粒肥施用时期对水稻镉积累的影响初探

张玉盛1,2,肖 欢1,2,吴勇俊1,2,杨小粉1,2, 汪泽钱1,2,伍 湘1,2,向焱赟1,2,张小毅1,2, 敖和军1,2

(1.湖南农业大学 农学院,湖南 长沙 410128;2.南方粮油作物协同创新中心,湖南 长沙 410128)

摘要:探索生育后期氮肥施用对水稻镉积累的影响,为稻米镉消减提供技术支持。采用大田小区试验,以杂交稻株两优819(早稻)和常规稻湘晚籼12号(晚稻)为试验材料,设粒肥用量占总氮20%的不同生育期施粒肥处理,分别为始穗期施粒肥(F1)、齐穗期施粒肥(F2)、灌浆期施粒肥(F3)及不施粒肥处理(CK)。试验结果表明,合理施用粒肥可显著提高晚稻籽粒生物量,齐穗期和灌浆期施用粒肥显著提高了早稻籽粒生物量。不同生育期施粒肥对降低籽粒富集系数、镉在植株内转运系数存在显著差异;不同生育期施粒肥水稻成熟期各部位镉含量不同,施粒肥提高了早稻根系和茎叶的镉含量,但显著降低了籽粒镉含量,其值表现为CK>F1>F3>F2;晚稻的根系镉含量在始穗期施粒肥处理显著提高,茎叶镉含量均显著大于CK,灌浆期施粒肥处理的籽粒镉含量有小幅度降低;与CK相比,早晚稻籽粒镉含量最大降幅分别为44.87%,22.31%。可知,不同生育期施粒肥对早晚稻籽粒的镉含量影响有差异,齐穗期施粒肥可显著降低早稻籽粒的镉含量,灌浆期施粒肥能降低晚稻籽粒的镉含量。

关键词:水稻;籽粒镉含量;镉积累;氮肥;转运系数

镉(Cd)是一种毒性极强的重金属,植物非必需元素。近年来,工业生产、汽车尾气、污染灌溉、过度施肥等人类活动导致农田Cd污染日益严重[1]。 水稻是我国重要的粮食作物[2],而水稻具有富集Cd的习性,土壤中的Cd易被水稻根系吸收,并向地上部转运后累积在籽粒中,通过食物链途径进入人体,危害人体健康[3]。因此,降低稻米Cd污染实现稻米安全生产意义重大且亟待解决。

近年来,有关水稻镉污染防控的研究很多,其中,通过合理施肥降低土壤镉有效性与镉吸收方面也有了一些研究。研究发现,施用钾硅肥、硅肥、铁肥可降低土壤Cd的生物有效性,降低糙米Cd含量[4-9];土壤高Cd污染条件下,在水稻始穗期-灌浆期叶片喷施锌肥,锌镉交互作用表现为互相抑制,可降低籽粒Cd含量[10]。氮素是作物吸收利用的最主要肥料,在农业生产中有着举足轻重的作用。不同氮肥种类和用量对土壤Cd的活性和水稻吸收Cd有不同的影响,其中尿素显著降低了土壤有效态镉的含量,铵态氮则显著提高土壤有效镉的含量,且氯化铵的作用大于硝酸钙和硫酸铵[11];氯化铵较硫酸铵、硝酸铵可显著增加水稻对Cd的吸收,而适量尿素可以降低水稻对Cd的吸收,施高量尿素或不施尿素处理促进水稻对Cd的吸收[12]。另有研究表明,水稻不同生育期施氮肥对糙米Cd含量也有显著影响,分蘖期[13]和齐穗期[14]施氮肥可显著降低糙米Cd含量。

研究发现,水稻花后的物质积累、转运、分配是籽粒灌浆的主要来源[15],保持生育后期一定氮素水平可延缓叶片衰老,延长灌浆时间,使籽粒灌浆充分[16-17],延缓叶片衰老还可以抑制生育前期积累贮存在营养组织中的Cd向籽粒转移[18-20]。可见,水稻生育后期合理的氮肥施用会影响其稻米镉含量。目前,关于氮肥影响水稻Cd吸收积累的研究多集中在氮肥种类和氮肥施用量对其Cd积累的影响,有关生育后期施用氮肥对水稻Cd吸收积累影响的研究鲜有报道。本研究通过大田试验,分析水稻不同时期施用粒肥对籽粒Cd含量和积累量的影响,考察Cd由根系和茎叶向籽粒的转移系数,明确水稻粒肥施用时期对Cd吸收积累的影响,以期为稻米安全生产提供理论依据和技术支撑。

1 材料和方法

1.1 试验地点

试验于2018年在湖南省长沙市福临镇同心村进行,供试土壤质地类型为砂壤土,其基本理化性质:pH值5.61,全氮3.55 g/kg,全磷0.75 g/kg,全钾28.67 g/kg,水解氮306.67 mg/kg,有效磷14.40 mg/kg,速效钾201 mg/kg,有机质55.27 g/kg,阳离子交换量12.17 cmol/kg,全镉0.24 mg/kg,有效镉0.14 mg/kg。

1.2 试验材料

早稻选用杂交稻株两优819,晚稻选用常规稻湘晚籼12号为供试材料。

1.3 试验方法

根据前期大田试验结果[14],水稻全生育期施氮量180 kg/hm2,设粒肥施用量为总氮量20%的3个粒肥施用时期处理和对照不施粒肥处理。处理1、处理2和处理3(用F1、F2、 F3代替)的基肥∶穗肥∶粒肥均为6∶2∶2,分别在始穗期、齐穗期(始穗后9 d)和灌浆期撒施粒肥;对照(CK),不施粒肥处理,将粒肥用量前移至基肥保证总氮量一致,基肥∶穗肥∶粒肥为8∶2∶0。每个处理3次重复,小区随机排列,面积为8 m×8 m=64 m2,小区间留排水沟,覆盖黑色地膜。

1.4 水肥管理措施

常规水肥管理,水稻全生育期施氮肥(纯N)180 kg/hm2、磷肥(P2O5)90 kg/hm2、钾肥(K2O)144 kg/hm2;其中氮肥为尿素(含N 46.4%)、磷肥为过磷酸钙(含P2O512%)、钾肥为氯化钾(含K2O 60%)。氮肥按试验基追肥比例在不同时期施用,磷肥一次性基施,钾肥于移栽前1~2 d和幼穗分化始期各施50%。全生育期保持浅水层淹水灌溉(2~3 cm水层),收获前15 d左右自然落干。其他栽培管理措施与当地习惯保持一致。

1.5 样品采集与测定

水稻成熟后,避开边3行采集5穴生长势一致的植株,用自来水洗净根系泥土,自然晾干后,装入信封中,放入烘箱中用110 ℃杀青30 min,80 ℃烘干至恒质量,称干质量。所有样品粉碎后过筛密封保存。

土壤理化性质采用常规方法测定;植株Cd含量采用HNO3-HClO4(V/V,4∶1)湿法消解,采用电感耦合等离子体质谱仪(ICP-MS)测定。试验所用试剂均为优级纯。

1.6 数据处理

生物富集系数(BCF)=水稻某部分镉的含量/土壤镉的全量,水稻镉的富集系数划分为 BCF根系、BCF茎叶、BCF籽粒

Cd从根系向茎叶的转运系数(TF茎叶/根)=水稻茎叶镉含量/水稻根系镉含量×100%,Cd从根系向籽粒的转运系数(TF籽粒/根)=水稻籽粒镉含量/水稻根系镉含量×100%,Cd从茎叶向籽粒的转运系数(TF籽粒/茎叶)=水稻籽粒镉含量/水稻茎叶镉含量×100%[21]

试验结果用Microsoft Excel 2016和SAS 9.4进行数据整理统计分析(LSD多重比较法,α<0.05)和相关性分析。

2 结果与分析

2.1 不同处理对水稻成熟期生物量的影响

表1表明,粒肥处理(F1、F2、F3)早晚稻的根系、茎叶和籽粒生物量较不施粒肥处理(CK)均有所提高,早稻根系、茎叶生物量分别在F1和F3处理下最高,而早稻籽粒和晚稻各部位生物量均随着粒肥施用时间推迟呈现先升后降的趋势,在处理F2达到最大值。其中,早稻根系生物量在处理F1和F2下显著高于F3和CK(P<0.05),F1和F3处理下的茎叶生物量均显著高于CK(P<0.05);籽粒生物量以处理F2最高,显著高于CK和F1(P<0.05)。不同处理对晚稻根系、茎叶和籽粒生物量均以处理F2最高,与CK差异达到显著水平(P<0.05),且较处理F1和F3有所提高,说明施用粒肥对水稻物质积累促进效应和增产效应与粒肥施用时期有关。

表1 不同处理对水稻成熟期生物量的影响
Tab.1 Effects of different treatments on rice biomass g/m2

处理Treatment早稻Early rice晚稻Late rice根Root茎叶Shoot籽粒Grain根Root茎叶Shoot籽粒GrainCK59.60±2.87b299.74±7.15b353.03±22.16c120.44±4.20b477.88±24.94b415.02±26.65cF177.94±1.25a367.64±21.05a405.09±27.8bc124.42±3.43b573.50±9.19a460.02±25.21bF273.32±0.18a338.81±22.71ab482.38±22.89a155.94±21.88a632.63±19.97a527.87±26.82aF361.22±9.41b382.37±28.02a422.50±27.84ab124.73±15.56b589.40±31.41a494.44±23.03ab

注:不同小写字母表示不同处理间差异显著(P<0.05)。表2-5同。

Note: Different lowercase letters indicate significant difference between the different tested varieties (P<0.05).The same as Tab.2-5.

2.2 不同处理对水稻成熟期各部位镉含量的影响

由表2可知,施用粒肥提高早稻的根系Cd含量,处理F1、F2、F3之间没有显著差异,但处理F3的根系Cd最低;而处理F1、F2和F3茎叶Cd含量均显著升高(P<0.05),处理F2的茎叶Cd含量最低;与对照相比,籽粒Cd含量均显著降低(P<0.05),3个处理分别降低了40.71%,44.87%,44.23%。3个处理对晚稻根系Cd含量的影响不同,其中处理F1的根系Cd含量最高,显著高于CK和处理F2及F3(P<0.05),而处理F2和F3的根系Cd含量较CK有所下降,但差异不显著;3个处理均显著提高了茎叶Cd含量(P<0.05),以F2处理的茎叶Cd含量最低;晚稻籽粒在处理F1、F2下较CK有所提高,其中处理F1的Cd含量与CK差异显著(P<0.05),而处理F3的Cd含量较CK降低22.31%,但与CK差异不显著。

表2 成熟期水稻不同部位的Cd含量
Tab.2 Effect of different treatments on Cd content in various parts of rice during maturity mg/kg

处理Treatment早稻Early rice晚稻Late rice根Root茎叶Shoot籽粒Grain根Root茎叶Shoot籽粒GrainCK2.981±0.31a0.807±0.14c0.312±0.08a3.084±0.26b2.198±0.29b0.260±0.03bF13.548±0.21a1.775±0.22a0.185±0.05b4.147±0.89a3.387±0.16a0.384±0.08aF23.630±0.76a1.507±0.20b0.172±0.03b2.813±0.49b2.993±0.71a0.284±0.01bF32.992±0.01a1.687±0.27ab0.174±0.03b2.799±0.34b3.177±0.23a0.202±0.03b

2.3 不同处理对水稻成熟期各部位镉转移系数的影响

转移系数是指重金属在植株体内的转运,其值越高说明重金属在体内的迁移能力越强。由表3可知,施用粒肥处理后,早稻植株TF茎叶/根较CK显著提高(P<0.05),其中处理F3的增幅最大,为对照的2.18倍,且其值显著高于处理F2;而TF籽粒/根和TF籽粒/茎叶较CK显著下降,但粒肥处理间差异不显著(P<0.05),其中TF籽粒/根在处理F2最低,较CK下降了54.87%;TF籽粒/茎叶以处理F3最低,较CK下降了 74.34%。对晚稻而言,施用粒肥显著提高了TF茎叶/根(P<0.05),以处理F3增幅最大,是CK的1.62倍。与早稻有所不同的是,TF籽粒/根在处理F1和F2反而升高,且显著高于F3处理(P<0.05)。晚稻TF籽粒/茎叶和TF茎叶/根呈相反的趋势,TF籽粒/茎叶在处理F3显著降低(P<0.05)。这表明合理施用粒肥,不仅可以降低水稻体内的Cd由根系向籽粒转移,还可以降低Cd由茎叶向籽粒转移。

表3 成熟期水稻不同部位镉的转运系数
Tab.3 Cadmium transport coefficient in different parts of rice at maturity

处理Treatment早稻Early rice晚稻Late riceTF茎叶/根TFShoot/RootTF籽粒/根TFGrain/RootTF籽粒/茎叶TFGrain/ShootTF茎叶/根TFShoot/RootTF籽粒/根TFGrain/RootTF籽粒/茎叶TFGrain/ShootCK28.18±1.96c11.72±1.49a41.51±2.41a71.08±3.58c8.62±0.68ab12.49±0.94aF153.12±4.62ab5.74±1.24b11.86±1.40b88.84±0.52b10.36±1.74a11.90±1.93aF244.65±1.33b5.29±0.16b10.74±0.71b105.60±6.97a10.87±1.42a10.70±1.81aF361.34±10.03a6.54±1.15b10.65±0.13b115.16±6.25a7.21±0.52b6.40±1.00b

2.4 不同处理对水稻成熟期各部位镉生物富集系数的影响

生物富集系数代表植株对土壤镉的吸收富集能力,富集系数越大其吸收富集能力越强。由表4可知,不同时期粒肥处理提高了早稻植株根系和茎叶对土壤镉的富集系数,降低了籽粒对土壤镉的富集系数;其中,早稻BCF茎叶大小顺序为F1>F2>CK,F3介于F1和F2之间,但与二者差异均不显著,BCF大小顺序为F2、F1、F3、CK,BCF籽粒 大小顺序为CK>F1、F2=F3(“、”表示差异不显著,“>”表示差异显著,下同)。晚稻BCF根系大小顺序为F1>CK>F2、F3;BCF茎叶大小顺序为F1、F2、F3>CK;BCF籽粒大小顺序为F1>F2、CK、F3。与对照相比,早晚稻的籽粒富集系数最大降幅分别为44.62%,22.22%。

表4 成熟期水稻不同部位镉的生物富集系数
Tab.4 Bio-concentration factors of Cd in different rice parts at mature period

处理Treatment早稻Early rice晚稻Late rice根Root茎叶Shoot籽粒Grain根Root茎叶Shoot籽粒GrainCK11.00±1.28a3.36±0.58c1.30±0.31a12.85±1.07b9.16±1.23b1.08±0.12bF113.37±0.86a7.40±0.90a0.77±0.21b15.90±0.68a13.99±0.67a1.60±0.33aF213.54±2.25a6.28±0.82b0.72±0.14b11.72±2.03c13.46±2.09a1.18±0.02bF311.05±0.03a7.03±1.13ab0.72±0.13b11.66±1.43c13.11±0.01a0.84±0.13b

2.5 不同处理对水稻镉积累量的影响

由表5可知,晚稻各部位的Cd积累量大于早稻。其中早晚稻根系Cd积累量均在处理F1最高,其次是处理F2,处理F3最低,但处理F3与CK差异未达到显著水平,处理F1和F2的根系积累量显著高于处理F3和CK(P<0.05)。施用粒肥,早稻和晚稻的茎叶Cd积累量均显著提高,分别是CK的2.76,2.14,2.76倍和1.85,1.84,1.83倍; 其中早稻处理F1和F3较处理F2差异显著(P<0.05);晚稻的茎叶Cd积累量以处理CK最低,但其余处理间差异不显著。早晚稻的籽粒Cd积累量在不同生育期粒肥处理表现不同,其中早稻的籽粒Cd积累量均显著降低(P<0.05),以处理F3最低,较CK降低32.77%,但F1、F2、F3处理间差异不显著;而晚稻的籽粒Cd积累量仅在处理F3较CK有所降低,但差异不显著,处理F1和F2的籽粒Cd积累量提高,与处理F3和CK差异显著(P<0.05)。籽粒中Cd的积累量与籽粒Cd含量的变化趋势一致,粒肥处理下的籽粒生物量均高于对照,而籽粒Cd积累量并没有相应提高,说明水稻籽粒生物量并非籽粒Cd积累量的决定因素。

2.6 籽粒镉含量与其他变量的关系

由表6可知,早稻的籽粒Cd含量与茎叶Cd含量、TF籽粒/根、TF籽粒/茎叶、籽粒Cd积累量呈显著或极显著正相关性,其相关系数分别为0.895,0.960,0.977,0.899;与根系Cd含量、TF茎叶/根、根系Cd积累量、茎叶Cd积累量也呈正相关性,但不显著。推测,上述变量中前四者是控制早稻籽粒中Cd含量的关键因素,而后四者对早稻籽粒Cd含量的影响可能较小。对晚稻而言,籽粒的Cd含量与根系Cd积累量和籽粒Cd积累量呈显著正相关性,其他因素仅有根系Cd含量的相关系数较高,为0.808,剩余因素的相关系数在0.049~0.465,均未达显著水平。

表5 成熟期水稻不同的部位镉积累量
Tab.5 Cadmium accumulation in different parts of rice during maturity μg/m2

处理Treatment早稻Early rice晚稻Late rice根Root茎叶Shoot籽粒Grain根Root茎叶Shoot籽粒GrainCK157.27±10.74b239.82±39.11c107.77±7.19a368.03±36.10c1 020.54±68.15b127.25±3.50bF1252.33±16.06a662.74±64.41a74.36±15.73b488.87±16.15a1 892.45±75.84a225.13±1.78aF2238.55±39.04a513.96±20.69b82.73±12.33b429.36±15.65b1 877.07±93.30a180.12±5.41aF3162.67±24.50b662.46±46.65a72.45±3.54b349.99±5.10c1 865.82±48.01a117.26±8.45b

表6 籽粒Cd含量与其他变量之间的相关性
Tab.6 The correlation between Cd contents in grain rice

变量Variable相关系数Correlation coefficient早稻籽粒Cd含量Early rice cadmium content晚稻籽粒Cd含量Late rice cadmium content根Cd含量 Root cadmium content0.3150.808茎叶Cd含量 Shoot cadmium content0.895∗0.133TF茎叶/根 TFShoot/Root0.7560.147TF籽粒/根 TFGrain/Root0.960∗∗0.082TF籽粒/茎叶 TFGrain/Shoot0.977∗∗0.465根系Cd积累量 Root Cd accumulation0.3230.922∗茎叶Cd积累量 Shoot Cd accumulation0.8380.049籽粒Cd积累量 Grain Cd accumulation0.899∗0.899∗

注:*.0.05水平上显著相关;**. 0.01 水平上极显著相关。

Note:*. Significant correlation at the 0.05 level;**. Extremely significant correlation at the 0.01 level.

3 讨论与结论

水稻生育后期施入氮素可以延缓叶片衰老,提高叶片有效光合面积和光合速率,促进物质转运和积累,延长灌浆时间,使籽粒灌浆充分,提高水稻产量[16-17,22]。本研究结果表明,不同时期粒肥处理的水稻各部位生物量均有所提高,可知,施用粒肥可以增加水稻产量,这与杨安中等[17]研究结果一致;齐穗期施用粒肥的水稻各部位生物量高于其他2个时期施粒肥,且显著高于不施粒肥处理,说明齐穗期施用粒肥更有利于促进水稻物质积累,提高产量。

氮不仅可以促进水稻的生长、提高产量,而且能降低水稻糙米Cd含量[13-14,23]。本研究结果表明,施粒肥显著降低早稻籽粒Cd含量,而晚稻籽粒Cd含量仅在灌浆期施粒肥处理有小幅度降低,这与土壤有效Cd含量有一定关系,也与水稻不同生育期对Cd的吸收、转运能力有关。范中亮等[24]认为稻米Cd含量与土壤Cd含量呈显著正相关,杨锚等[11]认为尿素可以提高土壤pH值、降低土壤中水溶态Cd和有效态Cd含量,低量尿素水平能显著降低籽粒中的Cd含量[25]。水稻籽粒中Cd的积累主要受根系向地上部的转运、茎叶再分配的影响[18,20],彭鸥等[26]认为施硅肥能降低Cd从茎鞘进入籽粒中,王怡璇等[27]、吴勇俊等[13]认为硅肥和氮肥的施用可促进根表铁膜的形成,加强铁膜对Cd的吸附作用,并有效抑制Cd从根部向地上部转运,从而降低水稻糙米Cd含量;张振兴等[28]认为糙米Cd含量与Cd在植株内的转运系数呈显著正相关关系,水稻灌浆期施用生石灰能显著提高土壤pH值,降低土壤有效态镉含量,降低Cd向籽粒中迁移。本试验结果表明,不同生育期施用粒肥对水稻籽粒的Cd含量影响不同,早稻籽粒的Cd含量大小顺序为:始穗期施粒肥>灌浆期施粒肥>齐穗期施粒肥,晚稻的Cd含量大小顺序为:始穗期施粒肥>齐穗期施粒肥>灌浆期施粒肥,可以看出,齐穗期或者灌浆期施粒肥处理对降低水稻籽粒Cd含量的效果要大于始穗期施粒肥。

水稻不同生育期对Cd的吸收、积累、再分配特性不同,致使不同生育期Cd积累量与其对籽粒Cd积累的贡献率存在差异[19,29]。报道指出,水稻孕穗-灌浆阶段以及水稻在成熟吸收积累的Cd是籽粒中Cd的主要来源[19,30-31],灌浆期根系吸收的Cd可被快速的运输至籽粒中[32]。本试验中,不同处理的籽粒Cd含量存在差异的原因可能为:氮素施入后,随处理时间的延长对土壤pH值的提升作用减弱,土壤有效镉的含量短期内下降幅度较大,而后回升并与施氮后根系分泌有机酸对土壤Cd的氧化还原交叉影响[11,33-34],致使水稻灌浆-成熟阶段土壤有效镉含量存在差异。另有研究发现,水稻抽穗后,生育前期积累贮存在茎叶中的Cd伴随光合产物和营养物质传输进入到籽粒当中[18],叶片的衰老会加速营养元素的再分配,显著提高了叶片中如氮、Fe2+、Cu2+等从营养组织向籽粒中转移[35-37]。本研究发现,始穗期、齐穗期、灌浆期施粒肥显著降低了早稻Cd从茎叶向籽粒中转移及籽粒对Cd的富集,这与张振兴等[28]的研究结果较吻合。

植物修复技术是清除土壤镉污染的有效途径[38]。本研究发现,不同生育期施用粒肥处理的茎叶Cd积累量较对照均显著提高,为对照茎叶Cd积累量的1.83~2.76倍,从施用粒肥对水稻籽粒的生物量、Cd含量和茎叶的Cd积累量的影响三方面综合来看,在早稻齐穗期、晚稻灌浆期施用粒肥施不仅可以提高水稻生物量、降低籽粒Cd含量还能通过秸秆移除带走较高量的Cd以达到一定的修复效果。

目前,氮对水稻镉吸收积累调控机理也有一定的研究,如氮可增加抗氧化酶系统中的CAT、SOD和POD活性来减缓镉对水稻的氧化胁迫[39-41];过量的通过上调Fe吸收相关的OsIRT1和Cd吸收和转运相关的基因OsNramp1OsNramp5OsHMA2的表达,增加水稻对Cd的吸收和转运[41]。本研究就水稻生育后期施粒肥对水稻Cd吸收转运的影响做初步探讨,其作用机制仍待进一步研究。

施粒肥能显著提高水稻各部位生物量,齐穗期施粒肥对水稻增产效果最明显。施粒肥虽提高了根系对镉的吸收、根系中的Cd向茎叶转运,但能显著降低茎叶向籽粒转移;齐穗期施粒肥显著降低镉从根系和茎叶中向籽粒中转移,显著降低早稻籽粒的镉含量,灌浆期施粒肥显著降低了茎叶向籽粒的转移,降低晚稻籽粒镉含量;早稻籽粒镉含量与Cd从根系和茎叶向籽粒的转移系数呈极显著正相关。

参考文献:

[1] Tang H, Li T X, Yu H Y, Zhang X Z. Cadmium accumulation characteristics and removal potentials of high cadmium accumulating rice line grown in cadmium-contaminated soils[J]. Environmental Science and Pollution Research,2016,23(15):15351-15357. doi:10.1007/s11356-016-6710-5.

[2] 杨明智,裴源生,李旭东.中国粮食自给率研究——粮食、谷物和口粮自给率分析[J].自然资源学报,2019,34(4):881-889. doi:10.31497/zrzyxb.20190416.

Yang M Z, Pei Y S, Li X D.Study on grain self-sufficiency rate in China: An analysis of grain, cereal grain and edible grain[J].Journal of Natural Resources,2019,34(4):881-889.

[3] 黄志熊,王飞娟,蒋晗,李志兰,丁艳菲,江琼,陶月良,朱诚.两个水稻品种镉积累相关基因表达及其分子调控机制[J].作物学报,2014,40(4):581-590. doi:10.3724/SP.J.1006.2014.00581.

Huang Z X, Wang F J, Jiang H,Li Z L, Ding Y F, Jiang Q, Tao Y L, Zhu C. Comparison of Cadmium-Accumulation-Associated genes expression and molecular regulation mechanism between two rice cultivars (Oryza sativa L. subspecies japonica) [J]. Act Agronomica Sinica,2014,40(4):581-590.

[4] 高子翔,周航,杨文弢,辜娇峰,陈立伟,杜文琪,徐珺,廖柏寒.基施硅肥对土壤镉生物有效性及水稻镉累积效应的影响[J].环境科学,2017,38(12):5299-5307. doi:10.13227/j.hjkx.201704210.

Gao Z X,Zhou H, Yang W T, Gu J F, Chen L W, Du W Q, Xu J, Liao B H. Impacts of silicon fertilizer as base manure on cadmium bioavailability in soil and on cadmium accumulation in rice plants[J].Environmental Science,2017,38(12):5299-5307.

[5] 贾倩,胡敏,张洋洋,孟远夺,李小坤,丛日环,任涛.钾硅肥施用对水稻吸收铅、镉的影响[J].农业环境科学学报,2015,34(12):2245-2251. doi:10.11654/jaes.2015.12.001.

Jia Q, Hu M, Zhang Y Y, Meng Y D, Li X K, Cong R H, Ren T. Effects of potassium-silicon fertilizer application on lead and cadmium uptake by rice[J]. Journal of Agro-Environmental Science,2015,34(12):2245-2251.

[6] Nwugo C C, Huerta A J . Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium[J]. Plant and Soil,2008,311(1-2):73-86. doi:10.1007/s11104-008-9659-4.

[7] Liu D Q, Zhang C H, Chen X, Yang Y Z, Wang S, Li Y J, Hu H, Ge Y, Cheng W D. Effects of pH, Fe, and Cd on the uptake of Fe2+ and Cd2+ by rice[J]. Environmental Science and Pollution Research,2013,20(12):8947-8954. doi:10.1007/s11356-013-1855-y.

[8] Gao L, Chang J D, Chen R J, Li H B, Lu H F, Tao L X, Xiong J. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice[J]. Rice,2016,9(1):39. doi:10.1186/s12284-016-0112-7.

[9] Shao G S, Chen M X, Wang D Y, Xu C M, Mou R X, Cao Z Y , Zhang X F. Using iron fertilizer to control Cd accumulation in rice plants: A new promising technology[J]. Science in China Series C(Life Sciences),2008,51(3):245-253. doi:10.1007/s11427-008-0031-y.

[10] 索炎炎,吴士文,朱骏杰,潘风山,冯英.叶面喷施锌肥对不同镉水平下水稻产量及元素含量的影响[J].浙江大学学报(农业与生命科学版),2012,38(4):449-458. doi:10.3785/j.issn.1008-9209.2012.04.013.

Suo Y Y, Wu S W, Zhu J J, Pan F S, Feng Y. Effects of foliar Zn application on rice yield and element contents under different Cd levels[J]. Journal of Zhejiang University(Agriculture and Life Sciences),2012,38(4):449-458.

[11] 杨锚,王火焰,周健民,胡承孝,杜昌文.不同水分条件下几种氮肥对水稻土中外源镉转化的动态影响[J].农业环境科学学报,2006,25(5):1202-1207. doi:10.3321/j.issn:1672-2043.2006.05.022.

Yang M, Wang H Y, Zhou J M, Hu C X, Du C W. Effects of appling nitrogen fertilizers on transformation of external cadmium in the paddy soil with different soil moisture[J]. Journal of Agro-Environment Science,2006,25(5):1202-1207.

[12] 甲卡拉铁.淹水条件下不同肥料对土壤Cd生物有效性的影响研究[D]. 雅安:四川农业大学,2009.

Jiaka L T.Study on effeet of different fertilizers on available Cd under water logged condition[D]. Yaan: Sichuan Agricultural University,2009.

[13] 吴勇俊,张玉盛,杨小粉,郑海飘,汪泽钱,肖欢,敖和军.蘖肥运筹对水稻镉吸收的影响[J].河南农业科学,2019,48(4):21-27. doi:10.15933/j.cnki.1004-3268.2019.04.004.

Wu Y J, Zhang Y S, Yang X F, Zheng H P,Wang Z Q, Xiao H, Ao H J. Effect of tillering fertilizer management on cadmium uptake in rice[J]. Journal of Henan Agricultural Sciences,2019,48(4):21-27.

[14] 张玉盛,肖欢,敖和军.齐穗期施肥对水稻镉积累的影响[J].中国稻米,2019,25(3):49-52. doi:10.3969/j.issn.1006-8082.2019.03.010.

Zhang Y S, Xiao H, Ao H J. Effect of fertilization at full heading stage on Cd accumulation in rice[J]. China Rice,2019,25(3):49-52.

[15] Kumar R, Sarawgi A K, Ramos C, Amarante S T, Ismail A M , Wade L J. Partitioning of dry matter during drought stress in rainfed lowland rice[J]. Field Crops Research, 2006,96(2-3):455-465. doi:10.1016/j.fcr.2005.09.001.

[16] 秦俭,杨志远,孙永健,徐徽,吕腾飞,代邹,郑家奎,蒋开锋,马均.氮素穗肥运筹对两个杂交中籼稻叶片形态、光合生产及产量的影响[J].中国水稻科学,2017,31(4):391-399.doi:10.16819/j.1001-7216.2017.6146.

Qin J, Yang Z Y, Sun Y J, Xu H, Lü T F, Dai Z, Zheng J K, Jiang K F, Ma J. Effects of nitrogen topdressing for panicle initiation on leaf morphology, photosynthetic production and grain yield of two middle-season hybrid rice[J]. Chinese Journal of Rice Science, 2017,31(4):391-399.

[17] 杨安中,吴文革,李泽福,段素梅,陈刚,许有尊.氮肥运筹对超级稻库源关系、干物质积累及产量的影响[J].土壤,2016,48(2):254-258. doi:10.13758/j.cnki.tr.2016.02.007.

Yang A Z, Wu W G, Li Z F, Duan S M, Chen G, Xu Y Z. Effects of nitrogen application on source-sink relationship, dry matter accumulation and yield of super hybrid rice[J]. Soils, 2016, 48(2): 254-258.

[18] 喻华,上官宇先,涂仕华,秦鱼生,陈琨,陈道全,刘前聪.水稻籽粒中镉的来源[J].中国农业科学,2018,51(10):1940-1947. doi:10.3864/j.issn.0578-1752.2018.10.013.

Yu H, Shangguan Y X, Tu S H, Qin Y S, Chen K, Chen D Q, Liu Q C. Sources of cadmium accumulated in rice grain[J]. Scientia Agricultura Sinica,2018,51(10):1940-1947.

[19] Rodda M S, Li G, Reid R J. The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post-flowering[J]. Plant and Soil,2011,347(1-2):105-114. doi:10.1007/s11104-011-0829-4.

[20] Yan Y F, Choi D H, Kim D S, Lee B W. Absorption,translocation,and remobilization of cadmium supplied at different growth stages of rice[J]. Journal of Crop Science and Biotechnology,2010,13(2):113-119. doi:10.1007/s12892-010-0045-4.

[21] 李超,艾绍英,唐明灯,李林峰,王艳红,李义纯.矿物调理剂对稻田土壤镉形态和水稻镉吸收的影响[J].中国农业科学,2018,51(11):2143-2154. doi:10.3864/j.issn.0578-1752.2018.11.012.

Li C, Ai S Y, Tang M D, Li L F, Wang Y H, Li Y C. Effects of a mineral conditioner on the forms of Cd in paddy soil and Cd uptake by rice[J]. Scientia Agricultura Sinica,2018,51(11):2143-2154.

[22] 袁继超,刘丛军,俄胜哲,杨世民,朱庆森,杨建昌.施氮量和穗粒肥比例对稻米营养品质及中微量元素含量的影响[J].植物营养与肥料学报,2006,12(2):183-187, 200. doi:10.3321/j.issn:1008-505X.2006.02.007.

Yuan J C, Liu C J, E S Z, Yang S M, Zhu Q S, Yang J C. Effect of nitrogen application rate and fertilizer ratio on nutrition quality and trace-elements contents of rice grain[J]. Plant Nutrition and Fertilizers,2006,12(2):183-187,200.

[23] 聂凌利.肥料运筹对水稻镉吸收与积累的影响[D]. 长沙:湖南农业大学,2017.

Nie L L. Effects of fertilizer application on cadmium absorption and accumulation in rice[D]. Changsha: Hunan Agricultural University,2017.

[24] 范中亮,季辉,杨菲,吴琦,张卫建.不同土壤类型下Cd和Pb在水稻籽粒中累积特征及其环境安全临界值[J].生态环境学报,2010,19(4):792-797. doi:10.3969/j.issn.1674-5906.2010.04.008.

Fan Z L, Ji H, Yang F, Wu Q, Zhang W J. Accumulation characteristics of Cd and Pb in rice grain and their security threshold values in paddy field under different soil types[J]. Ecology and Environmental Sciences,2010,19(4):792-797.

[25] 甲卡拉铁,喻华,冯文强,秦鱼生,赵晶,廖鸣兰,王昌全,涂仕华.氮肥品种和用量对水稻产量和镉吸收的影响研究[J].中国生态农业学报,2010,18(2):281-285. doi:10.3724/SP.J.1011.2010.00281.

Jiaka L T, Yu H, Feng W Q, Qin Y S, Zhao J, Liao M L, Wang C Q, Tu S H. Effect of nitrogen fertilizer type and application rate on cadmium uptake and grain yield of paddy rice[J]. Chinese Journal of Eco-Agriculture,2010,18(2):281-285.

[26] 彭鸥,刘玉玲,铁柏清,董思俊,魏祥东,刘孝利,周细红.施硅对镉胁迫下水稻镉吸收和转运的调控效应[J].生态学杂志,2019,38(4):1049-1056. doi:10.13292/j.1000-4890.201904.005.

Peng O, Liu Y L, Tie B Q, Dong S J, Wei X D, Liu X L, Zhou X H. Effect of silicon application on cadmium uptake and translocation of rice under cadmium stress[J]. Chinese Journal of Ecology,2019,38(4):1049-1056.

[27] 王怡璇,刘杰,唐云舒,伍婵翠,周树林,姚诗音.硅对水稻镉转运的抑制效应研究[J].生态环境学报,2016,25(11):1822-1827. doi:10.16258/j.cnki.1674-5906.2016.11.013.

Wang Y X, Liu J, Tang Y S, Wu C C, Zhou S L, Yao S Y. Inhibitory effect of silicon on cadmium accumulation and transportation in rice[J]. Ecology and Environmental Sciences,2016,25(11):1822-1827.

[28] 张振兴,纪雄辉,谢运河,官迪,彭华,朱坚,田发祥.水稻不同生育期施用生石灰对稻米镉含量的影响[J].农业环境科学学报,2016,35(10):1867-1872. doi:10.11654/jaes.2016-0432.

Zhang Z X, Ji X H, Xie Y H,Guan D, Peng H, Zhu J, Tian F X.Effects of quicklime application at different rice growing stage on the cadmium contents in rice grain[J]. Journal of Agro-Environment Science, 2016, 35(10):1867-1872.

[29] 叶长城,陈喆,彭鸥,周细红,铁柏清,雷鸣,魏祥东,孙健.不同生育期Cd胁迫对水稻生长及镉累积的影响[J].环境科学学报,2017,37(8):3201-3206. doi:10.13671/j.hjkxxb.2017.0077.

Ye C C, Chen Z, Peng O, Zhou X H, Tie B Q, Lei M, Wei X D, Sun J. Effects of cadmium stress on growth and cadmium accumulation in rice at different growth stages[J]. Acta Scientiae Circumstantiae,2017,37(8):3201-3206.

[30] 王倩倩,贾润语,李虹呈,周航,杨文弢,辜娇峰,彭佩钦,廖柏寒.Cd胁迫水培试验下水稻糙米Cd累积的关键生育时期[J].中国农业科学,2018,51(23):4424-4433. doi:10.3864/j.issn.0578-1752.2018.23.003.

Wang Q Q, Jia R Y, Li H C, Zhou H, Yang W T, Gu J F, Peng P Q, Liao B H. Key growth stage of Cd accumulation in brown rice through a hydroponic experiment with Cd stress[J]. Scientia Agricultura Sinica, 2018,51(23):4424-4433.

[31] 冯雪敏.水稻富集镉砷的关键部位、生育时期及相关元素的研究[D]. 北京:中国农业科学院,2017.

Feng X M. The key parts, important growth stages and related elements in Cd/As accumulation of rice[D]. Beijing: Chinese Academy of Agricultural Sciences,2017.

[32] Fujimakis S, Suzui N, Ishioka N S, Kawachi N, Ito S, Chino M, Nakamura S I. Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology, 2010, 152(4):1796-1806.doi:10.1104/pp.109.1511035.

[33] 徐炜杰,郭佳,赵敏,王任远,侯淑贞,杨芸,钟斌,郭华,刘晨,沈颖,柳丹.重金属污染土壤植物根系分泌物研究进展[J].浙江农林大学学报,2017,34(6):1137-1148. doi:10.11833/j.issn.2095-0756.2017.06.023.

Xu W J, Guo J, Zhao M, Wang R Y, Hou S Z, Yang Y, Zhong B, Guo H, Liu C, Shen Y, Liu D. Research progress of soil plant root exudates in heavy metal contaminated soil[J]. Journal of Zhejiang A & F University,2017,34(6):1137-1148.

[34] Fu H J, Yu H Y, Li T X, Zhang X Z. Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety,2018,150:168-175. doi:10.1016/j.ecoenv.2017.12.014.

[35] Garnett T P, Graham R D. Distribution and remobilization of iron and copper in wheat[J]. Annals of Botany,2005,95(5): 817-826.doi:10.1093/aob/mci085.

[36] Sheehy J E, Mnzava M, Cassman K G, Mitchell P L, Pablico P, Robles R P, Samonte H P, Lales J S, Ferrer A B. Temporal origin of nitrogen in the grain of irrigated rice in the dry season: the outcome of uptake, cycling, senescence and competition studied using a 15N-point placement technique[J]. Field Crops Research,2004,89(2-3):337-348. doi:10.1016/j.fcr.2004.02.019.

[37] 刘周莉,何兴元,陈玮.忍冬——一种新发现的镉超富集植物[J].生态环境学报,2013,22(4):666-670. doi:10.16258/j.cnki.1674-5906.2013.04.025.

Liu Z L, He X Y, Chen W.Lonicera japonica Thunb. ——a newly discovered Cd hyper-accumulator[J]. Ecology and Environmental Sciences, 2013,22(4):666-670.

[38] Jalloh M A,Chen J H, Zhen F R, Zhang G P. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress[J]. Journal of Hazardous Materials,2008,162(2-3): 1081-1085. doi:10.1016/j.jhazmat.2008.05.146.

[39] Hassan M J, Wang F, Ali S, Zhang G P . Toxic effect of cadmium on rice as affected by nitrogen fertilizer form[J]. Plant and Soil, 2005,277(1-2):359-365. doi:10.1007/s11104-005-8160-6.

[40] Hassan M J, Shafi M, Zhang G P,Zhu Z J, Qaisar M. The growth and some physiological responses of rice to Cd toxicity as affected by nitrogen form[J]. Plant Growth Regulation, 2008,54(2):125-132. doi:10.1007/s10725-007-9235-6.

[41] 杨永杰.氮肥形态与用量对水稻镉积累和毒害的影响及调控机制研究[D]. 北京:中国农业科学院,2016.

Yang Y J. Effects of nitrogen fertilizer form and dosage on cadmium accumulation and toxicity and its regulatory mechanism in rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.

Effect of Application Period of Granular Fertilizer on Cadmium Accumulation in Rice

ZHANG Yusheng1,2, XIAO Huan1,2, WU Yongjun1,2, YANG Xiaofen1,2, WANG Zeqian1,2, WU Xiang1,2, XIANG Yanyun1,2, ZHANG Xiaoyi1,2, AO Hejun1,2

(1.College of Agronomy, Hunan Agricultural University, Changsha 410128,China; 2.South Regional Collaborative Innovation Center for Grain and Oil in China, Changsha 410128,China)

Abstract The aim of the study was to explore the effects of nitrogen fertilizer application on rice cadmium accumulation in late growth stage, and provide technical support for rice cadmium reduction. A field plot experiment was conducted with hybrid rice Zhuliangyou 819 (early rice) and conventional rice Xiangwanxian 12 (late rice) as experimental materials. Grain fertilizer was applied at 20% of total nitrogen at different growth stages, including grain fertilizer at the beginning of heading stage(F1), grain fertilizer at the full heading stage(F2), grain fertilizer at the filling stage(F3), and no grain fertilizer treatment was as CK. The results showed that the application of grain fertilizer significantly increased the grain biomass of late rice, and the application of grain fertilizer at the full heading stage and the filling stage significantly increased the grain biomass of early rice. There were significant differences in reducing grain enrichment coefficient and cadmium translocation coefficient in plants between different growth stages. Cadmium content in different parts of rice was different at different growth stages. The application of grain fertilizer increased cadmium content in roots, shoot of early rice, but significantly decreased cadmium content in grains which the value represented as CK>F1>F3>F2. Cadmium content in roots of late rice increased significantly under the treatment of grain fertilizer at the beginning of heading stage. Cadmium content in shoot was significant higher than CK, but it decreased slightly in grain fertilization at grain filling stage. Compared with CK, the maximum reduction of cadmium content in early and late rice grains was 44.87% and 22.31% respectively. The effects of grain fertilizer application at different growth stages on cadmium content in early and late rice grains were different. Grain fertilizer application at full heading stage could significantly reduce cadmium content in early rice grains, and grain fertilizer application at grain filling stage could reduce cadmium content in late rice grains.

Key words: Rice;Grain cadmium content;Cadmium accumulation;Nitrogen fertilizer;Transport coefficient

收稿日期:2019-12-04

基金项目:国家水稻产业技术体系栽培与土肥岗位专家项目(CARS-01)

作者简介:张玉盛(1992-),男,福建龙岩人,在读硕士,主要从事水稻重金属污染控制研究。

通讯作者:敖和军(1979-),男,湖南常德人,副教授,博士,硕士生导师,主要从事水稻重金属污染控制研究。

中图分类号:S511.01

文献标识码:A

文章编号:1000-7091(2020)02-0144-08

doi:10.7668/hbnxb.20190502