铝胁迫对不同耐铝油菜品种苗期生长发育和养分吸收的影响

熊 洁,丁 戈,李书宇,陈伦林,宋来强

(江西省农业科学院 作物研究所,国家油料改良中心南昌分中心,农业部长江中下游作物生理生态与耕作重点实验室,江西省油料作物生物学重点实验室,江西 南昌 330200)

摘要:为探明铝胁迫对油菜生长发育和养分吸收特性的影响,以2个耐铝性差异显著的油菜品种为试验材料,采用营养液培养,设置4个铝胁迫浓度和2个胁迫时间,测定根系形态指标(总根长、总根表面积、总根体积、总根尖数)、生长指标(根茎粗、株高、地上干质量、根干质量)和营养元素(N、P、K、Ca、Mg、Fe、Al)的含量。结果表明,铝胁迫降低了油菜总根长、总根表面积、总根体积、总根尖数以及根茎粗、株高、根干质量、地上干质量,且随着铝浓度的增加和胁迫时间的延长降幅增大,敏感型品种降幅大于耐铝型品种。铝胁迫对油菜地上部和根系中铝元素的吸收具有促进作用,其中根系铝含量增幅高于地上部;而对N、P、K、Ca、Mg、Fe等元素的吸收有抑制作用。随着铝胁迫浓度增加和胁迫时间延长各元素含量的增幅或降幅增大,且基因型之间存在着一定的差异,敏感型品种的变化幅度大于耐铝型品种。由此可见,与敏感型品种相比,耐铝型油菜品种的根系形态、地上部生长和营养元素吸收受铝毒害的抑制作用较小,其对铝毒害有较强的适应能力。研究结果可为酸性土壤上的油菜高产栽培提供理论依据。

关键词:油菜;铝胁迫;形态指标;养分吸收

土壤酸化是世界范围内普遍存在的制约农业生产的重要障碍因子之一,中国酸化土壤面积约占全国耕地面积的22%,主要分布在南方15个省区,铝毒害是酸性土壤中作物生长的主要限制因子[1-3]。油菜是我国重要的油料作物之一,适宜生长的土壤pH值为6~7,对土壤酸度反应很敏感[4],当土壤pH值小于5.8、铝浓度大于15 mg/kg时,油菜就会受到铝毒危害,产量明显下降[5]。我国油菜种植面积和总产均占世界的1/3[6],主要种植于铝毒害较为严重的长江流域,铝毒害问题已成为油菜生产的重要限制因子[7]。目前,国内外关于铝胁迫对作物的生长和营养特性方面已有一些研究[8-11],通常微摩尔级的铝在短时间内即可抑制作物根系的生长[12-14],破坏了作物根系的微观结构[15-17],抑制地上部生长以及根系对养分的吸收、运输,导致作物营养亏缺或失衡[2,3,8-9]。何龙飞等[18]发现铝胁迫对2种小麦幼苗营养元素的吸收和分布均有影响,铝胁迫下钙、磷含量下降,铝吸收迅速增加,铝分布在表皮细胞中最多,皮层次之,中柱薄壁细胞最少。章爱群等[9]认为铝胁迫使玉米植株中钾、钙、镁、锌、铁等元素累积量下降,耐铝基因型地上部和根系中钾、铁累积量明显多于铝敏感基因型,根系中锌累积量显著高于其他基因型玉米;郭天荣等[8]研究发现,铝胁迫对大麦的生物量、铝和养分元素含量有明显的影响,铝敏感基因型受影响较大,耐铝基因型受影响较小;陈文荣等[11]发现荞麦花期与真叶期相比,植株铝含量大幅下降,其他营养元素增加,铝毒害得到一定程度的缓解。但对于不同耐铝基因型油菜在铝胁迫下铝元素和其他营养元素的吸收和分布特性尚鲜见报道。本研究基于耐铝性综合评价指标,前期从81个油菜品种中筛选出不同耐铝性的2个油菜品种,研究不同铝浓度、不同胁迫时间对油菜根系形态、生长指标和营养元素吸收的影响,以期为揭示油菜营养与耐铝毒关系,以及酸性土壤上的油菜高产栽培提供理论依据。

1 材料和方法

1.1 试验材料

试验于温室(光照时间14 h,昼夜温度25 ℃/20 ℃)内进行。供试材料为一对苗期耐铝性差异显著的油菜品种:赣油杂7号(耐铝性品种T)和蓉油18(铝敏感品种S),由江西省农业科学院作物研究所油菜研究室前期研究筛选获得。

1.2 试验设计

将2个品种分别播种在装有纯净水的水培箱中,7 d后每品种选择长势一致的40株幼苗,移栽于装有1/4 Hoagland营养液(pH值5.8~6.0,参照韩配配等[19]配方)的水培箱中,7 d后更换为1/2营养液,再培养7 d更换为全营养液,全营养液中培养7 d后(苗龄28 d)进行铝胁迫。设置铝浓度(AlCl3)0,50,100,200 μmol/L 4个浓度(pH值4.5),分别处理3,7 d,每个处理3次重复。

1.3 测定指标与方法

分别于铝胁迫3,7 d时取样,每处理考察根茎粗、株高、地上部干质量、根系干质量,根系形态指标采用Microtek i800plus扫描仪进行扫描,用万深根系分析系统软件V2.0进行分析,获得总根长、总根表面积、总根体积、总根尖数等参数。地上部和根系干样粉碎后,采用H2SO4-H2O2消煮,SEAL AQ2间断化学分析仪测定N、P含量;另取样品采用HNO3-HClO4消解,用电感耦合等离子发射光谱仪(ICP)测定Al、K、Ca、Mg、Fe等元素含量。

1.4 统计分析方法

采用WPS 2019软件对试验数据进行整理、作图,运用SPSS 13.0软件进行方差分析(LSD)。

2 结果与分析

2.1 铝胁迫对油菜根系形态的影响

由表1可知,铝胁迫3 d时,随着铝浓度增加,敏感型品种的总根长分别下降37.8%,52.2%,55.1%,耐铝型品种分别下降13.9%,22.7%,33.0%;铝胁迫延长到7 d时,敏感型品种的降幅为40.4%~68.7%,耐铝型品种的降幅为23.5%~41.1%。铝胁迫对其余根系形态指标的影响总体上与总根长表现一致,铝胁迫3 d时,50 μmol/L铝浓度处理下敏感型品种的总根表面积、总根体积、总根尖数均显著减少;耐铝型品种各根系指标略有下降,降幅均低于敏感型品种,除200 μmol/L铝浓度处理下的总根尖数达显著差异水平外,其余各指标差异均不显著。铝胁迫时间达7 d时,总根表面积、总根体积、总根尖数的降幅进一步增大,敏感型品种的表现更为明显,在200 μmol/L铝浓度处理下耐铝型品种的总根表面积、总根体积、总根尖数分别下降26.7%,22.4%,37.2%,而敏感型品种分别下降54.3%,52.2%,58.4%。可见,铝胁迫对油菜总根长、总根表面积、总根体积、总根尖数有抑制作用,随着铝浓度的增加和胁迫时间的延长抑制作用增强,敏感型品种受抑制的程度要大于耐铝型品种。

表1 铝胁迫对油菜根系形态指标的影响

Tab.1 Effect of Al stress on root morphological parameters of rapeseed

处理Treatment总根长/cmTotalrootlength总根表面积/cm2Totalrootsurfacearea总根体积/cm3Totalrootvolume总根尖数Totalroottips3dCK-S360.5±25.0a22.8±3.0a0.77±0.09a1598.7±97.3a50Al-S224.2±30.5b16.6±1.9b0.58±0.05b1080.5±176.3b100Al-S172.4±15.2c14.7±1.3b0.52±0.06b947.9±68.0bc200Al-S161.9±18.0c13.0±2.3b0.39±0.09c833.0±75.9cCK-T353.9±19.0a20.1±2.5a0.59±0.07a1382.1±97.4a50Al-T304.6±27.0b19.5±2.5a0.56±0.05a1251.3±151.1ab100Al-T278.8±36.4bc17.1±3.1a0.53±0.08a1130.4±286.0ab200Al-T241.4±19.4c15.7±2.4a0.50±0.04a1015.9±175.9b7dCK-S555.4±22.6a30.5±4.3a1.12±0.26a2047.1±249.6a50Al-S330.8±43.1b19.9±1.9b0.72±0.05b1350.4±84.2b100Al-S213.1±49.6c18.0±3.6bc0.64±0.13b1073.7±133.0c200Al-S173.9±16.2c13.9±1.3c0.54±0.12b852.4±74.4dCK-T543.2±3.9a27.3±2.7a0.99±0.12a1817.9±176.9a50Al-T415.6±29.6b22.8±0.5b0.86±0.08a1520.2±125.6b100Al-T382.9±26.9b20.9±1.4bc0.80±0.13a1290.0±121.9c200Al-T319.7±39.1c20.0±1.2c0.76±0.16a1141.5±131.1c

注:同列不同小写字母表示同一品种不同处理间差异显著(P<0.05)。表2-4同。

Note:Different lowercase letters in the same column indicate significant difference among different treatments of the same variety at 0.05 level.The same as Tab.2-4.

2.2 铝胁迫对油菜生长指标的影响

随着铝胁迫浓度的增加,根茎粗、株高、根干质量、地上干质量均呈下降的趋势(表2)。铝胁迫3 d时,50 μmol/L铝浓度处理下敏感型品种各生长指标的降幅均高于30%,降幅达显著水平,而耐铝型品种各指标的降幅低于10%,差异不显著;当铝胁迫浓度达到200 μmol/L时,敏感型品种各生长指标的降幅为39.4%~66.8%,耐铝型品种的降幅为25.7%~41.1%,除耐铝型品种地上干质量的降幅不显著外,其余各指标均达显著水平。铝胁迫时间达7 d时,2个品种各生长指标受铝胁迫的抑制程度均增大,在200 μmol/L铝浓度处理下敏感型品种的根茎粗、株高、根干质量、地上干质量分别下降45.1%,50.5%,72.0%,69.8%,而耐铝型品种分别下降34.8%,38.6%,40.3%,33.5%。从下降幅度来看,各生长指标的下降幅度随着铝浓度的增加和胁迫时间的延长而增大,敏感型品种根茎粗、株高、根干质量、地上干质量等生长指标受铝毒害胁迫程度比耐铝型品种严重。

表2 铝胁迫对油菜生长指标的影响

Tab.2 Effect of Al stress on growth indexes of rapeseed

处理Treatment根茎粗/mmRootstockthickness株高/cmPlantheight根干质量/gRootdryweight地上干质量/gAbovegrounddryweight3dCK-S2.60±0.21a28.3±0.9a0.112±0.032a0.577±0.063a50Al-S1.80±0.23b18.2±1.8b0.056±0.011b0.305±0.068b100Al-S1.65±0.20b17.7±1.0b0.039±0.006b0.276±0.052b200Al-S1.57±0.30b15.6±1.3c0.037±0.007b0.213±0.075bCK-T2.34±0.45a25.8±3.7a0.095±0.017a0.597±0.154a50Al-T2.11±0.23ab24.1±3.7ab0.086±0.011ab0.594±0.131a100Al-T1.90±0.31ab22.1±4.9ab0.076±0.015ab0.521±0.101a200Al-T1.72±0.24b18.3±2.3b0.066±0.019b0.429±0.152a7dCK-S2.92±0.29a33.1±2.8a0.148±0.041a1.020±0.155a50Al-S1.91±0.07b20.4±1.4b0.059±0.005b0.434±0.040b100Al-S1.68±0.38b18.2±2.1bc0.051±0.013b0.347±0.120b200Al-S1.60±0.09b16.4±0.5c0.042±0.011b0.309±0.050bCK-T2.79±0.35a31.3±3.1a0.131±0.029a1.029±0.170a50Al-T2.30±0.48b25.0±1.4b0.110±0.021ab0.950±0.167a100Al-T1.93±0.22b23.2±2.2bc0.100±0.021ab0.852±0.125ab200Al-T1.82±0.15b19.2±3.2c0.078±0.018b0.685±0.092b

2.3 铝胁迫对油菜铝元素吸收和分布的影响

由图1可知,随着铝处理浓度的升高,油菜地上部和根系的铝含量均呈逐渐升高的趋势。铝胁迫3 d时,与CK相比,敏感型品种地上部和根系的铝含量分别增加了1.07~2.20倍,18.68~35.97倍,耐铝型品种分别增加了0.57~1.62倍,9.80~12.80倍,增幅均达到显著水平。铝胁迫延长到7 d时,2个品种的铝含量进一步增加,但不同品种、不同器官的增幅不同,敏感型品种地上部和根系的铝含量增加了1.73~3.93倍,21.23~37.58倍,耐铝型品种分别增加了0.71~2.57倍,13.08~22.54倍,增幅均达到显著水平。可见,铝元素进入油菜植株后,主要集中在根系,地上部铝含量增幅小于根系;随着铝胁迫浓度增加和胁迫时间延长,地上部和根系的铝含量上升幅度加快,敏感型品种的增幅大于耐铝型品种。

不同小写字母表示处理间差异显著(P<0.05)。

The different lowercase letters indicates significant difference among different treatments(P<0.05).

图1 铝胁迫对油菜铝元素吸收和分布的影响

Fig.1 Effect of Al stress on Al uptake and distribution of rapeseed

2.4 铝胁迫对油菜营养元素吸收和分布的影响

铝胁迫对油菜N、P、K、Ca、Mg、Fe等元素含量的影响因基因型而异(表3,4)。铝胁迫3 d时,随着铝浓度的增加,地上部和根系中6种元素的含量均呈下降的趋势,50 μmol/L铝浓度处理下敏感型品种地上部和根系中各元素的降幅分别为4.8%~17.6%,5.8%~24.5%,耐铝型品种各元素的降幅分别为1.7%~10.0%,2.4%~13.8%;200 μmol/L铝浓度处理下各元素的降幅进一步增大,敏感型品种的降幅分别为16.4%~32.4%,14.6%~48.8%,耐铝型品种各元素的降幅分别为5.6%~23.7%,9.8%~30.3%。可见,铝胁迫抑制油菜对N、P、K、Ca、Mg、Fe等元素的吸收,随着铝浓度的增加和胁迫时间的延长抑制程度增大,且抑制程度基因型之间存在着一定的差异,敏感型品种的下降幅度大于耐铝型品种。

表3 铝胁迫对油菜地上部营养元素含量的影响

Tab.3 Effect of Al stress on nutrient content elements in aboveground of rapeseed

处理TreatmentN/(g/kg)NcontentP/(g/kg)PcontentK/(g/kg)KcontentCa/(g/kg)CacontentMg/(g/kg)MgcontentFe/(mg/kg)Fecontent3dCK-S54.73±3.14a10.21±0.68a65.73±1.30a28.33±0.47a5.68±0.35a103.06±2.90a50Al-S49.29±2.19ab9.34±0.45ab62.55±2.43a24.61±1.24b5.36±0.36ab84.93±3.45b100Al-S47.73±2.95ab8.69±0.13b55.30±2.33b22.10±1.30bc5.14±0.16ab77.96±5.41bc200Al-S45.77±1.42b7.51±0.23c54.87±3.41b20.23±1.08c4.69±0.14b69.66±4.89cCK-T57.86±2.60a9.92±0.63a58.77±3.71a31.98±0.53a5.23±0.30a100.72±0.80a50Al-T54.85±1.45ab9.68±0.37a56.98±2.65a28.76±0.71b5.14±0.30a95.22±4.12ab100Al-T52.95±1.72ab9.08±0.44ab56.15±3.94a27.45±0.67b4.90±0.27a87.66±5.85bc200Al-T51.63±3.70b8.35±0.52b55.48±2.13a26.88±1.59b4.64±0.24a76.90±4.12c7dCK-S71.73±3.97a10.83±0.78a66.16±4.50a29.84±2.02a6.29±0.44a128.78±9.19a50Al-S59.60±4.00b8.93±0.28b57.33±4.54ab23.64±0.93b5.50±0.12ab91.87±4.98b100Al-S50.29±3.01bc8.52±0.69bc54.77±1.36b21.00±1.04b5.45±0.40ab81.40±4.98bc200Al-S43.87±2.21c7.20±0.37c50.15±1.37b20.21±1.03b5.12±0.41b68.85±4.18cCK-T64.66±2.61a10.68±0.07a59.04±3.76a31.74±1.70a5.24±0.27a126.89±9.13a50Al-T59.80±4.04ab9.67±0.47b53.79±2.41ab26.76±0.99b4.92±0.23ab97.80±6.98b100Al-T56.43±3.93ab8.85±0.32bc51.21±0.80b26.25±1.68b4.48±0.15b88.63±4.12bc200Al-T51.79±2.31b8.20±0.20c49.89±2.21b24.28±1.38b4.37±0.22b77.82±4.70c

表4 铝胁迫对油菜根系营养元素含量的影响

Tab.4 Effect of Al stress on nutrient elements content in roots of rapeseed

处理TreatmentN/(g/kg)NcontentP/(g/kg)PcontentK/(g/kg)KcontentCa/(g/kg)CacontentMg/(g/kg)MgcontentFe/(mg/kg)Fecontent3dCK-S29.88±1.90a33.79±1.65a37.51±1.93a6.87±0.33a2.42±0.15a1574.56±38.63a50Al-S28.16±1.29ab25.52±1.75b34.15±2.20ab5.57±0.40b2.18±0.05ab1209.72±64.05b100Al-S27.77±1.43ab22.58±0.27b32.32±1.47b4.74±0.28c2.03±0.10bc1179.63±79.21b200Al-S25.53±0.56b17.31±0.61c30.21±2.05b4.45±0.20c1.86±0.10c856.71±46.25cCK-T27.06±1.52a17.44±0.93a38.68±1.36a7.73±0.39a2.13±0.05a1444.62±69.40a50Al-T26.42±1.77a16.20±1.05ab36.38±2.84ab6.66±0.26b2.04±0.13ab1294.80±67.13ab100Al-T25.31±0.80a15.26±1.00ab34.79±1.88ab6.26±0.17b1.97±0.08ab1194.40±65.65b200Al-T24.40±0.42a14.09±1.01b33.39±0.41b6.06±0.21b1.86±0.10b1007.22±22.14c7dCK-S30.36±2.38a40.72±0.89a40.73±2.20a8.94±0.51a2.65±0.16a1706.20±75.04a50Al-S26.61±1.19ab22.09±0.83b34.04±1.85b6.55±0.41b2.31±0.10b1202.00±88.13b100Al-S26.17±1.61ab18.95±1.04c32.45±1.08bc5.56±0.26c2.05±0.10bc1037.69±58.19b200Al-S25.38±1.22b15.76±1.08d29.18±1.01c4.01±0.23d1.97±0.06c838.42±54.82cCK-T33.04±1.95a20.58±1.38a40.34±2.42a9.62±0.47a2.61±0.13a1743.35±59.83a50Al-T30.94±2.08a14.05±0.79b34.93±2.51ab7.58±0.53b2.38±0.16ab1305.10±57.32b100Al-T29.93±1.57a12.29±0.47bc34.38±2.37ab6.53±0.45bc2.18±0.15b1190.27±67.57b200Al-T29.31±1.74a11.53±0.12c31.02±1.65b5.84±0.40c2.09±0.13b968.77±48.53c

3 讨论与结论

3.1 铝胁迫对不同耐铝性油菜生长发育的影响

作物根系处于铝毒环境中,是最先感受到胁迫的器官,其受到铝胁迫后会使主根变粗变短、根尖膨大变褐、侧根和根毛减少甚至消失[12,20-21],从而抑制养分吸收和干物质积累,但其抑制程度因基因型而异[7-9,22]。郭天荣等[23]研究认为铝胁迫抑制了大麦根系的生长,从而影响了地上部干物质积累和株高,耐性品种受抑制程度较小。郑阳霞等[2]研究发现高浓度铝胁迫下,豆瓣菜的根系生长受到抑制,生物量减少,胁迫浓度越高,植株生长受到的抑制越大。本研究表明,随着铝浓度的增加和胁迫时间的延长,油菜总根长、总根表面积、总根体积、总根尖数等根系指标以及根茎粗、株高、根干质量、地上干质量等生长指标均下降,这与前人的研究结果基本一致。对于不同耐铝基因型来说,低浓度(50,100 μmol/L)、短时间(3 d)铝胁迫对耐铝型品种总根表面积、总根体积、总根尖数等根系形态指标和根茎粗、株高、根干质量、地上干质量等生长指标的影响未达显著水平,而敏感型品种各指标均受到显著抑制;高浓度(200 μmol/L)、长时间(7 d)铝胁迫下,除耐铝型品种总根体积受到的抑制程度未达显著水平外,2个品种的其余各指标均受到显著抑制。随着铝浓度的增加和胁迫时间的延长,敏感型品种根系形态指标和生长指标受抑制的程度要大于耐铝型品种。

3.2 铝胁迫对不同耐铝性油菜养分吸收的影响

作物铝毒害的一个重要机制就是严重阻碍了作物对养分的吸收与转运,最终导致作物营养的亏缺或失衡。铝是阳离子通道阻断剂,铝胁迫降低了阳离子在根皮层细胞质外体的负载量,同时高浓度铝离子强烈竞争质外体上阳离子的结合位点,导致作物对阳离子的运载量减少[2,24]。目前,关于铝胁迫对作物营养元素吸收的研究结论不一致[25-27],比较一致的看法是,铝胁迫抑制了Ca、Mg的吸收[3,22,28]。本研究表明,铝胁迫下油菜地上部和根系中均积累了大量的铝元素,其中地上部铝含量增幅远远小于根系,可见铝元素进入油菜植株后主要集中在根系;随着铝胁迫浓度增加和胁迫时间延长,地上部和根系的铝含量上升幅度加快,敏感型品种的增幅要大于耐铝型品种。铝对其他营养元素的吸收也有抑制作用,与对照相比,油菜地上部和根系的N、P、K、Ca、Mg、Fe等元素含量均下降。各元素含量下降的主要原因可能是由于铝胁迫影响植株体内与能量代谢和养分吸收有关的酶活性[29-30],以及铝离子与其他元素间的拮抗作用[31-32]。同时,铝胁迫抑制营养元素的吸收与转运也可能是造成植株地上部生长受影响的原因。随着铝浓度的增加和胁迫时间的延长抑制程度增大,且抑制程度基因型之间存在着一定的差异,敏感型品种的下降幅度大于耐铝型品种。可见,与敏感型品种相比,耐铝型油菜品种N、P、K、Ca、Mg、Fe、Al等元素受铝胁迫的影响相对较小,可能是用于吸收、运输这些元素的转运子蛋白或离子通道等受影响较少,这方面机理有待进一步研究。

参考文献:

[1] Shi R Y, Li J Y, Ni N, Xu R K.Understanding the biochar′s role in ameliorating soil acidity[J].Journal of Integrative Agriculture, 2019,18(7): 1508-1517.doi:10.1016/S2095-3119(18)62148-3.

[2] 郑阳霞, 赵善梅, 向前, 雷凤芸, 李钦凤.铝胁迫对豆瓣菜生理特性及营养元素吸收的影响[J].甘肃农业大学学报, 2019, 54(4): 83-91.doi:10.13432/j.cnki.jgsau.2019.04.012.

Zheng Y X, Zhao S M, Xiang Q, Lei F Y, Li Q F.Effects of aluminum stress on physiological and biochemical characteristics and nutrient element absorption of watercress[J].Journal Gansu Agricultural University, 2019, 54(4): 83-91.

[3] 戴清霞, 陆銮眉, 张琼, 李丹.铝胁迫对山茶花吸收矿质元素的影响[J].福建热作科技, 2017, 42(1): 16-24.doi:10.3969/j.issn.1006-2327.2017.01.004.

Dai Q X, Lu L M, Zhang Q, Li D.Effects of aluminum stress on absorption of mineral elements by camellia[J].Fujian Science & Technology of Tropical Crops, 2017, 42(1): 16-24.

[4] 武际, 郭熙盛, 王文军, 朱宏斌.施用白云石粉对黄红壤酸度和油菜产量的影响[J].中国油料作物学报, 2006, 28(1): 55-58.doi:10.3321/j.issn:1007-9084.2006.01.012.

Wu J, Guo X S, Wang W J, Zhu H B.Effect of dolomite application on soil acidity and yield of rapeseed on yellow-red soil[J]Chinese Journal of Oil Crop Sciences, 2006, 28(1): 55-58.

[5] Lofton J, Godsey C B, Zhang H.Determining aluminum tolerance and critical soil pH for winter canola production for acidic soils in temperate regions[J].Agronomy Journal, 2010, 102(1): 327-332.doi:10.2134/agronj2009.0252.

[6] Hu Q, Hua W, Yin Y, Zhang X K, Liu L J, Shi J Q, Zhao Y G, Qin L, Chen C, Wang H Z.Rapeseed research and production in China[J].The Crop Journal, 2017, 5(2): 127-135.doi:10.1016/j.cj.2016.06.005.

[7] 熊洁, 邹小云, 陈伦林, 李书宇, 邹晓芬, 宋来强.油菜苗期耐铝基因型筛选和鉴定指标的研究[J].中国农业科学, 2015, 48(16): 3112-3120.doi:10.3864/j.issn.0578-1752.2015.16.002.

Xiong J, Zou X Y, Chen L L, Li S Y, Zou X F, Song L Q.Screening of rapeseed genotypes with aluminum tolerance at seedling stage and evaluation of selecting indices[J].Scientia Agricultura Sinica, 2015, 48(16): 3112-3120.

[8] 郭天荣, 张国平, 卢王印, 吴汉平, 陈锦新, 邬飞波, 周美学.铝胁迫对不同耐铝大麦基因型干物质积累与铝和养分含量的影响[J].植物营养与肥料学报, 2003, 9(3): 324-330.doi:10.11674/zwyf.2003.0314.

Guo T R, Zhang G P, Lu W Y, Wu H P, Chen J X, Wu F B, Zhou M X.Effect of Al on dry matter accumulation and Al and nutrition contents of barleys differing in Al tolerance[J].Journal of Plant Nutrition and Fertilizers, 2003, 9(3): 324-330.

[9] 章爱群, 崔雪梅, 李淑艳, 贺立源.磷、铝胁迫对玉米幼苗生长和养分吸收的影响[J].玉米科学, 2010, 18(1): 70-76.doi:10.13597/j.cnki.maize.science.2010.01.028.

Zhang A Q, Cui X M, Li S Y, He L Y.Effects of phosphorus deficiency and Al toxicity on growth and nutrient absorption of maize seedling[J].Journal of Maize Sciences, 2010, 18(1): 70-76.

[10] 汪远秀, 李快芬, 丁贵杰, 刘海燕.铝对马尾松菌根苗生长及营养元素吸收的影响[J].森林与环境学报, 2020, 40(2): 119-125.doi:10.13324/j.cnki.jfcf.2020.02.002.

Wang Y X, Li K F, Ding G J, Liu H Y.Effects of aluminum on growth and nutrient element absorption of mycorrhizal Pinus massoniana seedlings[J].Journal of Forest and Environment, 2020, 40(2): 119-125.

[11] 陈文荣, 刘鹏, 黄朝表, 徐根娣, 章赛君, 李朝苏.铝对荞麦铝和其它营养元素运输的影响[J].水土保持学报, 2006, 20(3): 173-176, 186.doi:10.3321/j.issn:1009-2242.2006.03.042.

Chen W R, Liu P, Huang C B, Xu G D, Zhang S J, Li C S.Effects of aluminum on influx and translocation of aluminum and other essential elements in buckwheat(Fagopyrum esculentum Moench)[J].Journal of Soil and Water Conservation, 2006, 20(3): 173-176, 186.

[12] 韩德鹏, 刘星月, 王馨悦, 罗莎, 付东辉, 周庆红.铝胁迫对油菜根系形态和生理指标的影响[J].核农学报, 2019, 33(9): 1824-1832.doi:10.11869/j.issn.100-8551.2019.09.1824.

Han D P, Liu X Y, Wang X Y, Luo S, Fu D H, Zhou Q H.Effects of aluminum stress on morphology parameters of roots and physiological indexes in Brassica napus L.[J].Journal of Nuclear Agricultural Sciences, 2019, 33(9): 1824-1832.

[13] 郑阳霞, 贾松涛, 赵英鹏, 张伟伟, 孙远秀, 邱爽.铝胁迫对西瓜幼苗光合及叶绿素荧光特性的影响[J].华北农学报, 2015, 30(4): 150-156.doi:10.7668/hbnxb.2015.04.026.

Zheng Y X, Jia S T, Zhao Y P, Zhang W W, Sun Y X, Qiu S.Effect of aluminum stress on photosynthetics characteristics and chlorophyll fluorescence parameters of watermelon seedlings[J].Acta Agriculturae Boreali-Sinica, 2015, 30(4): 150-156.

[14] 路亚, 王春晓, 王丽丽, 于天一, 郑永美, 吴正锋, 李林, 王才斌.花生幼苗对酸胁迫的生理响应及品种间差异[J].华北农学报, 2020, 35(1): 73-80.doi:10.7668/hbnxb.20190535.

Lu Y, Wang C X, Wang L L, Yu T Y, Zheng Y M, Wu Z F, Li L, Wang C B.Physiological responses of different peanut varieties to acid stress at seedling stage[J].Acta Agriculturae Boreali-Sinica, 2020, 35(1): 73-80.

[15] Blancaflor E B, Jones D L, Gilroy S.Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize[J].Plant Physiology, 1998, 118(1): 159-172.doi:10.1104/pp.118.1.159.

[16] Rodrigues A A,Vasconcelos-Filho S C, Rodrigues C L, Rodrigues D A, Silva G P, Sales J F, Nascimento K J T, Guimares E M, Rehn L S.Aluminum influence on Hancornia speciosa seedling emergence, nutrient accumulation, growth and root anatomy[J].Flora, 2017, 236-237: 9-14.doi:10.1016/j.flora.2017.09.008.

[17] Liu J P, Pieros M A, Kochian L V.The role of aluminum sensing and signaling in plant aluminum resistance[J].Journal of Integrative Plant Biology, 2014, 56(3): 221-230.doi:10.1111/jipb.12162.

[18] 何龙飞, 刘友良, 沈振国, 王爱勤, 李扬瑞.铝对小麦幼苗营养元素吸收和分布的影响[J].电子显微学报,2000,19(5):685-694.doi:10.3969/j.issn.1000-6281.2000.05.004.

He L F, Liu Y L, Shen Z G, Wang A Q, Li Y R.Effects of aluminum on the absorption and distribution of nutrient elements of wheat seedlings[J].Journal of Chinese Electron Microscopy Society, 2000, 19(5): 685-694.

[19] 韩配配, 秦璐, 李银水, 廖祥生, 徐子先, 余常兵, 胡小加, 谢立华, 廖红.不同营养元素缺乏对甘蓝型油菜苗期生长和根系形态的影响[J].中国油料作物学报, 2016, 38(1): 88-97.doi:10.7505/j.issn.1007-9084.2016.01.014.

Han P P, Qin L, Li Y S, Liao X S, Xu Z X, Yu C B, Hu X J, Xie L H, Liao H.Effects of different nutrient deficiencies on growth and root morphological changes of rapeseed seedlings(Brassica napus L.)[J].Chinese Journal of Oil Crop Sciences, 2016, 38(1): 88-97.

[20] Silva I R, Smyth T J, Moxley D F, Carter T E, Allen N S, Rufty T W.Aluminum accumulation at nuclei of cells in the root tip.Fluorescence detection using lumogallion and confocal laser scanning microscopy[J].Plant Physiology, 2000, 123(2): 543-552.doi:10.1104/pp.123.2.543.

[21] 鲍学敏, 赵学强, 肖作义, 郑春丽, 沈仁芳.铝对不同耐铝水稻品种根系生长和养分吸收的影响[J].植物生理学报, 2015, 51(12): 2157-2162.doi:10.13592/j.cnki.ppj.2015.0465.

Bao X M, Zhao X Q, Xiao Z Y, Zheng C L, Shen R F.Effects of aluminum on the root growth and nutrient uptake of two rice varieties with different aluminum tolerances[J].Plant Physiology Journal, 2015, 51(12): 2157-2162.

[22] 刘强, 柳正葳, 刘召亮, 乔清华, 张玉.一氧化氮对铝胁迫下烟草根系营养元素吸收和呼吸电子传递及内源激素含量的影响[J].江苏农业学报, 2020, 36(2): 292-298.doi:10.3969/j.issn.1000-4440.2020.02.006.

Liu Q, Liu Z W, Liu Z L, Qiao Q H, Zhang Y.Effects of nitric oxide on nutrient uptake,respiratory electron transfer and endogenous phytohormones contents in roots of tobacco seedlings under aluminum stress[J].Jiangsu Journal of Agricultural Sciences, 2020, 36(2): 292-298.

[23] 郭天荣, 弭忠祥, 张艳华.铝、镉、铜互作对大麦生长发育及养分吸收的影响[J].麦类作物学报, 2008, 28(1): 134-139.doi:10.7606/j.issn.1009-1041.2008.01.026.

Guo T R, Mi Z X, Zhang Y H.Growth, development and nutrient absorption in barley plants under combined toxicity of aluminum, copper and cadmium[J].Journal of Triticeae Crops, 2008, 28(1): 134-139.

[24] Rengel Z.Uptake of aluminium by plant cells[J].New Phytologist, 1996, 134(3): 389-406.doi:10.1111/j.1469-8137.1996.tb04356.x.

[25] Vasconcelos C V, Costa A C, Müller C, Castoldi G, Costa A M, Barbosa K D P, Rodrigues A A, Silva A A D.Potential of calcium nitrate to mitigate the aluminum toxicity in Phaseolus vulgaris:effects on morphoanatomical traits, mineral nutrition and photosynthesis[J].Ecotoxicology, 2020, 29(10): 203-216.doi:10.1007/s10646-020-02168-6.

[26] Rahman M A, Lee S H, Ji H C, Kabir A H, Jones C S, Lee K W.Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: current status and opportunities[J].International Journal of Molecular Sciences, 2018, 19(10): 3073.doi:10.3390/ijms19103073.

[27] Muhammad N, Zvobgo G, Zhang G P.A review: The beneficial effects and possible mechanisms of aluminum on plant growth in acidic soil[J].Journal of Integrative Agriculture, 2019,18(7): 1518-1528.doi:10.1016/S2095-3119(18)61991-4.

[28] 黄春琼, 陈振, 崔蓉菁, 刘国道, 王文强.铝胁迫对狗牙根种质资源营养元素吸收的影响[J].热带作物学报, 2020, 41(6): 1092-1099.doi:10.3969/j.issn.1000-2561.2020.06.004.

Huang C Q, Chen Z, Cui R J, Liu G D, Wang W Q.The effect of aluminum stress on nutrient absorption in cynodon dactylon accessions[J].Chinese Journal of Tropical Crops, 2020, 41(6): 1092-1099.

[29] Pérez G, Garbossa G, Sassetti B, Risio C D, Nesse A.Interference of aluminum on iron metabolism in erythroleukaemia K562 cells[J].Journal of Inorganic Biochemistry, 1999, 76(2):105-112.doi:10.1016/S0162-0134(99)00121-X.

[30] Sharma P, Dubey R S.Modulation of nitrate reductase activity in rice seedlings under aluminum toxicity and water stress: role of osmolytes as enzyme protectant[J].Journal of Plant Physiology, 2005, 162(8): 854-864.doi:10.1016/j.jplph.2004.09.011.

[31] Wanabe T, Okada K.Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH[J].Annals of Botany, 2005, 95(2):379-385.doi:10.1093/aob/mci032.

[32] Liu K, Luan S.Internal aluminum block of plant inward K+channels[J].The Plant Cell, 2001, 13(6): 1453-1465.doi:10.2307/3871307.

Effects of Aluminum Stress on Growth and Nutrient Absorption of Different Aluminum-tolerant Rapeseed Varieties at Seedling Stage

XIONG Jie, DING Ge, LI Shuyu, CHEN Lunlin, SONG Laiqiang

(Crops Research Institute,Jiangxi Academy of Agricultural Sciences, Nanchang Branch of National Center of Oil Crops Improvement, Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, P.R.China, Jiangxi Province Key Laboratory of Oil Crops Biology, Nanchang 330200, China)

AbstractIn order to explore the effects of aluminum(Al)stress on growth and nutrient absorption characteristics of different Al-tolerant rapeseed varieties, a hydroponically experiment with four concentrations and two stress time of Al treatment was carried out to measure root morphology(total root length, total root surface area, total root volume, total root tips), growth indicators(rootstock thickness, plant height, dry weight above ground, dry weight of root system)and nutrient elements(N, P, K, Ca, Mg, Fe, Al)content.The results showed that Al stress reduced total root length, total root surface area, total root volume, total root tips, rhizome thickness, plant height, root dry weight, and above-ground dry weight.With the increase of concentration and time of Al treatment, the decrease of root and growth indicators were further enhanced, and these decrease of Al-sensitive variety were more than that of Al-tolerant variety.Al stress promoted the absorption of Al in the shoots and roots of rapeseed, and the increase of Al content in roots were higher than that in the shoots; while it had a inhibition on the absorption of N, P, K, Ca, Mg, Fe and other elements.With the increase of concentration and time of Al treatment, these increase or decrease of nutrient elements content were further enhanced, and there were certain differences between genotypes, while these variation of Al-sensitive variety were more than that of Al-tolerant variety.Obviously, compared with Al-sensitive variety, the root morphology, aerial growth and nutrient absorption of Al-tolerant variety which had stronger adaptability to aluminum toxicity were less inhibited.The research results can provide a theoretical basis for the high-yield cultivation of rapeseed on acid soil.

Key words: Rapeseed; Aluminum stress; Morphological parameters; Nutrient absorption

中图分类号:S634.01;S143.7

文献标识码:A

文章编号:1000-7091(2020)06-0165-07

doi:10.7668/hbnxb.20191252

收稿日期:2020-08-02

基金项目:国家自然科学基金项目(31560348);国家现代农业产业技术体系建设专项(CARS-12)

作者简介:熊 洁(1984-),女,河南郑州人,副研究员,博士,主要从事作物栽培与生理生态研究。

通讯作者:宋来强(1963-),男,江西瑞金人,研究员,博士,主要从事作物遗传育种与栽培技术研究。