种植形式通过影响群体内植株个体水平分布,影响植株地上、地下部器官发育,对植株根体建成、水分和养分吸收产生重要调控效应[1-3]。优化种植形式能有效改善禾谷类作物生育后期的冠层光分布、植株干物质积累和物质器官间转运[4-5],增强植株产量形成能力。
我国北方地区水资源匮乏程度日益加剧,提高小麦、玉米周年两熟种植系统水资源利用效率,对于保障该生态类型区的农业可持续发展具有重要实践意义。研究表明,在冬小麦 (T.riticum aestivum)生育期间,精准调亏灌溉能有效节省水资源,提高小麦的水资源利用效率[6-8]。此外,与宽窄行种植形式相比,等行种植能克服宽窄行种植下小麦光热浪费、水肥资源利用率低的限制,改善植株个体发育,增强光合物质积和产量形成能力[9-10]。近年来,等行匀播(15 cm)种植形式已在河北平原区大范围推广,在促进节水栽培冬小麦丰产和增效中发挥了重要作用。
优化种植形式构建高光效群体,对于改善冬小麦群个体发育、产量形成和光热水肥资源利用具有重要实践价值[11]。针对迄今缩行匀株种植形式对小麦发育和产量形成的影响尚有待进一步研究的现状,本试验研究了缩行(7.5 cm行距)对节水栽培冬小麦群个体性状、氮素吸收累积、光合特性和产量的影响,旨在为河北生态区冬小麦可持续发展提供理论依据。
试验于2017-2018年和2018-2019年在河北农业大学辛集试验站进行。上述各试验年度小麦生育中后期的气象参数见表1。供试土壤养分含量:有机质15.20 g/kg,碱解氮68.43 mg/kg,有效磷19.23 mg/kg,速效钾128.43 mg/kg。试验采用裂区设计,种植形式为主区,包括15 cm等行距(对照)和7.5 cm窄行处理。其中,对照采用生产中行距设置15 cm播种机实施,窄行处理采用行距设置为7.5 cm的小麦窄行播种机(河北农业大学研制)。供试小麦品种为副区,包括济麦22和石新828。小区面积48 m2 (8 m×6 m),重复3次。2017-2018年播期为2017年10月20日,各处理基本苗525×104株/hm2;2018-2019年播期为2018年10月12日,各处理基本苗为375×104株/hm2。2017-2018年生长季降水量136.5 mm,2018-2019年生长季降水量153.6 mm。试验小区底施氮磷钾复合肥(N∶P2O5∶K2O=18∶10∶15)600 kg/hm2,拔节期结合灌水追氮(N)120 kg/hm2。全生育期灌底墒和拔节2水。其他管理措施同生产大田。
表1 试验年度小麦生育中后期气象因素
Tab.1 Meteorological factors during the middle and late growth stages of wheat across experimental seasons
年份Year旬10 d平均温度/℃Average temperature降水量/mmPrecipitation太阳辐射/(W/m2) Solar radiation 4月5月6月4月5月6月4月5月6月2018上旬10.2221.4224.253.860.103.65218.07233.02250.38中旬13.1424.8127.225.230.003.40260.30283.34252.06下旬18.9824.5027.031.2317.9943.75221.68266.28224.182019上旬9.3720.3226.533.785.5631.88193.29242.03232.33中旬13.1222.1326.6010.0823.8321.75242.32250.16239.41下旬19.2323.6330.135.8643.000.43239.56274.42231.00
在拔节期、孕穗期、开花期、灌浆中期和蜡熟期,进行植株群个体性状测定。
1.2.1 单株分蘖数、叶面积和干质量 在各生育时期,各小区选择代表性植株15株,调查总分蘖量,计算单株分蘖数。采用叶面积仪测量样本所有叶片叶面积,计算单株叶面积。将植株样本在110 ℃烘箱内杀青30 min,然后于80 ℃下烘至恒质量后称质量,计算单株干质量。
1.2.2 群体总茎数、LAI和群体干物质量 在各生育时期,各小区调查1 m2样点茎数量,换算群体总茎数;通过单株叶面积和基本苗数计算LAI;通过单株干质量和基本苗数计算群体干质量。
以2017-2018年生长季各生育时期植株样本为材料,将称量干质量后的植株样本用粉碎仪粉碎,参照Guo等[12]的方法,测定样本的氮(N)、磷(P2O5)和钾(K2O)含量。通过氮磷钾含量分别与群体干质量乘积获得群体氮、磷、钾累积量。
1.4.1 叶绿素含量 2017-2018年生长季,在拔节、孕穗、开花和灌浆中期,以植株上位展叶为材料,采用叶绿素分析仪(SPAD-502)测定叶片叶绿素含量(Chl)。
1.4.2 光合参数 以各生育时期叶绿素含量测定样本为材料,采用光合作用测定系统(CID-340,英国)测定光合参数,包括光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间CO2浓度(Ci)。测定在晴天上午9:00-11:00进行,光通量密度为1 000~1 500 μE/(m2 ·s),CO2浓度为330~350 μL/L。
通过蜡熟期群体总茎数获得单位面积穗数。成熟期,各小区选取代表性植株30株,调查各穗结实粒数,获得穗粒数。用小区脱粒机对各小区样点(6 m2)收获籽粒,风干后称质量换算产量。通过称量1 000粒风干籽粒获得千粒质量。
采用Microsoft Excel 2010和SPSS软件进行各测定性状的平均值、标准差值和显著性检验分析。
由表2可知,与对照(行距15 cm)相比,窄行处理(7.5 cm 行距)下供试品种济麦22和石新828各生育时期(拔节期、孕穗期、开花期、灌浆中期和蜡熟期)群体总茎数显著增多,LAI显著增加,群体干物质量显著增加。表明窄行处理可显著改善植株群个体发育,不同品种相比,窄行处理下石新828各生育时期的群体性状较对照的提升幅度优于济麦22。
表2 不同种植处理下供试品种各生育时期的群体性状
Tab.2 Population traits of the tested cultivars during growth stages under different planting pattern treatments
生长季Growthseason性状Trait种植形式Plantingpattern品种Cultivar拔节期Jointingstage 孕穗期Bootingstage开花期Floweringstage灌浆中期Mid-fillingstage蜡熟期Waxy maturitystage2017-2018总茎数/对照济麦221 050.0±28.2b923.2±23.9b810.2±18.9b743.2±18.1b729.9±20.0b(×104株/hm2)石新8281 002.8±30.3b908.4±27.2b800.8±17.5b720.2±16.8b680.4±21.5b窄行处理济麦221 226.5±30.3a989.7±27.1a856.6±20.8a823.6±26.4a789.8±20.2a石新8281 208.9±31.3a970.6±26.6a840.7±20.6a800.8±22.3a762.0±18.8aLAI对照济麦222.12±0.05b5.87±0.11b5.45±0.13b3.23±0.08b0.85±0.05b石新8282.06±0.04b5.60±0.10b5.32±0.11b3.08±0.09c0.80±0.02b窄行处理济麦222.23±0.02a6.43±0.10a6.17±0.21a3.54±0.07a1.03±0.06a石新8282.20±0.03a6.26±0.09a6.04±0.19a3.39±0.06a1.00±0.05a干物质量/对照济麦223.02±0.03b6.75±0.05b9.12±0.07b13.32±0.06b15.68±0.05b(t/hm2)石新8282.98±0.02b6.66±0.02b8.97±0.04b13.10±0.05b15.22±0.06b窄行处理济麦223.33±0.02a7.68±0.04a10.68±0.04a15.07±0.06a17.01±0.06a石新8283.29±0.03a7.54±0.06a10.23±0.04a14.95±0.05a16.92±0.05a2018-2019总茎数/对照济麦221 141.2±27.3b920.0±23.0b804.5±22.5b745.8±20.3b708.5±23.9b(×104株/hm2)石新8281 086.0±26.0b900.8±24.1b798.3±23.8b732.6±22.0b676.2±20.7b窄行处理济麦221 260.3±27.9a995.4±20.8a843.4±23.9a832.9±23.3a776.7±22.2a石新8281 248.4±29.5a982.6±25.9a832.9±21.8a822.2±24.1a761.7±20.5aLAI对照济麦222.23±0.04b5.95±0.07b5.68±0.07b3.41±0.04b0.56±0.01b石新8282.14±0.03b5.87±0.06b5.62±0.07b3.35±0.03b0.53±0.02b窄行处理济麦222.45±0.05a6.48±0.07a6.33±0.05a3.58±0.03a0.72±0.02a石新8282.40±0.03a6.40±0.06a6.26±0.06a3.42±0.05a0.70±0.02a干物质量/对照济麦222.89±0.03b6.70±0.06b9.23±0.16b15.01±0.17b17.27±0.26b(t/hm2)石新8282.82±0.02b6.61±0.04b9.04±0.17b14.77±0.25b16.76±0.29b窄行处理济麦223.30±0.02a7.52±0.05a10.96±0.14a16.25±0.26a18.96±0.37a石新8283.24±0.02a7.43±0.06a10.68±0.14a16.12±0.27a18.89±0.30a
注:同列不同小写字母分别表示处理间差异显著(P<0.05)水平。表3-5同。
Note: Small letters in the same column indicate significant difference among treatments at 0.05 levels. The same as Tab.3-5.
随着春季生育进程,供试小麦品种的植株氮磷钾含量均呈不断下降趋势(表3)。其中,植株含氮量由拔节期的12.0~12.7 g/kg降至蜡熟期的10.0~10.4 g/kg,含磷量由拔节期的4.2~4.6 g/kg降至蜡熟期的3.0~3.3 g/kg,含钾量由拔节期的14.0~14.7 g/kg降至蜡熟期的8.1~8.5 g/kg。不同种植形式下的植株氮磷累积量随生育进程呈S型曲线变化,钾累积量呈抛物线型曲线,在灌浆中期达到最大值。与对照相比,窄行处理对供试品种各生育时期的植株氮、磷、钾含量没有显著影响,但使植株氮磷钾累积量(拔节期和开花期磷累积量除外)显著增多。其中,成熟期供试品种氮累积量增加10.60%~14.51%,磷累积量增加2.67%~12.10%,钾累积量增加5.93%~11.17%(表3)。表明窄行处理具有改善节水栽培小麦氮磷素吸收和累积的效果;与济麦22相比,窄行处理对石新828各生育时期植株的氮磷钾累积调控效应更为明显。
表3 不同种植形式处理下供试品种各生育时期的植株氮磷钾含量和累积量
Tab.3 Contents and accumulative amounts of nitrogen, phosphorus, and potassium in tested cultivars during growth stages under different planting pattern treatments
营养Nutrition性状Trait种植形式Plantingpattern品种Cultivar拔节期Jointingstage 孕穗期Bootingstage开花期Floweringstage灌浆中期Mid-fillingstage蜡熟期Waxy maturitystageN含量对照济麦2212.2±0.2a11.3±0.3a10.8±0.2a10.5±0.3a10.2±0.2a/(g/kg)石新82812.0±0.3a11.4±0.2a10.7±0.3a10.4±0.2a10.0±0.3a窄行处理济麦2212.3±0.2a11.3±0.2a10.9±0.2a10.6±0.2a10.4±0.2a石新82812.7±0.1a11.6±0.3a11.1±0.3a10.7±0.1a10.3±0.2a累积量对照济麦2236.84±1.28b76.28±2.08b98.50±3.28b139.86±3.87b159.94±3.29b/(kg/hm2)石新82835.76±2.12b75.92±2.22b95.98±3.01b136.24±2.89b152.20±3.65b窄行处理济麦2240.96±1.68a86.78±3.10a116.41±3.98a159.74±3.42a176.90±3.51a石新82841.78±1.63a87.46±2.79a113.55±3.66a159.97±3.66a174.28±3.60aP2O5含量对照济麦224.2±0.1a3.7±0.1a3.3±0.2a3.1±0.2a3.0±0.1a/(g/kg)石新8284.6±0.2a3.9±0.2a3.6±0.2a3.4±0.1a3.3±0.2a窄行处理济麦224.0±0.2a3.7±0.1a3.4±0.2a3.3±0.2a3.1±0.2a石新8284.3±0.2a3.8±0.2a3.4±0.1a3.3±0.1a3.2±0.1a累积量对照济麦2212.68±0.32b24.98±0.39b30.10±1.52c41.29±1.98b47.04±1.29c/(kg/hm2)石新82813.71±0.27a25.97±0.48b32.29±1.92bc44.54±2.52b50.23±1.88bc窄行处理济麦2213.32±0.29ab28.42±0.76a36.31±1.85a49.73±1.96a52.73±2.01ab石新82814.15±0.33a28.65±0.62a34.78±1.78ab49.34±1.43a54.14±1.47aK2O含量对照济麦2214.7±0.3a12.3±0.2a12.0±0.2a10.2±0.2a8.5±0.1a/(g/kg)石新82814.3±0.2a12.0±0.3a11.8±0.3a9.3±0.3a8.1±0.2a窄行处理济麦2214.5±0.4a12.2±0.4a11.8±0.4a9.5±0.4a8.3±0.3a石新82814.0±0.3a11.8±0.3a11.5±0.4a9.1±0.3a8.1±0.2a累积量对照济麦2244.39±1.65b83.03±2.38b109.44±3.12c135.86±3.87c133.28±3.08b/(kg/hm2)石新82842.61±1.78b79.92±2.61b105.85±2.70c121.83±3.29d123.28±2.80c窄行处理济麦2248.29±1.08a93.70±2.87a126.02±3.03a143.17±3.00a141.18±3.20a石新82846.06±1.80a88.97±2.66a117.65±3.22b136.05±3.28b137.05±3.11a
由表4可知,与对照相比,窄行处理使供试品种各生育时期的叶绿素增加,其中济麦22叶绿素增加不显著,石新828叶绿素增加达显著水平;窄行处理使供试品种各生育时期的叶绿素含量(SPAD值)(石新828品种)、Pn(两品种除开花期外)、Gs和Tr(除灌浆中期外)显著增高,Ci(除孕穗期和灌浆中期外)显著降低。表明窄行种植能有效增强植株的光合能力。这可能与其增大个体株距、优化空间配置,进而改善植株水分和养分吸收有关。与济麦22相比,窄行处理对石新828各生育时期的光合能力促进效应更为明显。
由表5可知,与对照相比,窄行处理显著增加供试品种的单位面积穗数和产量,其中,济麦22单位面积穗数增加8.34%,产量增加7.56%,石新828单位面积穗数增加11.99%,产量增加10.48%;但穗粒数和千粒质量在不同种植处理和品种间差异均未达到显著水平。这表明,窄行处理通过缩行匀株效应改善植株个体发育,增加植株分蘖和群体成穗能力。与济麦22相比,窄行处理下,供试品种石新828单位面积穗数和产量较对照增幅更大。
表4 不同种植形式处理下供试品种各生育时期的光合参数
Tab.4 Photosynthesis parameters of tested cultivars during various growth stages under different planting pattern treatments
光合参数Photosynthesis parameter种植形式Planting pattern品种Cultivar拔节期Jointing stage 孕穗期Booting stage开花期Flowering stage灌浆中期Mid-filling stage叶绿素SPAD值对照济麦2252.28±0.48a55.22±0.76a50.19±0.38a39.44±0.45a Chl SPAD value石新82850.89±0.82b53.64±0.63b48.34±0.46b36.60±0.42b窄行处理济麦2253.28±0.79a55.87±0.66a51.23±0.69a40.23±0.56a石新82852.28±1.02a55.12±1.23a50.48±1.08a39.86±0.76aPn/对照济麦2213.27±0.83b21.63±1.22b24.12±1.32a16.12±0.72b(μmol/(m2·s))石新82812.19±0.42b21.86±1.57b24.02±1.02a15.83±0.41b窄行处理济麦2214.86±0.91a23.69±1.03a26.08±1.22a16.50±0.78a石新82814.29±0.74a23.54±1.08a26.00±1.27a16.49±1.01aGs/对照济麦22313.23±10.23b356.23±10.98b335.08±8.96b270.23±5.03b(mmol/(m2·s))石新828310.23±9.28b346.87±10.45b332.80±8.46b270.56±5.76b窄行处理济麦22334.09±12.12a380.98±10.86a355.18±13.20a285.80±6.28a石新828330.23±8.97a373.12±10.27a349.56±11.46a280.63±5.88aTr/对照济麦222.13±0.04b3.92±0.12b4.23±0.10b3.28±0.11a(mmol/(m2·s))石新8282.12±0.03b3.86±0.11b4.20±0.12b3.20±0.12a窄行处理济麦222.28±0.04a4.32±0.11a4.47±0.12a3.38±0.09a石新8282.24±0.04a4.19±0.12a4.40±0.11a3.30±0.11aCi/μmol对照济麦22333.86±10.23a300.12±9.82a288.23±8.08a309.65±9.25a石新828332.88±12.76a308.26±10.59a286.69±9.23a318.50±10.42a窄行处理济麦22310.23±8.93b287.23±8.29a270.23±8.98b302.12±10.11a石新828312.23±10.29b290.75±9.42a273.28±8.88b309.23±8.69a
表5 不同种植形式处理下供试品种的产量和产量构成因素
Tab.5 The yields and yield components of tested cultivars under different planting pattern treatments
生长季Growth season种植形式Planting pattern品种Cultivar穗数/(104/hm2) Spike number穗粒数/个Kernel number千粒质量/gPer-1000 grain weight产量/(kg/hm2)Grain yield2017-2018对照济麦22729.0±23.32b30.22±1.32a40.19±1.78a7 525.91±376.23b石新828680.4±25.29b31.64±1.38a40.34±1.59a7 381.68±300.86b窄行处理济麦22789.8±30.12a30.10±0.97a40.06±1.76a8 094.93±312.45a石新828762.0±23.08a31.29±1.19a40.24±1.50a8 155.25±312.23a2018-2019对照济麦22708.5±24.65b32.23±1.37a43.23±1.82a8 390.82±289.65b石新828666.2±30.77b32.76±1.87a43.28±1.39a8 028.88±330.23b窄行处理济麦22776.7±29.12a32.05±0.79a43.09±1.77a9 117.52±230.12a石新828761.7±21.88a32.47±1.02a43.13±1.68a9 067.02±320.57a
种植形式通过影响群体内植株个体的水平分布特征,对生育期间植株个体的生长发育空间产生重要影响,进而对作物植株生育期间根体建成及分布、根系水分和矿质养分吸收利用和产量形成能力实施重要调控效果[13-15]。本研究表明,在河北平原春季降水量较少实施节水栽培(灌底墒水和拔节水,总灌水135 mm)条件下,与常规15 cm等行种植形式相比,缩行处理(7.5 cm)通过优化群体内个体水平分布,能明显改善小麦植株个体的分蘖和成穗能力,增加成熟期的群体成穗数量。前人研究表明,小麦等禾谷类作物的产量构成因素存在着明显的相互制约特性,当群体增大和单位面积成穗数量增多时,因植株间资源竞争,对穗粒发育和结实能力产生明显的负向调控效应,造成植株单穗的籽粒结实数量减少,籽粒灌浆期间的干物质和矿质养分累积数量降低[16-17]。本研究表明,与对照相比,缩行处理下供试小麦品种各生育时期的群体总茎数和成熟期单位面积穗数显著增加,但该产量构成因素的改善对植株个体发育未产生明显不利影响,该种种植方式处理下供试小麦品种成熟期的穗粒数和千粒质量维持相对稳定水平。因此,有效增加群体成穗数量且维持相对良好的植株个体发育和穗粒形成能力,是缩行处理改善节水栽培小麦产量形成能力的重要原因。
植株氮磷钾等矿质养分吸收能力增强能有效改善光合器官建成和植株的碳同化能力,促进植株群个体的干物质生产和累积[18]。本研究发现,与对照相比,窄行处理下供试小麦品种各生育时期的植株氮磷钾累积数量显著增多,这可能与该种种植处理通过优化植株水平分布对根体发育和根系活力实施正向调控效应有关。氮磷钾大量无机营养吸收和累积数量的增多,为植株光合器官建成及维持旺盛生理功能提供了重要物质基础[19]。因此,与对照相比,缩行处理下植株养分吸收和累积能力的改善,是节水冬小麦植株光合和干物质生产能力增强的重要生理基础。
不同小麦品种对栽培措施的响应存在着明显遗传学差异[20-21]。本研究发现,缩行种植处理下,供试小麦品种济麦22和石新828重要生育时期的群个体发育性状、氮磷钾吸收累积数量、光合特性和产量性状与常规种植形式(15 cm等行距)相比均发生明显改变,窄行处理对供试品种上述各测试性状均表现正向调控效应。但供试2个品种相比,以石新828各性状在缩行种植处理下较常规对照的改善效果优于济麦22。因此,生产中选择适宜品种如石新828等,更有利于发挥窄行匀株种植形式的增产增效潜力。
尽管本研究证实,缩行种植能有效改善冬小麦群个体性状、养分吸收以及增强产量形成能力,但有关不同品种响应窄行种植处理的生物学机制有待进一步探讨。此外,进一步研究缩行种植对小麦生产系统中土壤水分、作物冠层湿度及温度因素的调控效应,以及该种植模式调控植株根系发育及土壤养分吸收机理,将有助于阐明缩行增产的生态理论及生理机制。
[1] 薛盈文,张英华, 黄琴,王志敏. 窄行匀播对晚播冬小麦群体环境、个体性状和物质生产的影响[J]. 生态学报,2015,35(16):5545-5555. doi:10.5846/stxb201402150258.
Xue Y W,Zhang Y H,Huang Q,Wang Z M. Effects of narrow row spacing and uniform sowing on canopy environment, individual plant traits, and biomass production in late-sowing winter wheat[J]. Acta Ecologica Sinica,2015,35(16):5545-5555.
[2] 刘雪薇,董宝婧,苗芳,王长发. 不同行距和播量对重穗型高产冬小麦生物学性状的影响[J]. 干旱地区农业研究,2012, 30(4):161-165. doi:10.3969/j.issn.1000-7601.2012.04.029.
Liu X W,Dong B J,Miao F,Wang C F. Effect of different row space and seeding quantity on biological characteristics of heavy panicle type high yield winter wheat[J]. Agricultural Research in the Arid Areas,2012,30(4): 161-165.
[3] 薛盈文,王志敏,张英华. 行距对晚播冬小麦群体的调节效应[J]. 生态学杂志,2015,34(11): 3072-3078. doi:10.13292/j.1000-4890.20151023.003.
Xue Y W,Wang Z M,Zhang Y H. Regulating effect of row spacing on the population of late-sowing winter wheat[J]. Chinese Journal of Ecology,2015,34(11): 3072-3078.
[4] 熊淑萍,孟香苹,王小纯,马新明,张捷,魏钦钦,刘洋. 小麦玉米一体化群体配置对小麦冠层结构和产量影响[J]. 麦类作物学报,2018,38(8): 970-978. doi:10.7606/j.issn.1009-1041.2018.08.13.
Xiong S P,Meng X P,Wang X C,Ma X M,Zhang J,Wei Q Q,Liu Y. Effects of wheat and maize integrated population patterns on the canopy structure and yield of wheat[J]. Journal of Triticeae Crops,2018,38(8): 970-978.
[5] 王玉杰. 不同栽培管理模式冬小麦根系与地上部干物质积累和产量关系的研究[D]. 郑州:河南农业大学,2011.doi:10.7666/d.y199941.
Wang Y J. Study on the relationship among root system and the shoot dry matter accumulation and yield from winter under different cultivation and management modes[D].Zhengzhou:Henan Agricultural University,2011.
[6] 张玉顺,路振广,邱新强,秦海霞,和刚,张明智,孙彬. 深松耕条件下调亏灌溉对冬小麦生长及产量的影响[J]. 节水灌溉,2018(7): 36-42. doi:10.3969/j.issn.1007-4929.2018.07.008.
Zhang Y S,Lu Z G,Qiu X Q,Qin H X,He G,Zhang M Z,Sun B. Effect of regulated deficit irrigationon with subsoiling on growth and yield of winter wheat[J]. Water Saving Irrigation,2018(7): 36-42.
[7] 李彪,孟兆江,申孝军,刘小飞,常晓. 隔沟调亏灌溉对冬小麦-夏玉米光合特性和产量的影响[J]. 灌溉排水学报,2018,37(11):8-14. doi:10.13522/j.cnki.ggps.20180096.
Li B,Meng Z J,Shen X J,Liu X F,Chang X. Improving photosynthesis and water use efficiency of winter wheat and summer maize by coupling alternate furrow irrigation and regulated water deficit[J]. Journal of Irrigation and Drainage,2018,37(11):8-14.
[8] 丁端锋. 调亏灌溉对作物生长和产量影响机制的试验研究[D].杨凌:西北农林科技大学,2006.
Ding R F. A Study on effects of regulated deficit irrigation on growth and yield in crop[D]. Yangling:Northwest A&F University,2006.
[9] 孙淑娟,周勋波,陈雨海,杨国敏,徐德力,杨荣光.冬小麦种群不同分布方式对农田小气候及产量的影响[J].农业工程学报 ,2008,24(S2):27-31.
Sun S J,Zhou X B,Chen Y H,Yang G M,Xu D L,Yang R G. Effects of different distribution patterns of winter wheat population on farmland micro-climate and yield[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(S2):27-31.
[10] 孙宏勇,刘昌明,张喜英,陈素英,裴冬.不同行距对冬小麦麦田蒸发、蒸散和产量的影响[J].农业工程学报,2006,22(3):22-26. doi:10.3321/j.issn:1002-6819.2006.03.006.
Sun H Y,Liu C M,Zhang X Y,Chen S Y,Pei D. Effects of different row spacings on soil evaporation, evapo transpiration and yield of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering,2006,22(3):22-26.
[11] 秦乃群,高敬伟,王颖,冀洪策,蔡金兰,腊仁义. 小麦窄行播种单株发育与株距关系的研究初探[J]. 农业科技通讯,2017(2):120-126. doi:10.3969/j.issn.1000-6400.2017.02.046.
Qin N Q,Gao J W,Wang Y,Ji H C,Cai J L,La R Y. Preliminary studies on relations between plant development and row distance under narrow-row planting patterns[J]. Bulletin of Agricultural Science and Technology,2017(2):120-126.
[12] Guo C J, Li J C, Chang W S, Zhang L J, Cui X R, Li S W, Xiao K. Effects of chromosome substitution on the utilization efficiency of nitrogen, phosphorus, and potassium in wheat[J]. Frontiers of Agriculture in China,2011,5(3): 253-261. doi:10.1007/s11703-011-1069-3.
[13] Chen S Y,Zhang X Y, Sun H Y, Ren T S, Wang Y M. Effects of winter wheat row spacing on evapotranpsiration, grain yield and water use efficiency[J]. Agricultural Water Management,2010,97(8):1126-1132. doi:10.1016/j.agwat.2009.09.005.
[14] Barbieri P A, Sainz Rozas H R, Andrade F H, Echeverria H E. Row spacing effects at different levels of nitrogen availability in maize[J]. Agronomy Journal,2000,92(2):283-288. doi:10.2134/agronj2000.922283x.
[15] 尹宝重,马燕会,郭丽果,冯悦,韩雅宁,甄文超. 冬小麦不同行距配置对麦田温度、根系分布和产量的影响[J]. 江苏农业科学,2015,43(2):82-86. doi:10.15889/j.issn.1002-1302.2015.02.023.
Yin B Z,Ma Y H,Guo L G,Feng Y,Han Y N,Zhen W C. Effects of row distance property on temperature,root distribution,and yield in winter wheat[J]. Jiangsu Agricultural Sciences,2015,43(2): 82-86.
[16] 赵倩,李美玲,李林志,辛庆国,殷岩. 2006-2012年山东省审定高产小麦品种产量构成因素相关和通径分析[J]. 山东农业科学,2013,45(11): 21-24. doi:10.3969/j.issn.1001-4942.2013.11.005.
Zhao Q,Li M L,Li L Z,Xin Q G,Yin Y. Correlation and path analysis of yield components of high-yielding wheat varieties approved in Shandong Province from 2006 to 2012[J]. Shandong Agricultural Sciences,2013,45(11): 21-24.
[17] 唐进,吉剑,林昌明,吴中华,李桂云. 苏中地区小麦产量构成因素分析及高产栽培途径[J]. 安徽农学通报,2013(13): 46-47. doi:10.3969/j.issn.1007-7731.2013.13.021.
Tang J,Ji J,Lin C M,Wu Z H,Li G Y. The yield components and high-yield cultivation strategies in Mid-Jiangsu regions[J]. Anhui Agricultural Science Bulletin,2013(13): 46-47.
[18] 潘晓莹,武继承,杨永辉,何方,张洁梅,王越.不同灌溉方式下养分配置对冬小麦灌浆期光合特性及产量的影响[J]. 河南农业科学,2018,47(10):21-26. doi:10.15933/j.cnki.1004-3268.2018.10.004.
Pan X Y,Wu J C,Yang Y H,He F,Zhang J M,Wang Y. Effects of nutrient allocation on photosynthetic characteristics during filling period and yield of winter wheat under different irrigation method conditions[J]. Journal of Henan Agricultural Sciences,2018,47(10):21-26.
[19] 闫丽霞,于振文,石玉,赵俊晔,张永丽. 测墒补灌对2个小麦品种旗叶叶绿素荧光及衰老特性的影响[J]. 中国农业科学,2017,50(8): 1416-1429. doi:10.3864/j.issn.0578-1752.2017.08.006.
Yan L X,Yu Z W,Shi Y,Zhao J Y,Zhang Y L. Effects of supplemental irrigation based on soil moisture measurement on flag leaf chlorophyll fluorescence and senescence characteristics in two wheat cultivars[J]. Scientia Agricultura Sinica,2017,50(8): 1416-1429.
[20] 王晓婧,代兴龙,马鑫,董述鑫,张秀,初金鹏,贺明荣. 不同小麦品种产量和氮素吸收利用的差异[J]. 麦类作物学报,2017,37(8): 1065-1071. doi:10.7606/j.issn.1009-1041.2017.08.09.
Wang X J,Dai X L,Ma X,Dong S X,Zhang X,Chu J P,He M R. Differences of grain yield, nitrogen uptake and utilization efficiency of different wheat varieties[J]. Journal of Triticeae Crops,2017,37(8): 1065-1071.
[21] 刘璐,王朝辉,刁超朋,王森,李莎莎. 旱地不同小麦品种产量与干物质及氮磷钾养分需求的关系[J]. 植物营养与肥料学报,2018,24(3): 599-608. doi:10.11674/zwyf.17168.
Liu L,Wang Z H,Diao C P,Wang S,Li S S. Grain yields of different wheat cultivars and their relations to dry matter and NPK requirements in dryland[J]. Journal of Plant Nutrition and Fertilizers,2018,24(3):599-608.