影响温敏核不育水稻育性转换的低温敏感度QTL定位

梁铁军1,陈雄辉2,崔玉梅1,罗方雄1,张泽民2,彭海峰1

(1.华南农业大学 生命科学学院,广东 广州 510642;2.华南农业大学 农学院, 广东 广州 510642)

摘要:光温敏核不育水稻的育性光温敏感度对两系杂交水稻的繁殖与制种有重要影响。为了定位影响温敏核不育水稻育性转换的低温敏感度QTL,以冷繁结实率存在明显差异的2个温敏核不育水稻N38S和N727S为亲本构建的F2群体为作图群体,利用人工气候箱的低温处理和SSR标记技术,结合Mapmaker 3.0及WinQTLCart 2.5软件分析,检测低温敏感度QTL位点。结果显示,共检测到3个低温敏感度QTL,其中QTL1位于水稻第1染色体的PSM12与RM583之间,QTL2QTL3分别位于第4染色体的PSM194与RM273之间和RM273与PSM103之间,它们加性效应均为负值,对育性转换的贡献率分别为7%,16%,3%。基于分子标记的位置信息可知,3个QTL位点与已定位的光温敏核不育水稻育性相关基因不等位。综上,QTL1QTL2QTL3可能是新基因位点,N727S携带的等位基因起到提高繁种产量的作用,在利用分子标记辅助选择时,应选择N727S的标记类型。这3个低温敏感度QTLs的定位可能对于温敏核不育水稻进行易于转育繁种的分子标记辅助选择具有重要意义。

关键词:温敏核不育水稻;育性转换;低温敏感度;QTL定位

水稻是我国主要的粮食作物之一,其产量的提高主要依赖于杂种优势的利用。水稻光温敏核不育系的发现,使两系法利用水稻杂种优势成为可能。由于该不育系的育性转换受光周期和温度的调控,可以一系两用,不育期杂交制种,可育期自交繁种[1]。目前,生产上广泛使用的是长光高温不育而短光低温可育的光温敏核不育系,要求在长光高温条件下不育性稳定制种安全而在短日低温条件下育性易恢复繁种容易。对于这类光温敏核不育系,已报道定位的不育基因有pms1 [2-3]pms2 [2,4]pms3[5]pms4[6]OsPCD5[7]tms1[8]tms2[9-10]tms3[11]ms-h[12]tms4[13]TGMS[14]tms5[15-17]tms6(t) [18]tms6[19]tmsX[20]ptgms2-1[21]tms8[22]p/tgms12-1[23]tms9 [24]tms9-1[25],其中pms1[26]pms3[27]p/tgms12-1[23]OsPCD5[7]ms-h[28-29]tms5[30]已被克隆和功能分析。但在同一不育基因控制下的不同光温敏核不育系,由于受遗传背景的影响不育基因的表达仍然存在差异。对于异常低温影响光温敏核不育系制种安全的不育性不稳定问题,前人已从不育临界温度 [31-34]、低温耐受度[35-38]等方面进行了较多研究,选育不育临界温度低且耐受低温时间长的不育系以降低制种风险已是共识。然而,对于影响光温敏核不育系自交繁种的育性恢复难易问题,研究相对较少,陈雄辉等[39]认为除光温临界值外,育性的光温敏感度对繁种产量也有重要影响,对于光温反应类型及光温临界值极相近的2个不育系,敏感度高的不育系,一旦可育的光温条件满足,育性就迅速恢复并有较高的结实率,而敏感度低的不育系,可育的光温条件达到后育性恢复缓慢。随着分子生物学技术的发展,He等[40]以农垦58S来源的培矮64S和8902S为材料,通过不同光温处理定位了影响制种的光敏核不育性不稳定性QTL L2L3aL3bL5L6L7L10和影响繁种的育性可转换性QTL S2S3aS3bS5S8S10。本研究将以冷繁结实率存在明显差异的温敏核不育水稻N38S和N727S为材料,定位影响繁种育性转换的低温敏感度QTL,可为实用型光温敏核不育水稻的分子标记辅助选育提供理论依据。

1 材料和方法

1.1 试验材料

以冷水灌溉30 d后自交结实率存在明显差异的水稻温敏核不育系N38S(来源于华68S,自交结实率实生苗4.3%,禾头6.7%)和N727S(来源于籼S,自交结实率实生苗90.0%,禾头73.3%)为材料,通过人工气候箱21.0 ℃低温处理获得可育材料与田间不育材料进行杂交获得F1,F1自交获得F2定位群体。试验材料种植于华南农业大学农场试验田。

1.2 育性转换的鉴定

将发育至幼穗分化第Ⅳ期(即雌雄蕊原基分化期)的亲本N38S、N727S及其F1、F2群体移入人工气候箱(加拿大Conviron PGV36),箱内温度设置为加权平均温22.17 ℃(表1),光照时间设置为11.5 h,光照度为1. 0 × 104 lx,RH≥75%。当低温处理至单株抽穗时,从抽穗单株上选取3穗的中上部颖花3~6朵,镜检时将每穗花药混合压片,用1% I2-KI溶液染色,将花粉圆形、深染色的计为正常可育花粉,其他皆计为败育花粉(包括无花粉、典败、圆败、染败),然后统计花粉可染率,单株的花粉育性为3穗花粉可染率的平均值。

表1 人工气候箱各时段温度设置
Tab.1 Temperature settings of different times in plant growth chamber

人工气候箱时段Different times of plant growthchamber温度设置/℃(平均温22.17 ℃)Temperature setting(The average temperature of 22.17 ℃ )6:00-8:0021.58:00-11:0022.511:00-16:0023.516:00-19:0022.519:00-6:0021.5

1.3 SSR标记分析

叶片DNA提取采用TPS简易抽提法,SSR引物由广州睿博兴科生物技术有限公司合成,PCR扩增参照Panaud等[41]的方法稍加修改进行,对PCR产物的检测采用6%聚丙烯酰胺凝胶电泳和银染的方法。

1.4 分子遗传连锁图谱的构建及QTL分析

运用Mapmaker 3.0及WinQTLCart 2.5软件对温敏核不育水稻进行育性转换的低温敏感度QTL分析的数据处理。Mapmaker 3.0用于构建遗传连锁图谱,得到各标记间的遗传连锁距离(cM);WinQTLCart 2.5用于生成LOD曲线,确定QTL位点及在染色体上的分布。

2 结果与分析

2.1 F2定位群体的表型分析

经人工气候箱低温处理至抽穗,N38S的花粉育性为1.0%,N727S的花粉育性为65.0%,F1的花粉育性为67.5%,108株F2群体单株的花粉育性分布见图1。由图1可知,F2群体单株花粉育性呈连续分布,符合数量遗传的特点,可结合基因型鉴定结果对影响温敏核不育水稻育性转换的低温敏感度QTL进行检测分析。

2.2 遗传连锁图谱的构建

选取扩增效果较好且基本均匀分布于水稻12条染色体上的363对SSR标记对N38S和N727S进行亲本间的多态性分析。结果显示,有78对SSR标记在亲本间表现出多态性,多态率为21.5%。利用亲本间的多态标记对N38S×N727S的F2群体单株进行基因型分析,并运用Mapmaker 3.0软件对F2群体单株的表型鉴定数据和多态标记带型数据进行遗传连锁分析,构建基于SSR标记的分子遗传连锁图谱。结果显示,相互连锁的SSR标记构成8个连锁群,分别位于水稻的第1,4,7,8,9,10,11,12染色体上(图2)。

图1 N38S×N727S的108株F2群体单株的花粉育性分布
Fig.1 Distribution of pollen fertility of 108 F2 plants from the cross of N38S and N727S

图2 遗传连锁群在水稻染色体上的分布
Fig.2 Distribution of genetic linkage group on chromosomes in rice

2.3 育性转换的低温敏感度QTL定位

运用WinQTLCart 2.5软件对各连锁群上的QTL进行分析,一般当LOD>2.5时即认为存在QTL。通过复合区间作图法,检测到3个低温敏感度QTL位点,分别命名为QTL1QTL2QTL3,其中QTL1位于第1染色体的PSM12与RM583标记区间,QTL2位于第4染色体的PSM194与RM273标记区间,QTL3位于第4染色体的RM273与PSM103标记区间(图3)。

图3 影响温敏核不育水稻育性转换的低温敏感度QTL分析的LOD曲线
Fig.3 LOD curve of QTL analysis on low temperature sensitivity affecting fertility reversibility in TGMS rice

对定位的3个QTL进行遗传效应分析的结果见表2。由表2可知,3个QTL位点的加性效应值均为负值,分别为-12.14,-19.65,-10.40;显性效应值均为正值,分别为21.63,16.59,42.46;它们对育性转换的贡献率分别为7%,16%,3%。

表2 复合区间作图法检测到的低温敏感度QTL
Tab.2 QTLs of low temperature sensitivity detected by composite interval mapping method

染色体Chromosomes标记区间Interval QTLLOD值LOD value 加性效应Additive effect显性效应Dominance effect贡献率/%Percentagevariance explained1PSM12~RM583QTL14.0-12.1421.6374PSM194~RM273QTL23.8-19.6516.59164RM273~PSM103QTL32.9-10.4042.463

3 讨论与结论

一个优良的光温敏核不育系既要制种安全又要繁种容易。本研究利用SSR标记对影响温敏核不育水稻自交繁种的育性转换进行了低温敏感度QTL定位,获得3个QTL位点,其中QTL1位于第1染色体的标记PSM12(2 606 kb)与RM583(8 329 kb)之间,QTL2QTL3分别位于第4染色体的PSM194(20 032 kb)与RM273(24 048 kb)之间和RM273(24 048 kb)与PSM103(32 060 kb)之间(http://www.ncbi.nlm.nih.gov)。这3个在低温条件下定位的QTL位点与He等[40]在短日条件下定位的6个影响繁种的育性可转换性QTL位点,即S2S3aS3bS5S8S10位于不同的染色体上,因而彼此并不等位。而在已定位的光温敏核不育基因中,CSA位于第1染色体上[42],pms4位于第4染色体上[6],通过基于连锁标记的序列查询和Blast分析(http://blast.ncbi.nlm.nih.gov/Blast.cgi)可知,QTL1位于第1染色体标记RM583(8 329 kb)的上侧,与已报道的位于第1染色体标记RM292(9 566 kb)下侧的CSA不等位; QTL2QTL3均位于第4染色体PSM194(20 032 kb)的下侧,与已报道的位于第4染色体RM6659(6 576 kb)下侧3.0 cM处的pms4相距较远。因此,本研究定位的3个影响温敏核不育水稻育性转换的低温敏感度QTL区间可能存在新的基因位点,并且这3个QTL位点的加性效应均为负值,说明N727S携带的等位基因增加花粉可育率和结实率,在利用分子标记辅助选择时,对QTL1QTL2QTL3应该选择N727S的标记类型,以提高自交繁种的产量。在3个QTL中,QTL2的低温敏感性最强,对于育性转换的贡献最大。本研究对3个低温敏感度QTLs的定位,将在利用分子标记辅助选择易于转育繁种的温敏核不育水稻方面发挥重要作用。

参考文献:

[1] 石明松. 对光照长度敏感的隐性雄性不育水稻的发现与初步研究[J]. 中国农业科学, 1985,2:44-48.

Shi M S. The discovery and preliminary studies of the photoperiod-sensitive recessive male sterile rice (Oryza sativa L. subsp. japonica)[J]. Sci Agric Sin, 1985, 2: 44-48.

[2] Zhang Q, Shen B Z, Dai X K, Mei M H, Saghai Maroof M A, Li Z B. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice [J]. Proc Natl Acad Sci USA, 1994, 91(18): 8675-8679.doi: 10.1073/pnas.91.18.8675.

[3] Liu N, Shan Y, Wang F, Xu C, Peng K, Li X, Zhang Q F. Identification of an 85-kb DNA fragment containing pms1, a locus for photoperiod-sensitive genic male sterility in rice[J]. Mol Genet Genomics, 2001, 266 (2): 271-275. doi: 10.1007/s004380100553.

[4] Lu Q, Li X H, Guo D, Xu C G, Zhang Q F. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4 kb DNA fragment [J]. Molecular Genetics Genomics, 2005, 273(6): 507-511. doi:10.1007/s00438-005-1155-4.

[5] Mei M H, Dai X K, Xu C G,Zhang Q F. Mapping and genetic analysis of genes for photoperiod-sensitive genic male sterility in rice using the original mutant Nongken 58S [J]. Crop Sci,1999, 39(6):1711-1715. doi:10.2135/cropsci1999. 3961711x.

[6] Huang T Y, Wang Z, Hu Y G, Shi S P, Peng T, Chu X D, Shi J, Xiang Z F, Liu D Y. Genetic analysis and primary mapping of pms4, a photoperiod-sensitive genic male sterility gene in rice (Oryza sativa L.) [J]. Rice Sci, 2008, 15(2): 153-156. doi: 10.1016/S1672-6308(08)60035-9.

[7] Wang Y F, Zha X J, Zhang S Y, Qian X Y, Dong X X, Sun F, Yang J S. Down-regulation of the OsPDCD5 gene induced photoperiod-sensitive male sterility in rice [J]. Plant Science, 2010, 178(2): 221-228. doi:10.1016/j.plantsci.2009.12.001.

[8] Wang B, Xu W W, Wang J Z,Wu W, Zheng H G, Yang Z Y, Ray J D, Nguyen H T. Tagging and mapping the thermo-sensitive genic male-sterile gene in rice (Oryza sativa L.) with molecular markers [J]. Theor Appl Genet,1995, 91(6-7): 1111-1114. doi: 10.1007/bf00223928.

[9] Yamaguchi Y, Ikeda R, Hirasawa H, Minami M, Ujihara A. Linkage analysis of the thermo sensitive genic male sterility gene tms2 in rice (Oryza sativa L.) [J]. Breed Sci, 1997, 47(4): 371-377. doi: 10.1270/jsbbs1951.47.371.

[10] Pitnjam K, Chakhonkaen S, Toojinda T, Muangprom A. Identification of a deletion in tms2 and development of gene-based markers for selection [J]. Planta, 2008,228(5): 813-822.doi:10.1007/s00425-008-0784-3.

[11] Subudhi P K, Borkakati R P, Virmani S S, Huang N. Molecular mapping of a thermosensitive genetic male sterility gene in rice using bulked segregant analysis [J]. Genome, 1997, 40(2): 188-194. doi: 10.1139/g97-027.

[12] Koh H J, Son Y H, Heh M H, Lee H S, McCouch S R. Molecular mapping of a new genic male-sterility gene causing chalky endosperm in rice (Oryza sativa L.) [J]. Euphytica, 1999, 106: 57-62. doi: 10.1023/A:1003575016035.

[13] Dong N V, Subudhi P K, Luong P N, Quang V D, Quy T D, Zheng H G, Wang B, Nguyen H T. Molecular mapping of a rice gene conditioning thermo-sensitive genic male sterility using AFLP, RFLP and SSR techniques[J]. Theor Appl Genet,2000, 100(5): 727-734. doi: 10.1007/s001220051345.

[14] Reddy O U K,Siddiq E A,Sarma N P, Ali J, Hussain A J, Nimmakayala P, Ramasamy P, Pammi S, Reddy A S. Genetic analysis of temperature-sensitive male sterility in rice [J].Theoretical and Applied Genetics, 2000, 100: 794-801. doi: 10.1007/s001220051354.

[15] Wang Y G,Xing Q H,Deng Q Y, Liang F S, Yuan L P, Weng M L, Wang B. Fine mapping of the rice thermo-sensitive genic male-sterile gene tms5[J]. Theor Appl Genet,2003,107(5):917-921.doi:10.1007/s00122-003-1327-8.

[16] Jiang D G, Lu S, Zhou H, Wu X J, Zhuang C X, Liu Y G, Mei M T. Mapping of the rice (Oryza sativa L.) thermo-sensitive genic male sterile gene tms5 with EST and SSR markers [J]. Chinese Science Bulletin, 2006, 51 (4): 417-420.doi: 10.1007/s11434-006-0417-9.

[17] Yang Q K, Liang C Y, Zhuang W, Li J, Deng H B, Deng Q Y, Wang B. Characterization and identification of the candidate gene of rice thermo-sensitive genic male sterile gene tms5 by mapping [J]. Planta, 2007, 225(2): 321-330. doi: 10.1007/s00425-006-0353-6.

[18] Wang C H, Zhang P, Ma Z R, Zhang M Y, Sun G C, Ling D H. Development of a genetic marker linked to a new thermo-sensitive male sterile gene in rice (Oryza sativa L.)[J]. Euphytica, 2004, 140: 217-222. doi:10.1007/s10681-004-3360-3.

[19] Lee D S, Chen L J, Suh H S. Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice (Oryza sativa L.)[J]. Theor Appl Genet, 2005, 111: 1271-1277. doi: 10.1007/s00122-005-0044-x.

[20] Peng H F, Chen X H, Lu Y P, Peng Y F, Wan B H, Chen N D, Wu B, Xin S P, Zhang G Q. Fine mapping of a gene for non-pollen type thermosensitive genic male sterility in rice (Oryza sativa L.) [J]. Theor Appl Genet, 2010, 120: 1013-1020. doi: 10.1007/s00122-009-1229-5.

[21] Xu J J, Wang B H, Wu Y H, Du P N, Wang J, Wang M, Yi C D, Gu M H, Liang G H. Fine mapping and candidate gene analysis of ptgms2-1, the photoperiod-thermo-sensitive genic male sterile gene in rice (Oryza sativa L.) [J]. Theor Appl Genet, 2011, 122(2): 365-372. doi: 10.1007/s00122-010-1452-0.

[22] Hussain A J, Ali J, Siddiq E A, Gupta V S, Reddy U K, Ranjekar P K. Mapping of tms8 gene for temperature-sensitive genic male sterility (TGMS) in rice (Oryza sativa L.) [J]. Plant Breeding, 2012, 131 (1): 42-47. doi: 10.1111/ j.1439-0523.2011.01897.x.

[23] Zhou H, Liu Q J, Li J, Jiang D G, Zhou L Y, Wu P, Lu S, Li F, Zhu L Y, Liu Z L, Chen L T, Liu Y G, Zhuang C X. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA [J]. Cell Research, 2012, 22: 649-660. doi: 10.1038/cr.2012.28.

[24] Sheng Z H, Wei X J, Shao G N, Chen M L, Song J, Tang S Q, Luo J, Hu Y C, Hu P S, Chen L Y. Genetic analysis and fine mapping of tms9, a novel thermosensitive genic male-sterile gene in rice (Oryza sativa L.) [J]. Plant Breed, 2013,132(2): 159-164. doi: 10.1111/pbr.12024.

[25] Qi Y B, Liu Q L, Zhang L, Mao B Z, Yan D W, Jin Q S, He Z H. Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice [J]. Theor Appl Genet, 2014, 127: 1173-1182.doi: 10.1007/s00122-014-2289-8.

[26] Fan Y R, Yang J Y, Mathioni S M,Yu J S, Shen J Q, Yang X F, Wang J, Zhang Q H, Cai Z X, Xu C G, Li X H, Xiao J H, Meyers B C, Zhang Q F. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice [J]. Proc Natl Acad Sci USA, 2016, 113(52): 15144-15149. doi:10.1073/pnas.1619159114.

[27] Ding J H, Lu Q, Ouyang Y D, Mao H L, Zhang P B, Yao J L, Xu C G, Li X H, Xiao J H,Zhang Q F. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice [J]. Proc Natl Acad Sci USA, 2012, 109(7): 2654-2659. doi: 10.1073/pnas.1121374109.

[28] Chen R Z, Zhao X, Shao Z, Wei Z, Wang Y Y, Zhu L L, Zhao J, Sun M X, He R F, He G C. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility [J]. The Plant Cell, 2007, 19(3): 847-861.doi: 10.1105/tpc.106.044123.

[29] Woo M O, Ham T H, Ji H S, Choi M S, Jiang W Z, Chu S H, Piao R H, Chin J H, Kim J A, Park B S,Seo H S,Jwa N S,McCouch S,Koh H J. Inactivation of the UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.) [J]. The Plant Journal, 2008, 54(2): 190-204. doi: 10.1111/j.1365-313X.2008.03405.x.

[30] Zhou H, Zhou M, Yang Y Z, Li J, Zhu L Y, Jiang D G, Dong J F, Liu Q J, Gu L F, Zhou L Y, Feng M J, Qin P, Hu X C, Song C L, Shi J F, Song X W, Ni E D, Wu X J, Deng Q Y, Liu Z L, Chen M S, Liu Y G, Cao X F, Zhuang C X. RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice [J]. Nature Communications,2014,5: 4884-4892. doi: 10.1038/ncomms5884.

[31] 袁隆平. 选育水稻光温敏不育系的技术策略[J].杂交水稻, 1992, 7 (1): 1-4. doi:10.16267/j.cnki.1005-3956.1992.01.001.

Yuan L P. The technique strategies of breeding photoperiod/thermo-sensitive genic male sterile lines in rice [J]. Hybrid Rice, 1992,7(1): 1-4.

[32] 张自国, 卢兴桂, 袁隆平. 光敏核不育水稻育性转换的临界温度选择与鉴定的思考 [J].杂交水稻, 1992,7(6): 29-32. doi: 10.16267/j.cnki.1005-3956.1992.06.019.

Zhang Z G, Lu X G, Yuan L P. Reflections on identification of light and temperature properties of fertility transformation of PGMR[J].Hybrid Rice, 1992,7(6): 29-32.

[33] 谢国生, 杨书化, 万经猛, 李泽炳. 光温敏不育水稻育性临界温度的初步研究[J]. 华中农业大学学报, 1997,16(3): 226-230.

Xie G S, Yang S H, Wan J M, Li Z B. Preliminary study on the fertility critical temperature of photo-thermosensitive sterile rice lines[J]. J Huazhong Agric Univ, 1997,16(3):226-230.

[34] 雷东阳, 唐文帮, 解志坚, 刘海,陈立云. 两系法杂交水稻制种不安全问题的解决途径[J].作物学报, 2013, 39(9): 1569-1575. doi: 10.3724/SP.J.1006.2013.01569.

Lei D Y, Tang W B, Xie Z J, Liu H, Chen L Y. Solutions to insecurity problems in seed production of two-line hybrid rice [J]. Acta Agronomica Sinica, 2013, 39(9): 1569-1575.

[35] 孙宗修, 程式华, 闵绍楷, 熊振民, 应存山, 斯华敏, 杨仁崔, 梁康迳, 王乃元. 光敏核不育水稻的光温反应研究: Ⅲ: 减数分裂期温度对两个籼稻光敏核不育系育性转换的影响[J].作物学报, 1993, 19 (1): 83-87.

Sun Z X, Cheng S H, Min S K, Xiong Z M, Ying C S, Si H M, Yang R C, Liang K J, Wang N Y. Studies on the response of photoperiod sensitive genic male sterile (PGMS) rice to photoperiod and temperature Ⅲ Effect of temperature at meiosis on the fertility of 2 PGMS indica strains[J].Acta Agronomica Sinica, 1993, 19 (1): 83-87.

[36] 姚克敏,储长树,杨亚新,孙瑞兰.水稻光(温) 敏雄性不育系的育性转换机理研究 [J]. 作物学报, 1995,21(2):187-197.

Yao K M, Chu C S, Yang Y X, Sun R L. A preliminary study of the fertility change mechanism of the photoperiod (temperature period) sensitive genic male sterile rice (PSGMR) [J]. Acta Agronomica Sinica, 1995, 21(2):187-197.

[37] 李必湖,吴厚雄,徐孟亮,梁满中,张振华,陈良碧.温敏核不育水稻育性对低温持续时间的敏感性差异比较研究 [J].作物学报, 2003, 29(6): 930-936.

Li B H, Wu H X, Xu M L, Liang M Z, Zhang Z H, Chen L B. Comparative studies on the sensitivity of fertility of TGMS rice lines to low temperature of consecutive time [J]. Acta Agronomica Sinica, 2003, 29(6): 930-936.

[38] 彭海峰, 陈雄辉, 葛艳艳, 万邦惠. 不同光温敏核不育水稻对低温耐受度的差异比较研究[J].华南农业大学学报, 2016, 37(1): 14-19. doi: 10.7671 /j. issn.1001-411X.2016.01.003.

Peng H F, Chen X H, Ge Y Y, Wan B H. A comparative study on the low temperature tolerability of different photo-thermo sensitive genic male sterile lines in rice [J]. J South China Agric Univ, 2016, 37(1): 14-19.

[39] 陈雄辉, 万邦惠, 梁克勤. 光温敏核不育水稻育性对光温反应敏感度的研究 [J].华南农业大学学报, 1997,18(4): 8-11.

Chen X H, Wan B H, Liang K Q. Study on sensitivity of the fertility of photoperiod-temperature sensitive genic male sterile lines of rice to photo and thermo responses [J]. J South China Agric Univ, 1997,18(4): 8-11.

[40] He Y Q, Yang J,Xu C G, Zhang Z G,Zhang Q. Genetic bases of instability of male sterility and fertility reversibility in photoperiod-sensitive genic male-sterile rice [J]. Theor Appl Genet, 1999, 99(314): 683-693.doi: 10.1007/s001220051285.

[41] Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism(SSLP) in rice (Oryza sativa L.) [J]. Mol Gen Genet, 1996,252(5):597-607. doi: 10.1007/BF02172406.

[42] Zhang H, Xi C X, He Y, Zong J, Yang X J, Si H M, Sun Z X, Hu J P, Liang W Q, Zhang D B. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production [J]. Proc Natl Acad Sci USA, 2013,110(1): 76-81. doi: 10.1073/pnas.1213041110.

QTL Mapping of Low Temperature Sensitivity Affecting the Fertility Reversibility in Thermo-sensitive Genic Male Sterile Rice

LIANG Tiejun1, CHEN Xionghui2, CUI Yumei1, LUO Fangxiong1, ZHANG Zemin2 , PENG Haifeng1

(1.College of Life Sciences,South China Agricultural University,Guangzhou 510642,China; 2.College of Agriculture,South China Agricultural University,Guangzhou 510642,China)

Abstract The photoperiod and temperature sensitivity of fertility reversibility has an important effect on the seed propagation and hybrid seed production of photo-and thermo-sensitive genic male sterile (PTGMS) rice. The aim of this study was to map QTLs of low temperature sensitivity affecting the fertility reversibility in thermo-sensitive genic male sterile (TGMS) rice. N38S and N727S were two TGMS rice which were obvious difference in seed setting rate of cold-water irrigation propagation. Using the F2 population of N38S×N727S treated with low temperature in the artificial climate chamber and SSR marker technology, combined with Mapmaker 3.0 and WinQTLCart 2.5 software analysis, the QTLs of low temperature sensitivity were detected. The results showed that three QTLs of low temperature sensitivity were detected. The QTL1 was mapped to the interval between PSM12 and RM583 on chromosome 1. The QTL1 and QTL2 were mapped to the interval between PSM194 and RM273 and between RM273 and PSM103 on chromosome 4, respectively.Their additive effect was all negative value. To fertility reversibility, the contribution rate of the three QTLs was 7%, 16% and 3% in turn. Location information based on SSR markers suggested that the three QTLs were not the same as other reported genes related to fertility in PTGMS rice. In conclusion, QTL1,QTL2 and QTL3 may be new gene loci. The allele from N727S plays a role in increasing the yield of seed propagation. When the three QTLs are used as molecular marker assisted selection, the molecular marker type of N727S should be selected. So the three QTLs of low temperature sensitivity mapped in this study might be of great significance for molecular marker assisted selection of TGMS rice with a stable sterility but easy to reverse to fertility in seed propagation.

Key words: Thermo-sensitive genic male sterile rice; Fertility reversibility; Low temperature sensitivity; QTL mapping

收稿日期:2019-10-11

基金项目:国家自然科学基金项目(31171612)

作者简介:梁铁军(1993-),男,湖南洞口人,在读硕士,主要从事水稻杂种优势利用研究。

通讯作者:彭海峰(1972-),女,山西右玉人,副教授,博士,硕士生导师,主要从事水稻杂种优势利用研究。

中图分类号:S511;S334.5

文献标识码:A

文章编号:1000-7091(2020)02-0029-06

doi:10.7668/hbnxb.20190431