氮和钾是决定烤烟品质特性的2个关键营养元素。适宜的氮肥施用量和钾肥施用量是获得作物高产、养分高效和较低环境代价的基础[1]。增施氮肥可以促进烟株对钾的吸收积累[2],但不能改变烟叶中钾含量的分布规律[3]。过量氮肥的使用会降低钾肥利用率[4]。施用钾肥增加了作物叶片中的碳酸酐酶和硝酸还原酶的活性、叶片的净光合速率和干物质积累量[5],缺钾后作物会将更多的碳水化合物积累于地上部以保证光合能力的正常进行[6]。高钾供应促进叶片中NO3-的吸收同化速率,促进有机态含氮化合物向果实中转移[7];施用钾肥可以降低由施用氮肥引起的叶片中硝酸盐含量增加[8]。氮钾配合施用产量的增加量大于单独施用氮肥带来的产量增加量[9],钾肥施用显著增加了氮肥的农学利用效率[10]。合理调节氮肥和钾肥的用量是提高烟叶产量和品质的重要手段,本研究通过分别设置氮肥和钾肥用量的试验,分析不同氮肥和钾肥施用量条件下皖南烟区烟草生长发育和氮钾吸收积累特点,为皖南烟区烟叶生产合理施肥提供理论依据。
试验于2016年在安徽宣城黄渡镇进行,烤烟品种为云烟97,土壤类型为潮土,质地为壤土。试验田土壤基础地力为pH值6.69、有机质含量15.3 g/kg、全氮含量12.9 g/kg、全磷含量0.6 g/kg、全钾含量12.3 g/kg、碱解氮含量122.50 mg/kg、有效磷含量47.56 mg/kg、速效钾含量195.16 mg/kg。
试验为小区试验,共设置4个氮肥水平(N0:0 kg/hm2 、N1:84.45 kg/hm2、N2:112.50 kg/hm2、N3:140.70 kg/hm2)和4个钾肥水平(K0:0 kg/hm2、K1:168.75 kg/hm2、K2:225.00 kg/hm2、K3:281.25 kg/hm2)。其中N2和K2水平为农户常规施肥水平。试验共设7个处理,即T1(N0K2)、T2(N1K2)、T3(N2K2)、T4(N2K0)、T5(N2K1)、T6(N2K3)、T7(N3K2),每个处理3次重复,每个小区面积为21.6 m2。试验各处理磷肥用量均为225 kg/hm2。氮肥施用硝酸铵钙,磷肥施用钙镁磷肥,钾肥施用硫酸钾。栽烟密度为:行距1.2 m,株距0.45 m。其他农艺操作同当地生产。
1.3.1 农艺性状测定 根据YC/T 142-2010,自团棵期(移栽后42 d)开始,每个小区固定5株,每隔7 d测量1次株高和叶片数;现蕾期后每个小区随机选5株代表性烟株,测定上、中、下部叶的叶长、叶宽等农艺性状。
1.3.2 干物质积累量和养分积累量测定 成熟期内每个小区选取2株固定植株,分3次采收叶片,分别对应上、中、下部叶。最后1次采收同时采集茎和根系,各器官分开后在105 ℃下杀青30 min,80 ℃烘干分别测定干质量。样品经粉碎机粉碎,采用H2SO4-H2O2法消煮,分别采用凯氏定氮法和火焰光度法测定含氮量和含钾量。
氮肥/钾肥利用率(Nitrogen use efficiency/NUE,Potassium use efficiency/KUE)=(植株总氮/总钾积累量-不施氮肥/钾肥处理的植株总氮/总钾积累量)÷氮肥/钾肥施用量。
氮肥/钾肥农学效率(Nitrogen agronomic efficiency/AN,Potassium agronomic efficiency/AK)=(叶片干物质积累量-不施氮肥/钾肥处理的叶片干物质积累量)÷氮肥/钾肥施用量。
氮肥/钾肥偏生产力(Partial factor productivity of applied nitrogen/NPFP,Partial factor productivity of applied potassium/KPFP)= 叶片干物质积累量÷氮肥/钾肥施用量。
采用Microsoft Excel 2010和SAS 9.0进行数据统计分析,处理间差异显著性均采用LSD法进行多重比较检验。
农艺性状是烤烟发育特征的直观表征指标。如图1所示,旺长后期株高和叶片数均以T4处理的为最大,T1处理为最小,叶片数表现出随着氮肥用量的增加而增加的趋势,与钾肥用量关系不大。整个旺长期,T1、T2、T3和T7处理的叶片数分别增加了1.6,1.8,2.0,2.1倍;株高分别增加了4.2,6.2,5.8,6.8倍。移栽后66 d,T7处理叶片数较T1处理和T2处理分别增加了5.4,1.6片,株高分别增加了54.8,15.8 cm。
不同字母表示在0.05水平上差异显著。
Different letter means significant difference at P<0.05.
图1 不同处理旺长期叶片数和株高的变化规律
Fig.1 The changing on leaves number and plant height among different treatment during fast growing period
现蕾期时各部位叶片的叶长与叶宽的差异如表1所示。除了T1处理以外,不同处理间下部叶、中部叶和上部叶的叶长无显著差异。下部叶叶宽以T7处理为最大,T1处理为最小;中部叶的叶宽和上部叶的叶宽均随着氮肥用量的增加而增加,与钾肥用量关系不大。
氮肥和钾肥的施用量和现蕾期农艺性状各指标的相关性如表2所示。氮肥用量和烤烟株高、叶片数、各部位叶片的叶长和叶宽均表现为极显著正相关,钾肥用量和烤烟株高、叶片数表现为显著负相关,与各部位叶片的叶长和叶宽无显著相关性。说明氮肥用量显著影响了烤烟发育,随着氮肥用量的增加,株高变高,叶片数增加,叶片变长变宽;钾肥用量对烤烟发育影响不大,随着钾肥用量的增加,仅株高和叶片数表现出降低的趋势。
不同氮肥和钾肥的施用量对成熟期烤烟各器官干物质积累量的影响如表3所示。随着氮肥用量的增加,烤烟茎、根系和叶片的干物质积累量逐步增加,氮肥用量最大的T7处理茎、根系和叶片的干物质积累量分别是不施氮肥处理的7.1,19.5,14.4倍;整株生物量同样表现出随着氮肥用量增加而增加的趋势。不同钾肥用量下,茎和根系的干物质积累量均以T4处理为最大,叶片的干物质积累量以T3处理为最大,整株生物量以T4处理为最大。不同氮肥用量下,烤烟根冠比随着氮肥用量的增加先上升后下降,以T3处理为最大;不同钾肥用量下,烤烟根冠比同样随着钾肥用量的增加先上升后下降,以T3处理为最大。氮肥用量和各器官干物质积累量的相关性分析结果显示,氮肥用量和茎、根系和叶片的干物质积累量的相关系数分别为0.708,0.647,0.818,均达到极显著正相关,而钾肥用量和茎、根系和叶片的干物质积累量的相关系数分别为0.024,-0.321,-0.256,没有显著相关性。这说明氮肥用量显著影响了烤烟各器官干物质的积累而钾肥用量影响不大。
表1 不同处理对烤烟现蕾期农艺性状的影响
Tab.1 Effects of different treatments on agronomic characters of flue-cured tobacco at budding stage cm
处理Treatment下部叶Lower leaves中部叶Middle leaves上部叶Upper leaves叶长Leaf length叶宽Leaf width叶长Leaf length叶宽Leaf width叶长Leaf length叶宽Leaf width T126.8±2.3b13.6±2.2c25.2±5.3b10.6±1.5c4.6±4.6b1.0±1.0cT241.0±6.5a20.4±3.4ab46.3±3.0a19.0±1.9b29.4±9.1a8.6±3.6bT342.0±5.6a16.8±2.5bc49.8±1.5a22.2±3.3ab37.6±1.8a12.0±1.9abT436.4±3.5a19.0±1.7ab48.2±3.6a22.0±1.6ab34.2±3.6a11.6±1.5abT537.8±2.8a20.4±1.8ab50.0±2.7a24.8±3.3a34.4±6.7a10.6±2.6abT639.0±2.5a19.8±4.4ab50.6±3.0a23.6±2.4a31.2±4.3a9.8±1.1abT740.6±3.7a22.0±3.4a51.4±2.1a23.4±3.0a33.8±8.7a12.8±5.3a
注:同一列内不同字母表示在0.05水平上差异显著。表3-5,7同。
Note:Different letter in the same column means significant difference at P<0.05.The same as Tab.3-5,7.
表2 氮钾肥用量与烤烟农艺性状各指标的相关性分析
Tab.2 Correlation analysis of nitrogen/potassium fertilizer application rate and agronomical characters of flue-cured tobacco
项目Item株高Plant height叶片数Leaves number上部叶长Upper leaf length上部叶宽Upper leaf width中部叶长Middle leaf length中部叶宽Middle leaf width下部叶长Lower leaf length下部叶宽Lower leaf width氮肥用量N application rate0.749∗∗0.807∗∗0.841∗∗0.812∗∗0.912∗∗0.852∗∗0.680∗∗0.585∗∗钾肥用量K application rate-0.371∗-0.415∗-0.185-0.197-0.085-0.113-0.098-0.030
注:**.极显著相关(P<0.01);*.显著相关(P<0.05)。表6同。
Note:**.Significant correlation at P<0.01;*. Significant correlation at P<0.05.The same as Tab.6.
表3 烤烟各处理不同部位干物质积累量
Tab.3 Dry matter accumulation in various parts of tobacco among different treatments
处理Treatment茎/(g/株)Stem根系/(g/株)Root叶/(g/株)Leaves整株/(g/株)Whole plant冠根比Root/Shoot ratioT118.85±2.1c5.40±0.9c8.69±0.9c32.94±0.8d0.20±0.8cT272.05±0.9b43.51±0.8bc56.12±0.8b171.69±3.5c0.37±0.3abcT392.87±1.5ab102.82±1.5ab111.29±1.5a307.00±7.4ab0.53±0.5aT4118.50±5.2a103.04±2.5a86.38±2.7ab307.92±8.5ab0.48±0.2abT5101.09±2.3ab69.02±0.8a51.32±1.7b221.44±6.8bc0.49±0.6abT6100.90±2.8ab50.77±1.8bc99.76±1.5ab251.43±8.8abc0.27±0.2bcT7133.41±1.9a105.46±2.5a126.90±5.6a365.78±7.5a0.41±0.8abc
不同氮肥和钾肥的施用量对成熟期烤烟各器官氮含量和钾含量的影响如表4所示。随着氮肥施用量的增加,茎中氮含量先上升后下降,以T3处理为最大;根系含氮量随着氮肥施用量的增加而降低,而叶片含氮量随着施氮量的增加而增加;不同氮肥用量下,茎中的钾含量以T2处理为最大,其他处理间无显著差异;叶片中的钾含量以T3处理为最小,其他处理间无显著差异。随着钾肥施用量的增加,茎和根系的氮含量表现为先上升后下降的趋势,均以T3处理为最大;不同钾肥施用量间叶片含氮量没有显著差异;不同钾肥用量间,茎和叶片中的钾含量均以T4处理为最小,T6处理为最大;各处理间根系中的钾含量没有显著差异,不受氮肥用量和钾肥用量的影响。
表4 烤烟各处理不同部位养分含量
Tab.4 Nutrition concentration in various parts of different treatments g/kg
处理Treatment氮含量N concentration钾含量K concentration 茎Stem根Root叶片Leaves茎Stem根Root叶片LeavesT14.9±2.3c10.8±2.9a6.8±1.7b17.2±1.4bc15.0±2.7a27.1±5.2aT210.3±5.1ab10.7±1.6a8.2±1.2ab23.0±5.1a13.5±3.7a20.7±6.7abcT312.0±0.5a10.3±3.4a9.2±3.4ab12.3±6.9bc13.6±4.1a17.1±7.4cT45.9±1.1c6.2±1.9b9.6±1.1a13.9±1.9c12.4±2.6a14.2±1.2cT55.8±1.2c10.0±3.0a10.4±0.7a18.0±1.5b12.6±2.4a18.6±5.2bcT66.5±2.6bc8.3±1.2ab9.9±1.1a19.2±4.5b14.7±2.6a25.5±3.6abT77.9±3.1bc8.0±0.6ab9.3±2.1ab17.5±1.0bc11.8±1.1a26.0±6.5a
不同氮肥和钾肥的施用量对成熟期烤烟各器官氮积累量和钾积累量的影响如表5所示。除茎中氮积累量外,不同氮肥用量处理间各器官氮积累量和钾积累量均存在显著差异,随着氮肥施用量的增加,茎、根系和叶片中氮积累量和钾积累量显著增加。不同钾肥用量处理间,茎中氮积累量没有显著差异,根系和叶片氮积累量以T5处理为最大,叶片钾积累量以T6处理为最大。
表5 烤烟各处理不同部位养分积累量
Tab.5 Nutrition accumulation in various parts of different treatments mg/株
处理Treatment氮积累量 N accumulation钾积累量K accumulation茎Stem根Root叶片Leaves茎Stem根Root叶片LeavesT142.4±10.7b56.0±5.1c134.2±29.3c146.2±21.0d79.4±6.0c526.0±95.5eT2678.0±217.1a458.9±92.8bc593.7±67.9b1 443.9±198.0bc557.3±109.3bc1 484.9±229.9dT3609.1±64.4a763.4±243.3ab978.8±273.5ab879.3±123.8c893.5±197.7ab1 763.4±358.9cdT4663.4±114.8a566.6±51.8bc868.7±130.7ab1 563.9±279.4abc1 373.7±460.4a1 294.2±207.0dT5524.1±120.8a1 099.4±329.4a1 226.1±23.7a1 542.0±310.0abc1 351.9±383.8a2 239.2±352.8bcT6698.6±218.3a422.9±65.1bc998.6±131.8a1 848.4±218.9ab726.6±80.0abc2 613.6±416.3abT7989.3±162.1a847.9±129.7ab1 202.1±91.0a2 205.2±203.6a1 244.0±177.3ab3 317.9±204.8a
氮肥和钾肥的施用量和成熟期烤烟整株养分含量及积累量的相关性如表6所示。氮肥用量和烤烟整株氮含量表现为显著相关,和烤烟整株钾含量没有相关性,和烤烟整株氮积累量和钾积累量表现为极显著正相关;钾肥用量与整株钾含量表现为极显著正相关,与整株氮积累量、整株钾积累量没有相关性。
表6 氮钾肥用量与整株养分吸收积累量的相关性分析
Tab.6 Correlation analysis of N/K application rate and nutrition concentration/accumulation in whole plant
项目Item氮含量/(mg/kg)N concentration 钾含量/(mg/kg)K concentration 氮积累量/(mg/株)N accumulation 钾积累量/(mg/株)K accumulation氮肥用量N application rate0.410∗-0.3080.794∗∗0.768∗∗钾肥用量K application rate0.300∗0.554∗∗-0.065-0.004
表7 烤烟不同处理间肥料利用率差异
Tab.7 Different fertilizer use efficiency among different treatments
处理Treatment氮肥利用率/%Nitrogen use efficiency氮肥农学效率/(kg/kg)Nitrogen agronomic efficiency氮肥偏生产力/(kg/kg)Partial factor productivity of applied nitrogen钾肥利用率/%Potassium use efficiency钾肥农学效率/(kg/kg)Potassium agronomic efficiency钾肥偏生产力/(kg/kg)Partial factor productivity of applied potassiumT235.2±4.2a11.6±1.4b15.8±1.4b---T334.2±4.3a13.5±1.7ab16.6±1.7b-0.7±0.9b8.3±0.9bT5---9.9±10.8a2.8±0.5a13.0±0.5aT6---6.3±3.7a0.5±0.8b6.6±0.8bT736.9±2.7a15.1±1.9a17.6±1.9a---
注:T1和T4处理分别为不施氮肥和不施钾肥的处理,不计算肥料利用率。
Note:T1 and T4 were treatments without nitrogen and potassium fertilizers respectively,and the fertilizer utilization rate was not calculated.
不同氮肥和钾肥的施用量对肥料利用率的影响如表7所示。随着氮肥用量的增加,氮肥利用率没有显著变化,而氮肥农学效率和氮肥偏生产力显著增加,T7处理较T2处理氮肥农学效率和氮肥偏生产力分别增加30%和11%。与氮肥利用率相比,各处理间钾肥利用率相对较低,其中T3处理与不施钾肥的T4处理相比,施用钾肥后整株钾积累量并没有增加,钾肥利用率无法通过差减法进行计算;不同钾肥用量间,以T5处理的钾肥利用率、钾肥农学效率和钾肥偏生产力为最高。
试验结果表明,叶片数、株高、叶长和叶宽等农艺性状指标随着氮肥用量的增加而增加,各器官干物质的积累量也与氮肥用量呈极显著正相关的关系,这说明施用氮肥与烤烟的发育密切相关,这与之前的研究结果相一致[11-12],在一定氮肥用量范围内,随着氮用量的增加,叶片光合能力增加[13],有利于光合产物的积累,进而形成较大的干物质积累量[14]。增施氮肥显著增加了烤烟的氮素和钾素积累量,但烤烟的钾含量与氮肥用量没有显著相关关系,烤烟的氮含量与氮肥用量相关性也不高,这说明氮肥对烤烟养分吸收的影响主要是通过增加干物质积累[15-16],形成较大的库以吸收更多的养分,而对烤烟本身养分吸收和转运能力的影响不大[17]。在本试验中,农艺性状指标和烤烟各器官干物质积累量与钾肥用量间没有显著相关关系,这说明使用钾肥可能与烤烟发育的关系并不密切[18-21],这可能与本试验地块的土壤速效钾含量较高有关[22]。增施钾肥后,除叶片和茎中的钾积累量以外,其他各器官的氮积累量和钾积累量没有显著变化,但烤烟的氮含量与钾肥用量存在相关关系,烤烟的钾含量与钾肥用量存在极显著的相关关系,这说明在本试验中,钾肥更多的影响了烤烟养分吸收和转运能力。
在本试验中,随着氮肥用量的增加,氮肥利用率增加,这可能与该地块土壤基础供氮能力不足有关[23],该地块施用氮肥增产效果较明显,在现有常规氮肥用量基础上仍有增产空间;但过高的施氮量会引起烤烟品质的下降,因此,在确定皖南烟区适宜氮肥用量时需进一步结合化学成分及感官质量评价的结果。与氮肥利用率相比,烤烟的钾肥利用率相对较低,这主要因为烟草作为一种工业生产原料,对品质特别是烟叶钾含量的要求高于对产量的要求[24-25],因此,存在钾肥过量使用的现象,结合烟叶钾含量和钾肥利用率的结果,皖南烟区适宜钾肥用量存在下降的空间。
[1] Cui Z L,Dou Z X,Chen X P,Ju X T, Zhang F S. Managing agricultural nutrients for food security in China:past,present,and future[J].Agronomy Journal,2013,106(1):191-198. doi:10.2134/agronj2013.0381.
[2] 汪耀富,张福锁. 干旱和氮用量对烤烟干物质和矿质养分积累的影响[J]. 中国烟草学报,2003,9(1):19-23,29.doi:10.3321/j.issn:1004-5708.2003.01.005.
Wang Y F,Zhang F S. Effects of drought stress and nitrogen on dry matter accumulation and concentration of mineral elements in flue-cured tobacco [J]. Acta Tabacaria Sinica,2003,9(1):19-23,29
[3] 杨志新,温永琴,罗济,罗鹏涛,程辉斗. 不同施氮量对烟叶含钾量的影响[J]. 烟草科技,2001(7):36-38. doi:10.3969/j.issn.1002-0861.2001.07.017.
Yang Z X,Wen Y Q,Luo J,Luo P T,Cheng H D. Effect of different nitrogen supply on potassium content of tobacco leaf [J]. Tobacco Science & Technology,2001(7):36-38.
[4] Zhang F S,Niu J F,Zhang W F,Chen X P,Yuan L X,Xie J C. Potassium nutrition of crops under varied regimes of nitrogen supply[J].Plant and Soil,2010,335(1-2):21-34. doi:10.1007/s11104-010-0323-4.
[5] Mohammad F,Naseem U. Effect of K application on leaf carbonic anhydrase and nitrate reductase activities,photosynthetic characteristics,NPK and NO3 contents,growth,and yield of mustard[J].Photosynthetica,2006,44(3):471-473.doi:10.1007/s11099-006-0053-2.
[6] Kanai S,Ohkura K,Adu-Gyamfi J J,Mohapatra P K, Nguyen N T,Saneoka H,Fujita K. Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress[J].Journal of Experimental Botany,2007,58(11):2917-2928.doi:10.1093/jxb/erm149.
[7] Ruiz B,Romero L.Relationship between potassium fertilization and nitrate assimilation in leaves and fruits of cucumber(Cucumis sativus)plants[J].Annals of Applied Biology,2002,140(3):241-245. doi:10.1111/j.1744-7348.2002.tb00177.x.
[8] 孙红梅,李天来,须晖,郭泳,范文丽. 不同氮水平下钾营养对大棚番茄产量及品质的影响[J]. 沈阳农业大学学报,2000,31(1):68-71. doi:10.3969/j.issn.1000-1700.2000.01.019.
Sun H M,Li T L,Xu H,Guo Y,Fan W L. Effects of potassium on yield and quality of tomato under different application of nitrogen fertilizers [J]. Journal of Shenyang Agricultural University,2000,31(1):68-71.
[9] 邹铁祥,戴廷波,姜东,荆奇,曹卫星. 钾素水平对小麦氮素积累和运转及籽粒蛋白质形成的影响[J]. 中国农业科学,2006,39(4):686-692. doi:10.3321/j.issn:0578-1752.2006.04.006.
Zou T X,Dai T B,Jiang D,Jing J,Cao W X. Potassium supply affected plant nitrogen accumulation and translocation and grain protein formation in winter wheat [J]. Scientia Agricultura Sinica,2006,39(4):686-692.
[10] Zhu Z L,Chen D L. Nitrogen fertilizer use in China-Contributions to food production,impacts on the environment and best management strategies[J].Nutrient Cycling in Agroecosystems,2002,63(2-3):117-127.doi:10.1023/A:1021107026067.
[11] 向慧慧,李小青,罗真华,黄湘民,谢会雅,蔡奇,傅雪平. 不同氮肥水平及氮钾配比对烤烟化学品质的影响[J]. 中国农学通报,2013,29(13):158-162. doi:10.11924/j.issn.1000-6850.2012-3829.
Xiang H H,Li X Q,Luo Z H,Huang X M,Xie H Y,Cai Q,Fu X P. Effect of nitrogen and potassium fertilizers on flue-cured tobacco chemical quality [J]. Chinese Agricultural Science Bulletin,2013,29(13):158-162.
[12] 马兴华,管恩森,王永,鹿莹,张本强,张忠锋. 氮肥后移对烤烟氮素吸收、利用及品质的影响[J]. 中国农学通报,2018,34(1):36-40. doi:10.11924/j.issn.1000-6850.casb16110069.
Ma X H,Guan E S,Wang Y,Lu Y,Zhang B Q,Zhang Z F. Effect of postponing N application on nitrogen uptake,utilization and leaf quality of flue-cured tobacco [J]. Chinese Agricultural Science Bulletin,2018,34(1):36-40.
[13] 黄松青,危跃,屠乃美,易镇邪,官春云. 控释肥对烤烟光合特性和产质量与氮钾利用率的影响[J]. 中国烟草科学,2015,36(1):54-60. doi:10.13496/j.issn.1007-5119.2015.01.011.
Huang S Q,Wei Y,Tu N M,Yi Z X,Guan C Y. Effects of controlled release fertilizer on photosynthetic characteristics,yield and quality and use efficiency of N and K of tobacco [J]. Chinese Tobacco Science,2015,36(1):54-60.
[14] 林叶春,高维常,陈懿,丁福章,陈伟,李洪勋,潘文杰,姚国娇. 施氮量对烤烟打顶期叶片光合响应的影响[J]. 中国烟草科学,2015,36(2):71-75. doi:10.13496/j.issn.1007-5119.2015.02.013.
Lin Y C,Gao W C,Chen Y,Ding F Z,Chen W,Li H X,Pan W J,Yao G J. Effects of nitrogen application rates on light response curves at topping stage in flue-cured tobacco [J]. Chinese Tobacco Science,2015,36(2):71-75.
[15] 马兴华,梁晓芳,刘光亮,石屹,张忠锋. 氮肥用量及其基追施比例对烤烟氮素利用的影响[J]. 植物营养与肥料学报,2016,22(6):1655-1664. doi:10.11674/zwyf.15430.
Ma X H,Liang X F,Liu G L,Shi Y,Zhang Z F. Effect of nitrogen application rate and base and topdressing ratio on nitrogen utilization of flue-cured tobacco [J]. Journal Plant Nutrition and Fertilizer,2016,22(6):1655-1664.
[16] 樊红柱,曾祥忠,顾会战,尹振华,李斌,张隆伟,冯文强. 氮肥形态及运筹对烤烟产量与品质的影响[J]. 西南农业学报,2016,29(4):879-882. doi:10.16213/j.cnki.scjas.2016.04.028.
Fan H Z,Zeng X Z,Gu H Z,Yin Z H,Li B,Zhang L W,Feng W Q. Effects of form and application rate of nitrogen fertilizer on yield and qualities of tobacco [J]. Southwest China Journal of Agricultural Sciences,2016,29(4):879-882.
[17] 葛国锋,王树会,刘卫群. 氮肥对不同烤烟品种碳氮代谢关键酶活性的影响[J]. 中国农业科技导报,2014,16(1):59-64. doi:10.13304/j.nykjdb.2013.172.
Ge G F,Wang S H,Liu W Q. Effects of nitrogen fertilizer on activities of key enzymes of carbon and nitrogen metabolism of different flue-cured tobacco varieties [J]. Journal of Agricultural Science and Technology,2014,16(1):59-64.
[18] 杨波,吴元华,董建新,管恩娜,梁洪波,陈向东,赵永长,宋科. 不同硫酸钾用量对烤烟氮、钾、硫吸收的影响[J]. 江苏农业科学,2015,43(4):116-119. doi:10.15889/j.issn.1002-1302.2015.04.041.
Yang B,Wu Y H,Dong J X,Guan E N,Liang H B,Chen X D,Zhao Y C,Song K. Effects of different potassium sulfate dosage on nitrogen,potassium and sulfur absorption in flue-cured tobacco [J]. Jiangsu Agricultural Sciences,2015,43(4):116-119.
[19] 张翔,索炎炎,毛家伟,李亮,范艺宽,司贤宗. 钾用量与灌溉方式互作对土壤-烤烟系统钾素及烟叶品质的影响[J]. 土壤通报,2017,48(3):669-675. doi:10.19336/j.cnki.trtb.2017.03.23.
Zhang X,Suo Y Y,Mao J W,Li L,Fan Y K,Si X Z. Effect of potassium rate and irrigation methods on potassium contents in plant-soil system and quality of flue-cured tobacco [J]. Chinese Journal of Soil Science,2017,48(3):669-675.
[20] 李静,王勇,张锡洲,李廷轩,郑子成,戢林. 施钾量对烤烟钾积累与分配的影响[J]. 中国烟草科学,2013,34(6):69-76. doi:10.3969/j.issn.1007-5119.2013.06.014.
Li J,Wang Y,Zhang X Z,Li T X,Zheng Z C,Ji L. Influence of K accumulation and distribution of flue-cured tobacco under various K rates [J]. Chinese Tobacco Science,2013,34(6):69-76.
[21] 林鸾芳,李冰,王昌全,肖瑞,罗茜,杨兰. 钾肥追施时期后移对烤烟钾积累与分配的影响[J]. 西南农业学报,2016,29(7):1660-1665. doi:10.16213/j.cnki.scjas.2016.07.029.
Lin L F,Li B,Wang C Q,Xiao R,Luo Q,Yang L. Effect of K accumulation and distribution of flue-cured tobacco under K fertilizer topdressing time retroposition [J]. Southwest China Journal of Agricultural Sciences,2016,29(7):1660-1665.
[22] 闫慧峰,梁洪波,许家来,李德成,杨举田,杜传印,牛柱峰,刘光亮,徐宜民,肖振杰,关辉,石屹. 山东烟叶生产典型样区土壤质量评价[J]. 中国土壤与肥料,2015(6):41-47. doi:10.11838/sfsc.20150607.
Yan H F,Liang H B,Xu J L,Li D C,Yang J T,Du C Y,Niu Z F,Liu G L,Xu Y M,Xiao Z J,Guan H,Shi Y. Evaluation of soil quality in Shandong typical tobacco production region [J]. Soils and Fertilizers Sciences in China,2015(6):41-47.
[23] 刘青丽,张云贵,焦永鸽,谷海红,夏昊,李志宏. 西南烟区氮素供应与烤烟氮素吸收的关系[J]. 植物营养与肥料学报,2017,23(3):757-764. doi:10.11674/zwyf.16312.
Liu Q L,Zhang Y G,Jiao Y G,Gu H H,Xia H,Li Z H. Relationship between nitrogen supply and nitrogen absorption of flue-cured tobacco in Southwest China [J].Journal Plant Nutrition and Fertilizer,2017,23(3):757-764.
[24] 代晓燕,张芊,王建安,郭春燕. 不同钾肥施用量及基追施比对烤烟中性致香物质含量的影响[J]. 中国烟草科学,2014,35(1):26-31. doi:10.13496/j.issn.1007-5119.2014.01.005.
Dai X Y,Zhang Q,Wang J A,Guo C Y. Effects of different potassium fertilization modes on neutral aroma components in flue-cured tobacco leaves [J]. Chinese Tobacco Science,2014,35(1):26-31.
[25] 邢云霞,王蒙,刘世亮,化党领,赵丹,刘芳,朱金峰,王国峰.氮钾肥施用方法对烤烟品质及经济效益的影响[J]. 中国水土保持科学,2014,12(6):90-96.doi:10.16843/j.sswc. 2014.06.013.
Xing Y X,Wang M,Liu S L,Hua D L,Zhao D,Liu F,Zhu J F,Wang G F. Effect of N and K fertilizer application methods on quality and economic benefits of Nicotiana tabacum L.[J]. Science of Soil and Water Conservation,2014,12(6):90-96.