0560.434 4-0.223 00.064 2脂肪 Fat-0.5960.735-0.077-0.292 90.522 1-0.088 2粗纤维 Crude fiber-0.612-0.6300.145-0.300 7-0.447 50.166 1总糖 Total sugar0.1760.7150.6490.086 50.507 90.743 5β-葡聚糖 β-glucan0.695-0.4960.2680.341 5-0.352 30.307 0蛋白质 Protein0.7740.372-0.3820.380 40.264 2-0.437 6
图1 营养成分碎石图
Fig.1 Nutrient composition gravel chart
主成分得分系数是各项指标在每个主成分中所占的权重,根据主成分计算公式及表6,可得到前3个主成分与8项营养成分的线性关系。
F1:y1=-0.433 9x水分+0.422 1x灰分+0.434 4x淀粉-0.292 9x脂肪-0.300 7x粗纤维+0.086 5x总糖+0.341 5xβ-葡聚糖+0.380 4x蛋白质;
F2:y2=-0.142 1x水分+0.069 6x灰分-0.223 0x淀粉+0.522 1x脂肪-0.447 5x粗纤维+0.507 9x总糖-0.352 3xβ-葡聚糖+0.264 2x蛋白质;
F3:y3=0.252 0x水分+0.241 7x灰分+0.064 2x淀粉-0.088 2x脂肪+0.166 1x粗纤维+0.743 5x总+0.307 0xβ-葡聚糖-0.437 6x蛋白质。
其中,x为相应的各成分经均值为0、标准差为1的标准化处理后的变量。以主成分的特征值占主成分特征值总和的比例为权重,按照模型公式y=0.517 61y1+0.247 81y2+0.095 19y3计算主成分的综合得分,并进行排序[22]。在主成分得分中,若得分为正数代表综合品质高于一般水平,得分越高则品质越好。
从表7可知,西宁藜麦、青藜1号、rell、614915HX、1591、QLM01和天马HX的品质高于一般水平,其余5个藜麦品种(系)综合主成分得分为负数,代表营养品质低于一般水平。因此,若以藜麦营养成分为主的话,都兰地区适宜种植的品种依次为:rell>天马HX>QLM01>614915HX>1591>青藜1号>西宁藜麦;而贡杂3号、4号、5号、6号和三江2号在都兰地区种植的品质表现不好。
基于藜麦的主要营养成分,利用SPSS软件,对12个藜麦品种(系)进行层次聚类,采用欧式距离组间联接方式,聚类结果如图2。当聚合水平为9时,12个藜麦品种(系)可以分为3大类。第一类共包括4个品种(系),分别为贡杂3号、4号、5号和6号;第二类包括1591、天马HX、西宁藜麦、QLM01、614915HX、青藜1号、三江2号;第三类只有rell。综合表7可知:rell是最适合都兰地区种植的藜麦品种(系);第二类中除了三江2号,其他品种(系)可根据实际情况有选择地在都兰种植;第一类品种(系)不适合都兰地区种植。
表7 供试藜麦品种(系)营养成分的主成分值、综合主成分值
Tab.7 Values for principal components and comprehensive principal components of nutrient in tested quinoa varieties (lines)
品种Variety主成分得分Principal component scoreF1F2F3综合主成分值Comprehensive principal component value排名Rank贡杂3号 Gongza No.3-2.591 21.173 5-0.927 2-1.138 79贡杂4号 Gongza No.4-3.045 50.034 3-0.14 5-1.581 712贡杂5号 Gongza No.5-2.236 1-1.293 00.853 9-1.396 511贡杂6号 Gongza No.6-2.069 4-0.898 21.342 9-1.165 910西宁藜麦 Xining quinoa0.663 6-0.735 5-0.693 50.095 27青藜1号 Qingli No.10.595 80.898 4-0.606 00.473 46三江2号 Sanjiang No.2-0.459 2-0.793 7-0.637 0-0.495 08rell1.136 93.444 81.323 51.568 11614915HX1.377 10.605 8-0.554 60.810 1415911.713 2-0.795 7-0.706 20.622 45QLM011.723 80.114 5-0.285 30.893 53天马HX Tianma HX3.191 1-1.755 41.034 51.315 22
图2 供试藜麦品种(系)的聚类
Fig.2 Clustering of quinoa varieties (lines) tests
从表8可以看出,Zn元素除外,各微量元素之间存在着极强的相关性,当其中任何一种微量元素含量变化时,其他微量元素也会随之变化,这对选取优质藜麦品种(系)具有重要意义。当选育富集微量元素的藜麦品种(系)时,可通过检测某一种或某几种微量元素含量,便可推测出该藜麦品种(系)的微量元素优劣,既省时又高效。并且,供试藜麦品种(系)间各微量元素呈现高度相关性,表明藜麦对微量元素的吸收受种质基因的影响较大。
由表8知,藜麦各微量元素间相关性极高,因此,运用SPSS软件对微量元素进行主成分分析,得到表9-10。标准化后得到各得分函数为:
F1:y1=-0.279 3xCa+0.303 1xP-0.296 1xK+0.303 7xMg+0.289 4xNa+0.288 5xFe+0.264 3xCu+0.238 4xAl-0.299 8xB+0.275 0xSr+0.302 8xMn+0.300 7xS+0.094 6xZn;
F2:y2=0.178 6xCa-0.022 7xP+0.189 5xK-0.060 2xMg-0.106 6xNa+0.066 1xFe+0.202 3xCu+0.040 5xAl+0.064 1xB+0.115 5xSr-0.032 6xMn-0.033 6xS+0.922 6xZn。
表8 微量元素的相关分析结果
Tab.8 Results of correlation analysis of trace elements
微量元素Trace elements相关系数 Correlation coefficientCaKPMgNaCuMnFeAlBSrSK0.937**P-0.903**-0.963**Mg-0.914**-0.974**0.994**Na-0.880**-0.947**0.923**0.957**Cu-0.668*-0.823**0.852**0.837**0.786**Mn-0.908**-0.972**0.986**0.994**0.966**0.848**Fe-0.807**-0.875**0.939**0.928**0.839**0.842**0.911**Al-0.699*-0.733**0.809**0.763**0.585*0.684*0.715**0.854**B0.895**0.984**-0.967**-0.978**-0.966**-0.884**-0.983**-0.898**-0.724**Sr-0.815**-0.815**0.889**0.898**0.864**0.709**0.909**0.869**0.588*-0.834**S-0.917**-0.955**0.980**0.992**0.963**0.802**0.986**0.911**0.721**-0.960**0.914**Zn-0.161-0.1330.2810.2540.2180.4120.2830.3160.242-0.2490.3890.287
表9 微量元素相关系数的特征根值和贡献率
Tab.9 Latent root and contribution rate of trace element correlation coefficient
主成分Principal component特征根Latent root贡献率/% Contribution rate 累积贡献率/% Cumulative contribution rate F110.73282.55682.556F21.0277.90390.459F30.5644.33894.796F40.3312.54497.340F50.2001.53998.879F60.0730.56099.439F70.0440.34099.779F80.0160.12299.901F90.0100.07399.974F100.0020.01999.993F110.0010.007100.000F12-2.434E-17-1.873E-16100.000F13-5.468E-16-4.206E-15100.000
其中,x为相应的各微量元素经均值为0、标准差为1的标准化处理后的变量。以主成分的特征值占主成分特征值总和的比例为权重,按照模型公式y=0.825 56y1+0.079 03y2计算主成分的综合得分,结果见表11。从表中可知614915HX、1591、QLM01、天马HX的综合得分值为正值,高于一般水平。结合主要营养成分排名,当需要富含微量元素高的品种时,可以从614915HX、1591、QLM01和天马HX中根据实际要求进行选取。
从表12可知,除半胱氨酸(CYS)和异亮氨酸(ILE)外,其他各种氨基酸之间几乎都呈极显著或显著的相关性,当其中一种氨基酸含量发生变化时,其他氨基酸均能响应。在选择富含氨基酸较好的藜麦品种时,只需通过检测某一个或几个氨基酸的含量便可筛选出来富含氨基酸的品种,这大大缩短了检测的时间,节省了成本,提高了选择的可预估性。
表10 微量元素主成分载荷值和得分系数
Tab.10 Loading values of trace elements principal components and scoring coefficients
微量元素Trace elements载荷值Loading value得分系数Score coefficientF1F2F1F2Ca-0.9150.181-0.279 30.178 6P0.993-0.0230.303 1-0.022 7 K-0.9700.192-0.296 10.189 5Mg0.995-0.0610.303 7-0.060 2Na0.948-0.1080.289 4-0.106 6Fe0.9450.0670.288 50.066 1Cu0.8660.2050.264 30.202 3Al0.7810.0410.238 40.040 5B-0.9820.065-0.299 80.064 1Sr0.9010.1170.275 00.115 5Mn0.992-0.0330.302 8-0.032 6S0.985-0.0340.300 7-0.033 6Zn0.3100.9350.094 60.922 6
表11 微量元素主成分值、综合主成分值及得分排名
Tab.11 Principal component value of trace elements,comprehensive principal component value and score ranking
品种Varietyy1y2y微量元素排名Trace elements rank营养排名Nutrition rank 贡杂3号 Gongza No.3-2.185 9-0.135 7-1.815 389贡杂4号 Gongza No.4-2.053 41.596 9-1.569 0712贡杂5号 Gongza No.5-2.198 5-1.169 4-1.907 41011贡杂6号 Gongza No.6-1.877 40.944 6-1.475 2510西宁藜麦 Xining quinoa-1.827 9-0.038 8-1.512 167青藜1号 Qingli No.1-2.311 30.848 0-1.841 196三江2号 Sanjiang No.2-2.680 1-0.988 8-2.290 7128rell-2.487 2-0.707 7-2.109 3111614915HX4.176 41.009 93.527 73415914.851 8-0.100 23.997 525QLM013.686 0-1.739 32.905 543天马HX Tianma HX4.907 50.480 34.089 412
由于氨基酸之间有较强的相关性,运用SPSS软件对其进行主成分分析,结果见表13-14。综合分析可知,主成分F1对总遗传信息的贡献率最大,占77.468%,甘氨酸的特征向量载荷值最大;主成分F2的贡献率13.511%。标准化后各得分函数为:
F1:y1=0.261 9xGLU+0.253 1xSER+0.263 2xGLY+0.229 5xARG+0.237 5xTHR+0.262 2xPRO+0.238 9xALA+0.262 7xVAL+0.258 7xMET+0.222 8xCYS+0.041 0xILE-0.114 9xLEU+0.229 5xPHE+0.260 0xHIS+0.238 9xLYS+0.256 0xTYR;
F2:y2=0.103 9xGLU+0.148 8xSER+0.0282xGLY+0.280 2xARG+0.249 4xTHR+0.063 5xPRO-0.205 8xALA-0.081 4xVAL+0.003 2xMET-0.274 4xCYS+0.611 7xILE+0.327 7xLEU-0.194 3xPHE +0.043 0xHIS+0.256 5xLYS-0.142 4xTYR;
y=0.774 68y1+0.135 11y2。其中,x为各氨基酸含量标准化后的值。
从表15可知,西宁藜麦、青藜1号、三江2号、rell、QLM01和1591的综合主成分得分为正值,表示其氨基酸含量高于一般水平。综合微量元素排名和营养成分排名可得,1591与QLM01可以说是都兰地区营养品质较好的藜麦品种(系)。
表12 氨基酸相关分析结果
Tab.12 Results of correlation analysis of amino acid
氨基酸Amino acid相关系数 Correlation coefficientASPGLUSERGLYARGTHRPROALAVALMETCYSILELEUPHEHISLYSTYRGLU0.948**SER0.962**0.941**GLY0.901**0.899**0.876**ARG0.936**0.944**0.888**0.885**THR0.983**0.921**0.977**0.907**0.882**PRO0.803**0.809**0.856**0.621*0.628*0.825**ALA0.939**0.899**0.955**0.780**0.808**0.956**0.930**VAL0.974**0.902**0.932**0.831**0.854**0.960**0.854**0.947**MET0.740**0.661*0.801**0.5340.590*0.787**0.809**0.880**0.774**CYS0.2820.3850.2110.5470.4850.239-0.1260.0440.108-0.304ILE-0.308-0.378-0.481-0.192-0.166-0.375-0.608*-0.506-0.378-0.4920.307LEU0.784**0.743**0.782**0.5490.641*0.765**0.922**0.876**0.826**0.798**-0.161-0.342PHE0.974**0.919**0.941**0.883**0.867**0.978**0.837**0.950**0.970**0.779**0.187-0.3360.792**HIS0.932**0.940**0.898**0.914**0.978**0.893**0.647*0.817**0.837**0.592*0.521-0.1700.663*0.856**LYS0.902**0.819**0.934**0.726**0.761**0.919**0.896**0.953**0.914**0.896**-0.073-0.4550.902**0.908**0.774**TYR0.725**0.634*0.782**0.4850.5710.750**0.829**0.841**0.754**0.913**-0.334-0.4580.867**0.765**0.5740.933**氨基酸总量0.982**0.951**0.978**0.864**0.899**0.976**0.885**0.975**0.966**0.813**0.179-0.3900.864**0.972**0.904**0.949**0.809**Total amino acids
表13 氨基酸相关系数的特征根值和贡献率
Tab.13 Latent root and contribution rate of amino acid correlation coefficient
主成分Principal component特征根Latent root贡献率/% Contribution rate 累积贡献率/% Cumulative contribution rate F113.94477.46877.468F22.43213.51190.979F30.7464.14495.123F40.3051.69696.819F50.2191.21798.036F60.1330.73698.773F70.0980.54399.316F80.0520.28899.604F90.0450.24999.853F100.0190.10499.957F110.0080.043100.000F126.918E-163.843E-15100.000F136.056E-163.364E-15100.000F144.325E-162.403E-15100.000F15-5.112E-17-2.840E-16100.000F16-1.149E-16-6.384E-16100.000F17-3.163E-16-1.757E-15100.000F18-7.964E-16-4.425E-15100.000
表14 氨基酸主成分载荷值和得分系数
Tab.14 Loading values of amino acid principal components and scoring coefficients
氨基酸Amino acid载荷值Loading value得分系数Score coefficientF1F2F1F2 GLU0.9780.1620.261 90.103 9 SER0.9450.2320.253 10.148 8 GLY0.9830.0440.263 20.028 2 ARG0.8570.4370.229 50.280 2 THR0.8870.3890.237 50.249 4 PRO0.9790.0990.262 20.063 5 ALA0.892-0.3210.238 9-0.205 8 VAL0.981-0.1270.262 7-0.081 4 MET0.9660.0050.258 70.003 2 CYS0.832-0.4280.222 8-0.274 4 ILE0.1530.9540.041 00.611 7 LEU-0.4290.511-0.114 90.327 7 PHE0.857-0.3030.229 5-0.194 3 HIS0.9710.0670.260 00.043 0 LYS0.8920.4000.238 90.256 5 TYR0.956-0.2220.256 0-0.142 4 GLU0.821-0.4670.219 9-0.299 5氨基酸总量0.9980.0310.267 30.019 9Total amino acids
表15 氨基酸主成分值、综合主成分值及得分排名
Tab.15 Principal component value of amino acids,comprehensive principal component value and score ranking
品种Varietyy1y2y氨基酸排名Amino acidrank微量元素排名Trace elementsrank营养排名Nutritionrank 贡杂3号 Gongza No.3-0.926 1-0.633 7-0.803 1989贡杂4号 Gongza No.4-3.005 8-1.243 9-2.496 611712贡杂5号 Gongza No.5-2.657 4-0.737 7-2.158 3101011贡杂6号 Gongza No.6-6.766 2-2.236 0-5.543 712510西宁藜麦 Xining quino-a4.498 21.808 93.729 1167青藜1号 Qingli No.12.683 80.996 72.213 8396三江2号 Sanjiang No.22.881 20.681 92.324 22128rell1.620 50.837 81.368 65111614915HX-0.788 3-0.079 2-0.621 483415910.897 00.158 20.716 3625QLM011.863 60.528 91.515 2443天马HX Tianma HX-0.300 7-0.081 9-0.244 0712
通过对都兰地区种植的12份藜麦品种(系)品质测定,表明藜麦品种(系)间主要营养成分、微量元素、氨基酸含量均存在差异。不同品种(系)的灰分、脂肪、蛋白质和粗纤维平均含量分别为3.78%,5.34%,14.08%,3.53%,这与Vega-Glvez等[23]报道的结果(3.0%~3.8%,5.5%~8.5%和12.5%~16.7%,1.92%~10.5%)相一致。Ca(240.74 mg/kg)、Mg(8 291.53 mg/kg)、K(3 674.44 mg/kg)、Zn(14.86 mg/kg)和Cu(4.89 mg/kg)的含量与Rube′n Vilcacundo等[24]报道的结果(275~1 487 mg/kg,260~5 020 mg/kg,6 967~14 750 mg/kg,28~48 mg/kg,10~95 mg/kg)不太相符,其原因可能有两个方面:一是生态环境条件不一致,土壤中微量元素本底存在差异,二是藜麦品种(系)间遗传因素差异,致使对土壤微量元素的吸收能力不同。
相关分析显示,藜麦中的水分含量与蛋白质含量呈极显著负相关,这与李珊珊等[25]的研究相符;供试藜麦品种(系)内各微量元素之间大部分都呈极显著或显著相关关系,但品种(系)间各微量元素含量差异较大,说明遗传因素对微量元素起主导作用。供试品种(系)间各氨基酸含量相接近,氨基酸之间存在较强的相关性,但氨基酸含量间变异系数大,说明氨基酸含量也是受遗传因素影响。
运用SPSS对藜麦营养成分进行主成分分析,将12份藜麦品种(系)分为两类:一类是在该地区综合性状表现较好的品种(系)(如rell、天马HX、QLM01、1591、青藜1号、614915HX和西宁藜麦);另一类在该地区种植表现品质不佳(如贡杂3号、4号、5号、6号和三江2号)。对营养成分进行聚类分析,可分为三类,第一类包括贡杂3号、4号、5号、6号;第二类包括1591、天马HX、西宁藜麦、青藜1号、QLM01、614915HX和三江2号;第三类只有rell。综合分析判断,12个藜麦品种(系)的营养品质,排名较好的是1591和QML01 2个品系,不仅主要营养成分含量较高,还含有丰富的微量元素、氨基酸,适宜在都兰地区推广种植。
随着生活水平不断提高,人们对营养及健康饮食逐渐重视,但是目前关于藜麦品质的研究大都较为单一,主要集中在藜麦营养成分总含量的分析,对于各营养成分的积累及相互影响研究不够,对于藜麦营养品质的改良与综合利用也尚未形成系统。近年来,FAO藜麦国际标准第6稿(讨论稿)对藜麦水分(≤13.5%)、蛋白(≥10%)、皂苷(≤0.12%)含量都进行了规定,对藜麦籽粒大小也进行了分级(特大粒>2 mm、大粒1.7至2 mm、中粒1.4至1.7 mm和小粒<1.4 mm)。目前,产于柴达木盆地的商品藜麦,水分含量平均8.64%、蛋白含量平均12.56%、皂甙含量0.09%[26],中粒藜麦占63.5%~99.2%(2018年我们对柴达木盆地8家加工企业24份不同色泽商品粮调查结果),这表明柴达木盆地可作为藜麦最优产区之一。为提高藜麦营养品质、充分发挥藜麦营养价值,还需进一步建立藜麦营养品质评价及加工利用标准体系,深入开展藜麦营养功能育种和精深加工研究,促进藜麦产业发展。
[1] 庞春花,华艳宏,张永清,贺笑,薛蓉.不同磷水平下施加腐植酸对藜麦生理特性及产量的影响[J].中国农业科技导报,2019,21(4):143-150.doi:10.13304/j.nykjdb.20180486.
Pang C H,Hua Y H,Zhang Y Q,He X,Xue R. Influences of humic acid on physiological characteristics and yield of quinoa under different phosphorus levels[J].Journal of Agricultural Science and Technology,2019,21(4):143-150.
[2] 刘文瑜,杨发荣,黄杰,魏玉明,金茜.NaCl胁迫对藜麦幼苗生长和抗氧化酶活性的影响[J].西北植物学报,2017,37(9):1797-1804.doi:10.7606/j.issn.1000-4025.2017.09.1797.
Liu W Y,Yang F R,Huang J,Wei Y M,Jin Q. Response of seedling growth and the activities of antioxidant enzymes of Chenopodium quinoa to salt stress[J].Acta Botanica Boreali-Occidentalia Sinica,2017,37(9):1797-1804.
[3] 岳凯,魏小红,刘文瑜,韩厅,辛夏青,赵颖.PEG胁迫下不同品系藜麦抗旱性评价[J].干旱地区农业研究,2019,37(3):52-59.doi:10.7606/j.issn.1000-7601.2019.03.06.
Yue K,Wei X H,Liu W Y,Han T,Xin X Q,Zhao Y. Evaluation of drought tolerance of various quinoa species under PEG stress[J].Agricultural Research in the Arid Areas,2019,37(3):52-59.
[4] 赵颖,魏小红,赫亚龙,赵枭飞,韩厅,岳凯,辛夏青,宿梅飞,马文静,骆巧娟.混合盐碱胁迫对藜麦种子萌发和幼苗抗氧化特性的影响[J].草业学报,2019,28(2):156-167.doi:10.11686/cyxb2018181.
Zhao Y,Wei X H,He Y L,Zhao X F,Han T,Yue K,Xin X Q,Su M F,Ma W J,Luo Q J. Effects of complex saline-alkali stress on seed germination and seedling antioxidant characteristics of Chenopodium quinoa[J].Acta Prataculturae Sinica,2019,28(2):156-167.
[5] Matiacevich S B,Castellión M L,Maldonado S B,Buera M P. Water-dependent thermal transitions in quinoa embryos[J].Thermochimica Acta,2006,448(2):117-122.doi:10.1016/j.tca.2006.06.016.
[6] 崔纪菡,魏志敏,刘猛,赵宇,宋世佳,李海鹏,夏雪岩,李顺国.不同品系菜用藜麦的品质及产量[J]. 河北农业科学,2019,23(3):62-65.doi:10.12148/hbnykx.20190071.
Cui J H,Wei Z M,Liu M,Zhao Y,Song S J,Li H P,Xia X Y,Li S G. Quality and yield of different vegetable quinoat stains[J].Journal of Hebei Agricultural Sciences,2019,23(3):62-65.
[7] 古桑德吉,林长彬,杰布.基于西藏不同藜麦资源营养成分的研究[J].西藏科技,2019(7):10-12. doi:10.3969/j.issn.1004-3403.2019.07.004.
Cu S D J,Lin C B,Jie B. Study on the nutritional components of different quinoa resources in Tibet[J].Tibet’ s Science and Technology,2019(7):10-12.
[8] Jacobsen S E,Mujica A,Jensen C R. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors[J].Food reviews international,2003,19(1-2):99-109.doi:10.1010.81/FRI-120018872.
[9] Wilson C,Read J J,Abo-Kassem E. Effect of mixed-salt salinity on growth and ion relations of a Quinoa and a wheat variety[J].Journal of Plant Nutrition,2002,25(12):2689-2704.doi:10.1081/PLN-120015532.
[10] 顾娴,黄杰,魏玉明,金茜,杨发荣.藜麦研究进展及发展前景[J].中国农学通报,2015,31(30):201-204.doi:10.11924/j.issn.1000-6850.casb15060023.
Gu X,Huang J,Wei Y M,Jin Q,Yang F R. Development prospect and research progress of Chenopodium quinoa[J].Chinese Agricultural Science Bulletin,2015,31(30):201-204.
[11] 王晨静,赵习武,陆国权,毛前.藜麦特性及开发利用研究进展[J].浙江农林大学学报,2014,31(2):296-301.doi:10.11833/j.issn.2095-0756.2014.02.020.
Wang C J,Zhao X W,Lu G Q,Mao Q. A review of characteristics and utilization of Chenopodium quinoa[J].Journal of Zhejiang A & F University,2014,31(2):296-301.
[12] 贡布扎西,旺姆,张崇玺,杨庆寿.南美藜在西藏的生物学特性表现[J].西南农业学报,1994,7(3):54-62.doi:10.16213/j.cnki.scjas.1994.03.012.
Gong B Z X,Wang M,Zhang C X,Yang Q S. South American quinoa′s biological characteristics in Tibet[J].Southwest China Journal of Agricultural Sciences,1994,7(3):54-62.
[13] 任贵兴,杨修仕,么杨.中国藜麦产业现状[J].作物杂志,2015(5):1-5.doi:10.16035/j.issn.1001-7 283.2015.05.001.
Ren G X,Yang X S,Yao Y. Current situation of quinoa industry in China[J].Crops,2015(5):1-5.
[14] 刘景丽,孙长礼,王春兰,张宇卫,祁生源.民和县藜麦种植试验报告[J].青海农技推广,2015(1):59-60. doi:10.3969/j.issn.1008-7117.2015.01.035.
Liu J L,Sun C L,Wang C L,Zhang Y W,Qi S Y. A report of quinoa planting experiment in Minhe County[J].Qinghai Agro-Technology Extension,2015(1):59-60.
[15] 李成祖.格尔木市藜麦引种栽培技术试验研究[J].农业科技通讯,2015(6):94-96.
Li C Z. Experimental study on introduction and cultivation techniques of quinoa in Golmud City[J].Agricultural Science and Technology Newsletter,2015(6):94-96.
[16] 雷加容,余敖,任勇,李生荣,周强,陶军,欧俊梅,杜小英,何员江.小麦品质性状的主成分分析[J].大麦与谷类科学,2015(2):45-48. doi:10.3969/j.issn.1673-6486.2015.02.013.
Lei J R,Yu A,Ren Y,Li S R,Zhou Q,Tao J,Ou J M,Du X Y,He Y J. Principal components analysis of qualitative traits in wheat[J]. Barley and Cereal Sciences,2015(2):45-48.
[17] 邹德堂.黑龙江省稻米品质性状的主成分分析[J].东北农业大学学报,2008,39(3):17-21.doi:10.3969/j.issn.1005-9369.2008.03.005.
Zou D T. Principal component analysis of rice quality traits in Heilongjiang Province[J].Journal of Northeast Agricultural University,2008,39(3):17-21.
[18] 吴建忠,李绥艳,林红,马延华,潘丽艳,李东林,孙德全.青贮玉米品质性状遗传变异及主成分分析[J].作物杂志,2019(3):42-48. doi:10.16035/j.issn.1001-7283.2019.03.008.
Wu J Z,Li S Y,Lin H,Ma Y H,Pan L Y,Li D L,Sun D Q. Genetic variation and principal component analysis of quality characters in silage maize[J]. Crops,2019(3):42-48.
[19] Nowak V,Du J U, Charrondière U R. Assessment of the nutritional composition of quinoa(Chenopodium quinoa Willd.)[J].Food Chemistry,2016,193(15):47-54.doi:10.1016/j.foodchem.2015.02.111.
[20] Ogungbenle H N. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour[J].International Journal of Food Sciences and Nutrition,2003,54(2):153-158.doi:10. 1080/0963748031000084106.
[21] 姚有华,白羿雄,吴昆仑.亏缺灌溉对藜麦光合特性、营养品质和产量的影响[J].西北农业学报,2019,28(5):713-722.doi:10.7606/j.issn.1004-1389.2019.05.005.
Yao Y H,Bai Y X,Wu K L. Effects of deficit irrigation on photosynthetic characteristics,nutritional quality and yield of quinoa[J].Acta Agriculture Boreali-occidentalis Sinica,2019,28(5):713-722.
[22] 张玉.SPSS软件和主成分分析法在牧草营养价值评价中的应用[J].安徽农业科学,2012,40(12):7186-7188.doi:10.13989/j.cnki.0517-6611.2012.12.227.
Zhang Y. Application of SPSS software and principal component analysis method in forage nutrition value evaluation[J].Journal of Anhui Agricultural Sciences,2012,40(12):7186-7188.
[23] Vega-Glvez A,Miranda M,Vergara J,Uribe E,Puente L,Mart nez Enrique A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.),an ancient Andean grain:a review[J].Journal of the Science of Food & Agriculture,2010,90(15):2541-2547.doi:10.1002/jsfa.4158.
[24] Vilcacundo R, Hernández-Ledesma B. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.)[J].Current Opinion in Food Science,2017,14:1-6.doi:10.1016 j.cofs.2016.11.007.
[25] 李珊珊,张爱霞,王桂荣,张新仕,师志刚,王慧军.石家庄地区11个谷子品种的品质相关及聚类分析[J].湖南农业大学学报(自然科学版),2012,38(6):580-586.doi:10.3724/SP.J.1238.2012.00580.
Li S S,Zhang A X,Wang G R,Zhang X S,Shi Z G,Wang H J. Correlation and cluster analysis of quality traits in planted millets from Shijiazhuang[J].Journal of Hunan Agricultural University(Natural Sciences),2012,38(6):580-586.
[26] 赵亚东,党斌,杨希娟,刘洋,姚有华,迟德钊.青海藜麦皂苷超声提取工艺及抗氧化活性[J].食品工业科技,2017,38(19):45-51,62.doi:10.13386/j.issn1002-0306.2017.19.009.
Zhao Y D,Dang B,Yang X J,Liu Y,Yao Y H,Chi D Z. Ultrasonic extraction technology of saponins and its antioxidant activity in quinoa from Qinghai[J].Science and Technology of Food Industry,2017,38(19):45-51,62.