不同缓控释肥种类及施用深度对花生养分积累及产质量的影响

余 琼1,索炎炎1,司贤宗1,张 翔1,李 亮1,孙艳敏2

(1.河南省农业科学院 植物营养与资源环境研究所,河南 郑州 450002; 2.濮阳市农业科学院,河南 濮阳 457000)

摘要:为探究豫北地区不同种类肥料对花生产量及品质的影响,采用大田试验,研究4种肥料(缓控释肥、长效肥、控释肥和缓释肥)及施用深度(10,20 cm)对花生农艺性状,氮、磷、钾积累量,SPAD值,产量与品质的影响。结果表明,与不施肥对照相比,施用不同种类控释肥料均可改善花生农艺性状,提高花生养分的积累量和产量,改善品质。各施肥处理相比,百果质量、荚果产量和籽仁产量无显著差异。缓释肥浅施时荚果产量最高,达7 083.5 kg/hm2;缓控释肥浅施时主茎高、第一侧枝长最大,荚果产量居中;缓控释肥深施出仁率最高,达70.2%,荚果产量仅次于缓释肥浅施,达6 861.2 kg/hm2,花生仁产量达4 818.2 kg/hm2。缓控释肥对花生的产量与品质影响较显著,缓控释肥深施时比对照增产30.43%,粗脂肪含量增加5.18%;就施用深度而言,缓控释肥深施处理比浅施的氮、磷、钾积累量分别增加8.49%,9.54%和0.28%,粗脂肪含量增加4.76%,产量增加5.06%。因此,豫北砂质壤土区花生种植适宜深施缓控释肥,更有利于花生生长发育及养分积累,进而改善品质,提高产量。

关键词:花生;缓控释肥;养分积累;产量;品质

花生是我国重要的油料作物和经济作物,在豫北砂质壤土地区,小麦花生套种是普遍采用的种植模式。影响花生生长发育及产量和质量的因素主要有肥料的施用情况、气候特征、土壤养分状况、田间管理及花生品种等。施肥在作物增产方面起到决定性作用,为农作物的生产提供丰富的养分。合理施用化肥是提高农作物产量的必备条件,随着作物产量的逐步提高,生产过程中化肥施用过量现象日趋突出,由此带来了一系列问题,如土壤质量降低[1-4]、肥料利用率低[5-9]、对地下水及大气环境造成威胁等[10-11]。缓控释肥作为一种新型肥料,具有肥效释放缓慢、养分供应时期长、增产稳产等特征,在茶叶[2]、马铃薯[12]、黄瓜[13]、玉米[14-15]、小麦[16]、水稻[17-18]等农业生产中广泛应用。缓控释肥施入土壤后,肥料养分比普通化肥释放缓慢;控释肥的养分释放规律与作物吸收同步;缓释肥养分释放速率远小于速溶性肥料施入土壤后转变为植物有效态养分的释放速率;长效肥的养分释放缓慢、肥效持久。影响精准化施肥效果的主要因素有肥料种类、施用深度及施用位置,不同的施肥深度对土壤有效养分的转化、植株对养分的吸收会产生不同影响,合理适宜的施用深度可协调肥料的养分投入及作物对养分元素的需求特征。郭新送等[19-20]研究发现,控释肥施用深度为10 cm时小麦产量与肥料的利用率均较高。关于不同控释肥料及施用深度对花生产量性状和品质的影响方面鲜有报道。为进一步探讨不同种类的控释肥料在花生上的应用效果,本研究通过大田试验来探讨不同种类控释肥料及施用深度对花生农艺性状、养分积累状况及脂肪酸含量等的影响,以筛选出合适的缓控释肥配方及施用深度,为花生高产优质的合理施肥提供理论依据。

1 材料和方法

1.1 试验地点和供试花生品种

试验于2017年在濮阳市清丰县固城乡吕家村进行,东经114°47′~115°23′,北纬35°45′~36°05′,试验田土壤类型为砂质壤土,地势平坦,肥力均匀,排灌条件良好。耕层土壤基本理化性状为:有机质8.55 g/kg、全氮 0.59 g/kg、碱解氮0.06 g/kg、有效磷0.02 g/kg、速效钾0.08 g/kg,pH值8.61。供试花生品种为豫花9326。

1.2 试验设计

试验共设9个处理,详见表1。

表1 试验设计
Tab.1 Experimental design

处理Treatment肥料种类及施用深度Fertilizer type and application depth氮磷钾(N+ P2O5+K2O)含量/(kg/hm2)Nitrogen,phosphorus and potassium contentCK对照,不施肥Hksf-10缓控释肥(N∶P2O5∶K2O=25∶10∶10),开10 cm浅沟360Hksf-20缓控释肥(N∶P2O5∶K2O=25∶10∶10),开20 cm深沟360Cxf-10长效肥(N∶P2O5∶K2O=26∶11∶11),开10 cm浅沟360Cxf-20长效肥(N∶P2O5∶K2O=26∶11∶11),开20 cm深沟360Ksf-10控释肥(N∶P2O5∶K2O=22∶8∶12),开10 cm浅沟360Ksf-20控释肥(N∶P2O5∶K2O=22∶8∶12),开20 cm深沟360Hsf-10缓释肥(N∶P2O5∶K2O=24∶9∶15),开10 cm浅沟360Hsf-20缓释肥(N∶P2O5∶K2O=24∶9∶15),开20 cm深沟360

试验小区面积为 15 m2(宽3 m×长5 m),一个小区种植8行花生,重复 3 次,随机排列。花生在小麦收获前套种于小麦行间,花生苗期施基肥,开沟条施。肥料浅施指根据当地农民的施肥习惯,施用深度为10 cm,深施即施用深度为20 cm。花生种植密度18万穴/hm2,每穴播种2粒,试验田四周均设有1.0 m保护行。其他田间管理按照一般丰产大田进行管理。

1.3 土壤样品采集与测定

整地施肥前采集基础土壤(0~20 cm)样品1 kg,测定基础地力。

花生成熟期时,用土钻采取0~20 cm耕层土壤样品(花生垄上取),每个小区取3钻,将采集的土样充分混匀,挑出根系和有机残体,装入自封袋中,自然风干,磨样过孔径0.15 mm筛待测。土壤碱解氮采用碱解扩散法测定;土壤有效磷采用NaHCO3法测定;土壤速效钾采用NH4OAc浸提,火焰光度法测定[21]

1.4 植株样品采集及品质分析

在花生花针期、结荚期、饱果期测定叶绿素含量,每个处理取有代表性5株花生,每株取5片新展开叶,采用手持叶绿素仪 ( Chlorophyllmeter,SPAD-502) 测定花生叶片SPAD值;按照GB/T 14772-2008测定花生仁粗脂肪含量;按照GB/T 14377-2008测定花生仁脂肪酸组分相对百分含量。花生果全氮采用H2SO4-H2O2消煮,奈氏比色法测定;全磷采用H2SO4-H2O2消煮,钒钼黄比色法测定;全钾采用H2SO4-H2O2消煮,火焰光度法测定[21]

花生各器官中某元素积累量=单位面积花生各器官的产量×花生各器官中某元素含量;

花生果某元素的积累量=花生壳中某元素积累量+花生仁中某元素积累量。

1.5 收获与测产

花生收获时,每个处理取4 m2进行测产;同时每个处理取有代表性的10株花生进行考种,测定指标包括株高、侧枝长、总分枝数、结果枝数、单株结果个数(饱果个数、秕果数)、单株饱果质量和百果质量等。

1.6 数据处理与分析

试验数据采用Excel 2013 进行初步整理;在SPSS 16.0进行统计分析,用Duncan′s新复极差法对平均数进行多重比较(显著性差异P<0.05)。

2 结果与分析

2.1 不同种类肥料对花生不同生育时期叶片SPAD值的影响

由表2可知,不同控释肥处理对各生育时期花生叶片SPAD值影响显著。在饱果期时,Ksf-20处理花生叶片SPAD值最高,与Cxf-10、Ksf-10、Hsf-20无显著差异,与其他处理差异均达到显著水平;在花针期各施肥处理间差异不显著,但均显著高于CK;在结荚期时,各处理花生叶片SPAD值表现为Cxf-10>Hsf-10>Hsf-20>Ksf-20>Hksf-20>Cxf-20>Ksf-10>Hksf-10,各处理SPAD值均较CK有所提高。肥料施用深度对花针期和饱果期花生叶片SPAD值均无显著影响(表2);在结荚期,施用深度对Ksf与Hsf处理花生叶片SPAD值均无显著影响,Hksf处理深施对花生叶片SPAD值显著高于浅施,但Cxf正相反。说明缓控释肥适宜深施,长效肥适宜浅施,此时花生叶片SPAD值较高,各施肥处理花生叶片SPAD值在花针期时最高,随着生育时期的延长,叶片SPAD值在Hksf-10、Cxf-20和Ksf-10处理呈先降低后升高趋势,且花针期与结荚期差异显著。

表2 不同生育时期花生叶片SPAD值
Tab.2 SPAD values of peanut leaf in different growth stages

处理Treatment花针期Anther stage结荚期Pod setting stage饱果期Full pod stageCK35.5±3.4bA37.0±1.2dA42.7±1.4bAHksf-1046.1±2.4aA38.1±1.6dB41.4±2.3bABHksf-2048.3±1.7aA42.5±1.0bcA42.1±0.6bACxf-1049.1±1.5aA46.3±1.3aA45.6±2.1abACxf-2049.7±1.0aA40.6±0.9cdB42.6±1.7bABKsf-1051.3±2.4aA40.4±0.3cdB45.1±2.1abABKsf-2050.2±2.3aA42.8±1.8abcA47.1±1.4aAHsf-1049.5±2.4aA44.4±2.7abA42.2±2.0bAHsf-2048.6±2.2aA43.4±2.3abcA44.6±1.5abA

注:同列不同小写字母表示同一时期不同处理在0.05水平上差异显著,同行不同大写字母表示同一处理不同时期在0.05水平上差异显著。表3-6同。

Note: Different lowercase letters in the same column showed significant differences at 0.05 level in different treatments in the same period, and different uppercase letters in the same line indicated significant differences at 0.05 level in different periods of the same treatment. The same as Tab.3-6.

2.2 不同种类肥料对花生成熟期主要农艺性状及单株饱果质量的影响

施用不同控释肥料对花生主要农艺性状均产生影响,见表3。与CK相比,各施肥处理的主茎高、第一侧枝长、单株饱果个数及单株饱果质量均显著增加;Cxf-10、Ksf-20分枝数显著增加,其他处理的分枝数与CK相比均无显著差异。各施肥处理相比,主茎高和第一侧枝长在Hksf-10达到最大值,与其他处理差异达到显著水平;Cxf-10的分枝数显著高于Hksf-10和Hksf-20,与其他处理无显著差异;Cxf-20、Ksf-20、Hsf-20的单株饱果个数显著高于Cxf-10、Ksf-10、Hsf-10,与Hksf-10、Hksf-20无显著差异;Ksf-20与其他施肥处理单株饱果质量的差异达显著水平。肥料施用深度的影响表现为:与Hksf-20相比,Hksf-10主茎高和第一侧枝长显著增加;其他处理主茎高、第一侧枝长、分枝数均无显著差异;Ksf-20和Hsf-20单株饱果个数及单株饱果质量显著高于Ksf-10和Hsf-10,说明控释肥和缓释肥深施时单株饱果发育较好。

表3 不同处理在花生成熟期时主要农艺性状的表现
Tab.3 Main agronomic traits of peanut at maturity with different treatments

处理Treatment主茎高/cm Main stem height第一侧枝长/cmThe 1st lateral branch length分枝数/个Branches per plant单株饱果个数/个Full pods per plant单株饱果质量/gFull pods weight per plantCK23.0±1.5d 29.0±1.1c6.7±0.9c3.3±0.1d 7.2±0.9d Hksf-1045.5±0.8a46.8±1.6a7.0±0.8bc8.2±0.6ab 14.9±1.1bc Hksf-2039.0±0.4b40.3±1.2b7.0±0.2bc8.0±0.4ab 15.6±1.0bc Cxf-1036.8±1.2bc41.0±1.4b9.0±0.8a7.8±0.2b 14.4± 0.8bcCxf-2036.8±3.5bc40.8±1.3b7.7±0.9abc8.3±0.6a 16.0±1.3b Ksf-1035.2±0.6bc38.8±2.0b8.3±0.5abc7.8±0.5b 14.6±1.0bc Ksf-2033.7±4.0c41.7±1.2b8.7±1.2ab8.8±1.0a 17.7±1.4a Hsf-1036.7±0.2bc39.7±1.2b7.7±0.9abc5.0±0.2c9.1±0.8c Hsf-2035.5±0.8bc40.3±2.8b8.3±0.5abc8.3±0.3a 16.0±1.5b

2.3 不同种类肥料对花生果各部位中氮、磷、钾积累量的影响

花生果中氮、磷、钾积累量主要集中于花生仁中(表4)。与CK相比,施不同控释肥处理花生果、花生仁和花生壳中氮、磷、钾的积累量总体上均有所增加,其中Hksf-10、Ksf-20、Hsf-10与Cxf-10花生果中钾的积累量差异达显著水平,其他各施肥处理间花生果和花生仁中磷和钾的积累量无显著差异。总体来说,Cxf处理花生果和花生仁中氮和钾积累量相对较少,Ksf处理花生果和花生仁中氮和钾的积累量相对较多,但与Hsf 和Hksf处理无显著差异。各施肥处理花生仁中氮积累量的表现为:Ksf-20>Hsf-10>Hsf-20>Hksf-20>Ksf-10>Cxf-10>Cxf-20>Hksf-10。施肥深度对花生果和花生仁中氮、磷和钾的积累量总体上无显著影响,但Hksf和Ksf处理在施肥深度在20 cm时花生仁中氮、磷和钾积累量较高,Hksf深施比浅施的氮、磷、钾积累量分别增加8.49%,9.54%和0.28%;Ksf深施比浅施的氮和钾积累量分别增加10.32%和5.30%,磷积累量减少5.67%;而Cxf和Hsf 处理则相反,说明缓控释肥与控释肥深施利于花生籽粒氮、磷、钾养分的积累,而长效肥和缓释肥浅施时利于花生籽粒养分的积累。Ksf和Hsf处理花生壳中氮、磷和钾的积累量高于Hksf和Cxf处理。

2.4 成熟期土壤碱解氮、有效磷、速效钾含量与花生果中氮、磷、钾积累量的关系

在成熟期时,土壤中碱解氮、有效磷、速效钾养分含量与花生果氮、磷、钾积累量的关系见图1-3。不同控释肥料处理,土壤碱解氮含量与花生果中氮积累量关系呈现抛物线状,即花生果中氮积累量随着土壤碱解氮含量的增加呈现先增加后逐渐下降的趋势,二者关系用方程式表示为: y=-0.638x2+40.198x-422.090,决定系数R2=0.847 7;而土壤有效磷、速效钾含量与花生果中磷、钾积累量之间的决定系数较小。

表4 不同处理对花生果中氮、磷、钾积累量的影响
Tab.4 Effects of different treatments on accumulation of nitrogen, phosphorus and potassium in peanut kg/hm2

部位Position处理Treatment氮Nitrogen磷Phosphorus钾Potassium花生仁CK137.2±21.0c18.8±6.2b26.2±2.8bPeanut Hksf-10168.4±35.1b20.4±3.8ab33.3±3.1akernelHksf-20182.7±18.1ab22.4±4.8a33.4±4.5aCxf-10173.5±23.4b21.8±3.5a32.5±2.7aCxf-20171.7±15.1b22.0±8.1a32.3±6.8aKsf-10181.7±14.2ab22.7±2.4a33.6±7.4aKsf-20200.5±23.6a21.5±2.6a35.4±6.2aHsf-10191.8±34.5ab22.8±3.4a34.0±5.1aHsf-20187.5±18.2ab21.1±1.8ab33.3±6.3a花生壳CK15.1±3.4bc1.7±0.5d10.1±1.8dePeanut Hksf-1016.8±2.9a1.8±0.9cd15.4±2.4ashellHksf-2014.9±3.5c1.4±0.4e10.7±1.6d Cxf-1015.1±2.9bc1.9±0.6bc9.1±1.6eCxf-2015.1±4.3bc1.9±0.7bc12.0±0.9cKsf-1017.3±2.7a2.1±0.5a12.2±1.4cKsf-2016.5±3.6ab1.9±0.6bc13.9±3.5bHsf-1018.0±5.1a2.0±0.4ab13.0±1.8bcHsf-2018.0±4.3a1.9±0.2bc12.2±2.7c花生果CK152.3±20.6c20.4±3.6b36.3±4.1cPeanutHksf-10185.2±25.2b22.2±61ab48.7±4.9aHksf-20197.5±13.4ab23.8±2.7a44.1±6.7abCxf-10188.6±21.1b23.7±3.1a41.6±8.2bCxf-20186.9±19.6b23.9±5.2a44.3±10.2abKsf-10199.1±31.8ab24.9±2.8a45.8±13.4abKsf-20217.0±18.9a23.4±3.4a49.3±15.1aHsf-10209.8±12.6ab24.9±4.5a47.0±17.3aHsf-20205.5±23.1ab23.1±3.6ab45.5±10.5ab

2.5 不同种类肥料对花生仁粗脂肪及脂肪酸组分含量的影响

不同种类控释肥料对花生仁粗脂肪及脂肪酸组分含量的影响见表5。与CK相比,各施肥处理油酸/亚油酸(O/L)比值均增加。各施肥处理相比,其中Hksf-20、Cxf-10与Ksf-20硬脂酸含量差异达显著水平;Hksf-10、Ksf-10、Ksf-20花生一烯酸含量均显著高于Hksf-20;Hksf-20处理粗脂肪含量与CK相比显著增加了5.18%,Ksf-20较CK显著降低;Hksf-10、Ksf-20、Hsf-10和Hsf-20山嵛酸含量显著高于Hksf-20和Cxf-10;Hksf-10、Cxf-20和Ksf-20的木焦油酸含量显著高于Hksf-20;各施肥处理间花生仁中其他脂肪酸组分含量差异不显著。粗脂肪含量的高低表现为:Hksf-20>Cxf-10>Hsf-10>Cxf-20>Ksf-10>Hsf-20>Hksf-10>Ksf-20,其中缓控释肥深施比浅施粗脂肪含量增加4.76%。试验结果表明,长效肥、缓释肥和控释肥均表现为浅施时花生仁中粗脂肪含量高、O/L比值高,而缓控释肥深施时花生仁中粗脂肪含量高、O/L比值高。

图1 土壤碱解氮含量与花生果氮积累量关系
Fig.1 Relationship between alkaline nitrogen content in soil and nitrogen accumulation in peanut

图2 土壤有效磷含量与花生果磷积累量的关系
Fig.2 Relationship between available phosphorus content in soil and phosphorus accumulation in peanut

图3 土壤速效钾含量与花生果钾积累量的关系
Fig.3 Relationship between available potassium content in soil and potassium accumulation in peanut

2.6 不同种类肥料对花生产量构成的影响

不同控释肥料对花生百果质量、出仁率、荚果产量的影响见表6。与CK相比,各施肥处理花生荚果产量及籽仁产量均显著增加,其中Hsf-10处理荚果产量最高,增加了34.66%,其次为Hksf-20,增加了30.43%;各施肥处理相比,除 Hksf-20的出仁率显著高于Hksf-10与CK外,花生百果质量、出仁率、荚果产量、籽仁产量处理间均无显著差异。各处理中,Hsf-10荚果产量最高达7 083.5 kg/hm2,Hksf-20出仁率最高达70.2%,荚果产量仅次于Hsf-10,达6 861.2 kg/hm2。Hsf-10、Hksf-20的籽仁产量分别为4 916.9, 4 818.2 kg/hm2。施肥深度的影响表现为缓控释肥、控释肥深施时产量较高,缓释肥和长效肥浅施时花生荚果产量较高。缓控释肥、控释肥及

表5 不同处理对花生仁粗脂肪及脂肪酸组分含量的影响
Tab.5 Effects of different treatments on contents of crude fat and fatty acid components in peanut

处理Treatment粗脂肪/%Crude fat棕榈酸/%Cetylicacid硬脂酸/%Octadecanoicacid油酸/%Oleicacid亚油酸/%Linoleicacid花生酸/%Eicosanoicacid花生一烯酸/%Cis-11-eicosenoic acid山嵛酸/%Docosanoicacid木焦油酸/%Lignocericacid油酸/亚油酸O/LCK50.2±0.02b12.5±0.04a3.4±0.01ab36.0±0.06ab41.0±0.02a1.7±0.01a0.96±0.02a3.18±0.04ab1.30±0.03a0.88 Hksf-1050.4±0.05b12.3±0.01ab3.3±0.01ab36.4±0.04ab40.6±0.05ab1.7±0.01a0.99±0.01a3.23±0.02a1.31±0.07a0.90 Hksf-2052.8±0.07a12.2±0.01ab3.5±0.03a37.4±0.08a40.0±0.04b1.7±0.03a0.90±0.01b3.02±0.04b1.20±0.04b0.94 Cxf-1051.8±0.09ab12.2±0.02ab3.5±0.02ab37.0±0.07a40.1±0.06ab1.7±0.04a0.92±0.03ab3.04±0.03b1.27±0.03ab0.92 Cxf-2051.6±0.03ab12.2±0.03ab3.4±0.01ab36.8±0.02a40.3±0.08ab1.7±0.01a0.94±0.02ab3.16±0.01ab1.33±0.02a0.91 Ksf-1050.8±0.02b12.4±0.02a3.4±0.05ab36.8±0.05a40.3±0.02ab1.7±0.03a0.96±0.02a3.16±0.02ab1.26±0.05ab0.91 Ksf-2048.7±0.01c12.5±0.04a3.2±0.05b36.7±0.06a40.2±0.03ab1.6±0.02a1.00±0.03a3.30±0.05a1.33±0.04a0.91 Hsf-1051.7±0.05ab12.5±0.06a3.3±0.04ab36.9±0.07a40.1±0.04ab1.7±0.01a0.94±0.02ab3.24±0.03a1.26±0.04ab0.92 Hsf-2050.5±0.06b12.4±0.04a3.3±0.03ab36.7±0.08a40.4±0.02ab1.7±0.01a0.94±0.02ab3.24±0.06a1.27±0.04ab0.91

长效肥深施比浅施时籽仁产量分别增加5.06%,2.66%和0.48%,缓释肥浅施比深施籽仁增产4.90%。肥料产量贡献率最高为Hsf-10,其次为Hksf-20。与CK相比,各施肥处理增产率25.4%~34.7%。

表6 不同处理对花生产量构成的影响
Tab.6 Effects of different treatments on peanut yield components

处理Treatment百果质量/ g100-pod weight出仁率/%Kernel rate荚果产量/(kg/hm2)Pod yield籽仁产量/(kg/hm2)Seed yield增产率/ %Rate of growth肥料产量贡献率/%Contribution rateof fertilizer yieldCK242.9±14.3a67.6±0.5b5 260.4±186.2b3 554.2±150.1b--Hksf-10241.7±5.9a68.0±0.8b6 741.2±461.4a4 586.3±337.5a28.222.0Hksf-20249.9±5.7a70.2±0.5a6 861.2±460.2a4 818.2±346.3a30.423.3Cxf-10247.6±5.2a68.7±0.3ab6 598.9±230.1a4 530.5±146.2a25.420.3Cxf-20254.3±3.2a69.0±0.9ab6 594.4±306.0a4 552.1±269.8a25.420.2Ksf-10245.7±7.5a69.1±0.1ab6 674.5±70.9a4 612.5±55.0a26.921.1Ksf-20256.3±3.1a69.2±1.0ab6 839.0±475.6a4 735.4±397.3a30.023.1Hsf-10242.2±11.4a69.4±1.3ab7 083.5±246.2a4 916.9±226.6a34.7 26.0Hsf-20250.2±10.6a69.2±1.4ab6 772.3±220.1a4 687.3±148.6a28.7 22.3

2.7 花生各生长性状、产量及品质间的相关关系

由表7可知,花生荚果产量与花生果中氮、磷、钾的积累量及侧枝长呈现极显著正相关性,相关系数分别为0.897,0.808,0.847,0.817,与主茎高呈现显著正相关性,相关系数为0.776;土壤碱解氮含量与花生生长的主茎高表现出极显著正相关性,相关系数为0.807,与侧枝长表现出显著正相关性,相关系数为0.723;土壤有效磷与花生果中氮的积累量呈现显著正相关性,相关系数为0.776;花生果中氮的积累量与磷的积累量表现为显著正相关,与钾的积累量表现极显著正相关,相关系数分别为0.760,0.822;花生果中钾的积累量与主茎高呈现显著正相关,与侧枝长呈极显著正相关,相关系数分别为0.708,0.826;主茎高与侧枝长呈现极显著正相关性,相关系数为0.945;侧枝长与花生单株饱果个数和单株饱果质量均表现为显著正相关性,相关系数分别为0.788,0.712;花生单株饱果个数与单株饱果质量呈现极显著正相关性,相关系数为0.987。土壤速效钾含量、分枝数和粗脂肪含量与其他各性状指标均不具有显著相关性。

表7 花生各生长、产量、品质性状间的相关关系
Tab.7 Correlation between growth, yield and quality traits of peanut

性状TraitPYSNSPSKAN APAKMSHLBLBPPFPWSN0.597SP0.5440.416SK0.1930.117-0.048AN0.897∗∗0.3670.776∗0.098AP0.808∗∗0.2110.352-0.0920.760∗AK0.847∗∗0.6010.6000.2500.822∗∗0.542MSH0.776∗0.807∗∗0.1540.4050.4570.4450.708∗LBL0.817∗∗0.723∗0.3210.4230.5960.4450.826∗∗0.945∗∗BPP0.427-0.2500.3640.1930.5900.5220.3040.0730.291F0.229-0.245-0.299-0.134-0.0690.397-0.2450.3120.057-0.210PW0.5920.4900.6290.3710.5750.3640.6060.5590.712∗0.495-0.119PP0.6550.5240.5540.4290.5870.4280.6410.6590.788∗0.512-0.0450.987∗∗

注:PY.荚果产量;MSH.主茎高;LBL.侧枝长;BPP.分枝数;AN.花生果氮积累量;F.粗脂肪;AP.磷积累量;AK.钾积累量;SN.土壤碱解氮;SP.土壤有效磷;SK.土壤速效钾;PW.单株饱果质量;PP.单株饱果个数;*.指标间具有显著相关性;**.指标间具有极显著相关性。

Note: PY.Pod yield;MSH.Main stem height;LBL.Lateral branch length;BPP.Branch per plant;AN.Nitrogen accumulation in peanut;F.Crude fat;AP.Phosphorous accumulation in peanut;AK.Potassium accumulation in peanut;SN.Soil alkaline nitrogen;SP.Soil available phosphorus;SK.Soil available potassium;PW.Full pods weight per plant;PP.Full pods per plant;*.There is a significant correlation between indicators, ** .There is a very significant correlation between indicators.

3 结论与讨论

不同种类肥料均可改善豫北花生农艺性状、提高花生产量。其中控释肥和缓释肥深施时单株饱果发育较好,缓控释肥与控释肥深施利于花生籽粒氮、磷、钾养分的积累,而长效肥和缓释肥浅施时利于花生籽粒养分的积累;缓释肥浅施花生荚果产量最高,达7 083.5 kg/hm2,与对照相比增加了34.66%,缓控释肥深施产量居次,达6 861.2 kg/hm2,与对照比增加30.43%。各施肥处理间相比,除缓控释肥深施的出仁率显著高于缓控释肥浅施外,各施肥处理对花生百果质量、出仁率、荚果产量、籽仁产量均无显著影响。

邱现奎等[22]研究发现,施用控释肥料对花生主要农艺性状的促进作用较显著,其中株高增加4.97~10.80 cm,百仁质量增加0.05~4.87 g,施用控释复合肥处理的花生籽粒粗脂肪含量均高于普通肥料处理。王艳华等[23]研究发现,与相同坡度普通肥料相比,控释肥处理单株结果数提高7.1%~36.0%,百仁质量提高5.8%~9.7%,施用不同种类的肥料均可提高花生仁粗脂肪含量,其中长效肥、缓释肥和控释肥均表现为浅施时花生仁中粗脂肪含量高、O/L比值高,而缓控释肥深施时花生仁中粗脂肪含量高。本试验研究发现,施用不同控释肥料均可显著改善花生农艺性状,与对照相比,各施肥处理的主茎高、第一侧枝长、单株饱果个数及单株饱果质量均显著增加;长效肥、缓释肥和控释肥均表现为浅施时花生仁中粗脂肪含量高、O/L比值高,而缓控释肥深施时花生仁中粗脂肪含量高、O/L比值高。

施用控释肥可以显著增加花生体内的养分积累量,提高肥料养分利用率。侯红乾等[24]通过大田定位试验研究发现,缓控释肥的施用可以促进双季稻高产,增加植株对氮素的吸收,提高氮肥的利用率,同时维持了土壤的氮素水平减少了氮素的损失。张玉树等[25]研究发现,在花生生长中后期,控释肥处理的氮、磷和钾养分积累量均比对照(普通化肥)高。本试验研究发现,施用不同控释肥料均利于花生养分的积累,缓控释肥与控释肥深施利于花生籽粒氮、磷、钾养分的积累,其中缓控释肥处理氮积累量深施比浅施增加8.49%,磷积累量增加9.54%,钾积累量增加0.28%;不同控释肥料处理,土壤碱解氮含量与花生果中氮积累量关系呈现抛物线状,即花生果中氮积累量随着土壤碱解氮含量的增加呈现先增加后逐渐下降的趋势;花生对氮、磷、钾养分吸收表现为吸氮量最多,其次为钾,最后为磷,花生植株对不同种类缓控释肥料中养分的吸收利用不一致。

王应君等[26]研究发现,肥料深施技术对小麦的产量、肥料利用率等具有显著影响,其中与当地农民群众习惯施肥(浅施)相比,小麦产量增加7.6%~26.6%。章洁琼等[4]研究发现,缓/控释肥配施生物肥可以显著增加薏仁产量,其中缓释肥薏仁产量比对照增加18.13%。本试验研究发现,不同控施肥料浅施和深施促进了花生植株的生长,提高了花生单株饱果数、单株饱果质量、百果质量、出仁率和产量,增产率幅度为25.4%~34.7%。在产量与各指标间的相关性方面,荚果产量与果中氮、磷、钾的积累量,主茎高和侧枝长均呈现显著相关性,这与朱志堂[27]研究发现的规律一致。控释肥深施增产效果优于浅施,可能原因在于砂质壤土中,肥料的挥发损失大于随水淋溶损失。

参考文献:

[1] 张德奇,季书勤,王汉芳, 李向东,郭瑞,吕凤荣.缓-控释肥料的研究应用现状与展望[J].耕作与栽培,2010 (3):43,46-48.doi:10.13605/j.cnki.52-1065/s.2010.03.003.

Zhang D Q, Ji S Q,Wang H F, Li X D, Guo R, Lü F R. Current situation and prospect of research and application of slow-controlled release fertilize[J].Tillage and Cultivation,2010(3):43,46-48.

[2] 胡雪荻,耿元波,梁涛.缓控释肥在茶园中应用的研究进展[J].中国土壤与肥料,2018(1):1-8.doi:10.11838/sfsc.20180101.

Hu X D, Geng Y B, Liang T.The progress of controlled-release fertilizer applied in tea garden[J]. Chinese Soil and Fertilizer, 2018(1):1-8.

[3] Kumazawa K. Nitrogen fertilizer and nitrate pollution in groundwater in Japan: Present status and measures for sustainable agriculture[J]. Nutrient Cycling in Agroecosystems, 2002,63(2-3):129-137. doi:10.1023/A:1021198721003.

[4] 章洁琼,邹军,柳玲玲.不同缓/控释肥配合生物肥施用对薏苡产量品质及土壤肥力的影响[J].贵州农业科学,2018,46(9):78-81.

Zhang J Q, Zou J, Liu L L. Effects of different slow/controlled-release fertilizers combined with biological fertilizer on yield and quality of Coix lacryma-jobi and soil fertility[J]. Guizhou Agricultural Sciences, 2018,46(9):78-81.

[5] 刘红江,郭智,郑建初,盛婧,张岳芳,陈留根.不同类型缓控释肥对水稻产量形成和稻田氮素流失的影响[J].江苏农业学报,2018,34(4):783-789.doi: 10.3969/j.issn.1000-4440.2018.04.010.

Liu H J, Guo Z, Zheng J C, Sheng J, Zhang Y F, Chen L G. Effects of different types of controlled release fertilizer on rice yield and nitrogen loss of surface runoff[J]. Jiangsu Journal of Agriculture Science, 2018,34(4):783-789.

[6] 彭春喜,余辉.缓控释肥在花生上的应用效果研究[J].河南农业科学,2010(1):38-39.doi: 10.15933/j.cnki.1004-3268.2010.01.019.

Peng C X, Yu H. Study on the application effect of slow release fertilizer on peanut[J].Journal of Henan Agricultural Sciences,2010(1):38-39.

[7] 彭玉,孙永健,蒋明金,徐徽,秦俭,杨志远,马均.不同水分条件下缓/控释氮肥对水稻干物质量和氮素吸收、运转及分配的影响[J].作物学报,2014,40(5):859-870.doi: 10.3724/SP.J.1006.2014.00859.

Peng Y, Sun Y J, Jiang M J, Xu H,Qin J,Yang Z Y, Ma J. Effects of water management and slow/controlled release nitrogen fertilizer on biomass and nitrogen accumulation, translocation, and distribution in rice[J]. Acta Agronomica Sinica, 2014,40(5):859-870.

[8] 杨天海,侯再芬,谢小燕.不同缓控释肥用量对黑膜覆盖玉米产量的影响[J].耕作与栽培,2015(3):43-44.doi: 10.13605/j.cnki.52-1065/s.2015.03.017.

Yang T H, Hou Z F, Xie X Y. Effects of different slowly controlled release fertilizers on yield of maize covered with black film[J].Tillage and Cultivation,2015(3):43-44.

[9] 王恩飞,崔智多,何璐,肖传绪,莫海涛,张小勇.我国缓/控释肥研究现状和发展趋势[J].安徽农业科学,2011,39(21):12762-12764,12767.doi: 10.13989/j.cnki.0517-6611.2011.21.174.

Wang E F, Cui Z D, He L, Xiao C X, Mo H T, Zhang X Y. Research status and development trend of slow/controlled release fertilizer in China[J]. Journal of Anhui Agricultural Sciences,2011,39(21):12762-12764,12767.

[10] 杨春蕾.新型控释肥对水稻产量和稻田氮素流失的影响[D].杭州:浙江大学,2012.

Yang C L. Effects of controlled-release fertilizer on rice grain yield and nitrogen loss in paddy fields[D].Hangzhou: Zhejiang University,2012.

[11] 吕晓立,韩占涛,张海岭,孔祥科,宋乐,李海军.某典型化肥厂污染场地地下水中氨氮污染特征及成因[J].干旱区资源与环境,2018,32(12):176-182.doi: 10.13448/j.cnki.jalre.2018.384.

Lü X L, Han Z T, Zhang H L, Kong X K, Song L, Li H J. Contamination characteristics and source of ammonia nitrogen in the groundwater of a chemical fertilizer contaminated site[J]. Journal of Arid Land Resources and Environment,2018,32(12):176-182.

[12] 席旭东,李效文,姬丽君.缓控释肥不同施用量和施用方式对旱作区全膜马铃薯生长及产量的影响[J].干旱地区农业研究,2016,34(5):193-197.doi: 10.7606/j.issn.1000-7601.2016.05.29.

Xi X D, Li X W, Ji L J. Effects of different fertilization methods and amounts of slow/controlled releasing fertilizer on growth and yield of all-film potato in dry farming areas[J]. Agricultural Research in the Arid Areas, 2016,34(5):193-197.

[13] 田利英,李胜利,余路明,史启申.控释肥种类及用量对黄瓜植株生长及果实产量的影响[J].河南农业科学,2018,47(6):59-63.doi:10.15933/j.cnki.1004-3268.2018.06.011.

Tian L Y, Li S L, Yu L M, Shi Q S. Effects of controlled-release fertilizers and dosages on cucumber plant growth and fruit yield[J]. Journal of Henan Agricultural Sciences,2018,47(6):59-63.

[14] 高娃,刘鑫,郜翻身,刘宇杰,段丽红,王迎男,赵春晓.缓释氮肥用量对覆膜玉米产量及效益的影响[J].北方农业学报,2017,45(6):44-47.doi: 10.3969/j.issn.2096-1197.2017.06.08.

Gao W, Liu X, Gao F S, Liu Y J, Duan L H, Wang Y N, Zhao C X. Effects of different slow releasing nitrogen fertilizer rates on yield and economic benefit of maize under plastic film mulching conditions[J]. Journal of Northern Agriculture,2017,45(6):44-47.

[15] 宫宇,段巍巍,王贵彦,陈宗培,陈召月,薛佳欣,李奔.缓释肥分层底施对夏玉米生长、干物质积累和产量的影响[J].河南农业科学,2019,48(10):41-46.doi:10.15933/j.cnki.1004-3268.2019.10.007.

Gong Y, Duan W W, Wang G Y, Chen Z P, Chen Z Y, Xue J X, Li B. Effects of layered bottom application of slow-release fertilizer on growth, dry matter accumulation and yield of summer maize[J].Journal of Henan Agricultural Sciences, 2019,48(10):41-46.

[16] 张华艳,牛灵安,郝晋珉,吕振宇,车澳.秸秆还田配施缓控释肥对土壤养分和作物产量的影响[J].土壤通报,2018,49(1):140-149.doi: 10.19336/j.cnki.trtb.2018.01.20.

Zhang H Y, Niu L A, Hao J M, Lü Z Y, Che A. Effects of straw returning combined with slow release fertilizer on soil nutrient and crop yield [J]. Chinese Journal of Soil Science, 2018,49(1):140-149.

[17] 章日亮,杨佳佳,章哲,张宏.缓控释肥料在单季水稻上的应用效果研究[J].现代农业科技,2018(16):10,12.doi:10.3969/j.issn.1007-5739.2018.16.005.

Zhang R L, Yang J J, Zhang Z, Zhang H. Effect of slow and controlled release fertilizer on single cropping rice[J]. Modern Agricultural Science and Technology,2018(16):10,12.

[18] 谢运河,纪雄辉,田发祥,吴家梅,官迪,魏维.氮肥减量配施土壤调理剂对水稻产量及Cd含量的影响[J].华北农学报,2016,31(S1):415-420.doi:10.7668/hbnxb.2016.S1.070.

Xie Y H, Ji X H, Tian F X, Wu J M, Guan D, Wei W. Effects of nitrogen reduction combined with soil conditioners on yields and Cd contents of rice[J]. Acta Agriculturae Boreali-Sinica,2016,31(S1):415-420.

[19] 郭新送,丁方军,陈士更,孟庆羽.控释肥不同施肥位置及深度对小麦产量及根区土壤养分的影响[J].中国农学通报,2018,34(4):9-15.doi:10.11924/j.issn.1000-6850.casb17010099.

Guo X S, Ding F J, Chen S G, Meng Q Y. Effect of wheat yield and root zone soil nutrients on controlled-release fertilizer′s different dept and location application[J]. Chinese Agricultural Science Bulletin, 2018,34(4):9-15.

[20] 郭新送,丁方军,孟庆羽, 陈士更,路艳艳,朱福军.控释肥不同施用量及深度对宅基复垦地小麦产量与氮肥利用率的影响[J].土壤通报,2016,47(4):928-934. doi: 10.19336/j.cnki.trtb.2016.04.24.

Guo X S, Ding F J, Meng Q Y, Chen S G, Lu Y Y, Zhu F J. Effects of controlled-release fertilizer dosage and depth on wheat yield and nitrogen utilization efficiency in reclamation land [J]. Chinese Journal of Soil Science, 2016, 47(4): 928-934.

[21] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.

Bao S D. Soil agrochemical analysis[M].3rd ed. Beijing: China Agricultural Publishing House,2000.

[22] 邱现奎,董元杰,史衍玺,胡国庆,王艳华.控释肥对花生生理特性及产量、品质的影响[J].水土保持学报,2010,24(2):223-226,250. doi: 10.13870/j.cnki.stbcxb.2010.02.044.

Qiu X K, Dong Y J, Shi Y X, Hu G Q, Wang Y H. Effects of controll release fertilizers on physiological characteristics and yield, quality of peanut[J]. Journal of Soil and Water Conservation,2010,24(2): 223-226,250.

[23] 王艳华, 董元杰, 邱现奎,胡国庆. 控释肥对坡耕地花生生理特性、产量及品质的影响[J]. 作物学报, 2010, 36(11):1974-1980.doi: 10.3724/SP.J.1006.2010.01974.

Wang Y H, Dong Y J, Qiu X K, Hu G Q. Effects of controlled release fertilizers on physiological characteristics, yield and quality of peanut in slope field[J]. Acta Agronomica Sinica,2010,36(11):1974-1980.

[24] 侯红乾,冀建华,刘益仁,黄永兰,冯兆滨,刘秀梅,胡兆平,韦礼和,王子君.缓/控释肥对双季稻产量、氮素吸收和平衡的影响[J].土壤,2018,50(1):43-50.doi: 10.13758/j.cnki.tr.2018.01.006.

Hou H Q, Ji J H, Liu Y R, Huang Y L, Feng Z B, Liu X M, Hu Z P, Wei L H, Wang Z J. Effects of slow/controlled-release fertilizer on grain yield, N uptake and soil N balance in double cropping rice[J]. Soils,2018,50(1):43-50.

[25] 张玉树,丁洪,卢春生,李卫华,陈磊.控释肥料对花生产量、品质以及养分利用率的影响[J].植物营养与肥料学报,2007,13(4):700-706.doi:10.11674/zwyf.2007.0426.

Zhang Y S, Ding H, Lu C S, Li W H, Chen L. Effects of controlled release fertilizers on the yield and quality of peanut and nutrient use efficiency[J]. Plant Nutrition Fertilizer Science,2007,13(4):700-706.

[26] 王应君,王淑珍,郑义.肥料深施对小麦生育性状、养分吸收及产量的影响[J].中国农学通报,2006,22(9):276-280.doi:10.3969/j.issn.1000-6850.2006.09.068.

Wang Y J, Wang S Z, Zheng Y. Effects of deep application of fertilizer on growth character, absorption of nutrition and yield in wheat[J]. Chinese Agricultural Science Bulletin,2006,22(9):276-280.

[27] 朱志堂. 施用控释肥、碱性肥对香蕉生长发育和产量及土壤养分含量的影响[D].南宁:广西大学,2017.

Zhu Z T. The influence of controlled release fertilizer and alkaline fertilizer on the growth development, yield and soil nutrient content of banana[D].Nanning: Guangxi University,2017.

Effects of Different Slow Controlled Release Fertilizers and Application Depth on Nutrient Accumulation, Yield and Quality of Peanut

YU Qiong1, SUO Yanyan1,SI Xianzong1, ZHANG Xiang1, LI Liang1, SUN Yanmin2

(1.Institute of Plant Nutrition, Resource and Environment, Henan Academy of Agricultural Sciences, Zhengzhou 450002,China; 2.Puyang Academy of Agricultural Sciences, Puyang 457000,China)

Abstract In order to investigate the effect of different fertilizers on peanut yield and quality in Northern Henan, field experiments were used to study the effects of four fertilizers(slow and controlled release fertilizer, long effect fertilizer,controlled release fertilizer, slow release fertilizer) and their application depth(10, 20 cm) on the agronomic characters, nitrogen(N), phosphorus(P) and potassium(K) nutrient accumulation and SPAD value, yield and quality of peanut. The results showed that, compared with the no fertilizer control, the application of different controlled release fertilizers could improve peanut agronomic characteristics, peanut nutrient accumulation, increase yield and improve quality.There was no significant difference in 100-pod weight, pod yield and seed yield among different fertilization treatments.The yield was the highest (7 083.5 kg/ha) under the shallow application of the slow release fertilizer.The main stem height and the 1st lateral branch length were the highest, and the pod yield was middle under of the shallow application of the slow and controlled release fertilizer. The deep application of slow and controlled release fertilizer had the highest kernel rate of 70.2%, the pod yield was 6 861.2 kg/ha, which was only next to the light application of slow release fertilizer, and the peanut kernel yield was 4 818.2 kg/ha. Slow and controlled release fertilizer had a significant effect on yield and quality of peanut. Compared with the control, the yield and crude fat content of peanut were increased by 30.43% and 5.18% under the deep application of slow and controlled release fertilizer. In terms of application depth, compared with shallow application, the accumulation of N,P,K increased by 8.49%, 9.54%, 0.28%, crude fat content and yield increased by 4.76% and 5.06% of slow and controlled release fertilizer deep application treatment. Considering comprehensively, deep application of slow and controlled release fertilizer was suitable for peanut growth and development and nutrient accumulation, thus improving the quality and increasing yield in sand loam in North Henan Province.

Key words: Peanut; Slow controlled release fertilizer; Nutrient accumulation; Yield; Quality

收稿日期:2019-12-12

基金项目:河南省现代农业花生产业技术体系耕作栽培岗位项目(S2012-05-G02);河南省农业科学院优青项目 (2018YQ15);河南省科技攻关计划项目(172102110081);国家重点研发计划(2018YFD0201000)

作者简介:余 琼(1990-),女,河南泌阳人,硕士,主要从事经济作物施肥及油料加工研究。

通讯作者:张 翔(1966-),男,河南遂平人,研究员,硕士,主要从事植物营养与施肥技术研究。

中图分类号:S565.01

文献标识码:A

文章编号:1000-7091(2020)02-0152-09

doi:10.7668/hbnxb.20190624