小麦2B染色体新SSR标记开发

李小军1,徐 鑫2,张自阳1,刘明久1,茹振钢1

(1.河南科技学院,河南省现代生物育种协同创新中心,河南省杂交小麦重点实验室,河南 新乡 453003; 2.新乡学院,河南 新乡 453003)

摘要:为开发用于小麦育种的新SSR分子标记,利用普通小麦中国春2B染色体25 Mb的DNA序列进行了SSR筛选,在检测到的2 852个SSR中80.40%是二核苷酸重复。二、三、四、五核苷酸重复序列分别有6,30,17,1种类型。二核苷酸中GA/CT、AG/TC、AT/TA数量最多,分别占SSR总数的20.44%,19.00%,17.15%;三核苷酸中CTT/GAA的数量最多,占SSR总数的2.56%;四、五核苷酸重复出现的频率都较低。进一步分析SSR的重复次数,发现二核苷酸重复次数总体较高,重复次数≥10的SSR数量有327个,占所有二核苷酸序列的14.26%,其中,AG/TC、AT/TA的重复次数≥10的SSR数量分别有98,97个。三核苷酸的重复次数总体偏低,重复次数≥8的SSR数量仅有62个,占所有三核苷酸序列的11.55%,其中TTC/AAG的重复次数≥8的SSR数量最多,有12个。四核苷酸中只有ACAT/TGTA、TAGA/ATCT的重复次数分别达到了16,14次,其他重复基元的重复次数主要为5~7次。根据筛选到的SSR位点共设计合成了135对SSR引物,发现有101对(74.81%)引物在小麦品系Cf5019-21和Cf5240-41扩增出清晰的DNA条带,17对引物在二者间表现出差异扩增。

关键词:小麦;SSR;引物;2B染色体

分子标记技术大大推动了作物育种和基因组研究的发展,其中,因SSR具有易操作、重复性好、多态性高、数量丰富及共显性遗传等优点,被广泛应用于小麦、水稻和玉米等植物的遗传连锁图谱构建、遗传多样性分析、基因定位及标记辅助选择等研究[1-2]。随着分子生物学的快速发展,新近开发的单核苷酸多态性(SNP)标记具有密度高、代表性强和遗传稳定性好等优点,目前,小麦上已开发出以SNP标记为基础的Illumina iSelect9k、Illumina iSelect90k、Affymetrix Axiom660k和Affymetrix Axiom55k等芯片[3],并逐步应用于小麦遗传连锁图谱构建和关联分析等方面的研究[4-6]。但SNP芯片价格昂贵是进行大规模群体检测的主要限制因素,相比之下SSR标记仍是多数学者进行遗传研究选用的重要标记类型。迄今,虽然普通小麦上已开发了大量SSR标记,但由于其基因组庞大且复杂(基因组大小达到了16×109 bp,其中超过80%为重复DNA),现有的SSR标记密度仍很低,难以满足当前高通量基因组的研究需要。因此,开发新的SSR标记对于小麦遗传研究具有重要意义。

SSR标记是根据每个SSR重复序列的两端保守序列设计特异性引物,通过PCR扩增及电泳检测分析不同样品间重复序列的长度多态性。早期SSR标记的开发主要是在构建基因组文库、筛选SSR克隆并测序的基础上根据DNA序列进行引物设计。例如,Guyomarc′h等[7]根据节节麦的SSR克隆序列成功开发了270个能在普通小麦中有效扩增的SSR引物。Röder等[8]根据中国春小麦基因组文库中720个SSR克隆序列设计引物,在294个能扩增出预期大小DNA片段的引物中,约80%在2个小麦品种Opata85和W7984间表现多态,并构建了第一张高密度微卫星标记小麦遗传图谱。Li等[1]开发了856个黑麦1~7 R的特异SSR标记。近年来,随着植物表达基因部分序列(EST)数据在GenBank(http://www.ncbi.nlm.nih.gov/dbEST/bEST_summary.html)等数据库的大量公开,从EST中发掘SSR成为分子标记开发简便而有效的方法,已成功应用于小麦[9-12]、水稻[13]、大麦[14]和花椒[15]等作物的SSR标记开发。目前,小麦测序工作取得突破性进展,普通小麦中国春的基因组序列公开释放,进一步为分子标记的开发奠定了理论基础。

本研究从普通小麦中国春2B染色体DNA序列中进行了SSR的查找和分析,通过设计引物及有效性验证,旨在开发可用于小麦的新SSR标记。

1 材料和方法

1.1 供试材料

试验材料为来自同一杂交组合的2个小麦姊妹系Cf5019-21和Cf5240-41。

1.2 试验方法

1.2.1 SSR的查找和引物设计 从网站(http://www.wheatgenome.org/)下载中国春2B染色体物理位置在159 206 132~184 196 812 bp的25 Mb DNA序列,利用SSRHunter软件[16]查找二、三、四、五核苷酸类型的SSR位点(核苷酸序列的重复次数大于或等于5次)。利用Primer 5.0软件根据查找的SSR位点两侧各150 bp的DNA序列设计SSR引物。引物设计的条件为:引物长度18~22 bp,退火温度50~65 ℃,且上游和下游的引物退火温度之差低于5 ℃,PCR扩增片段长度100~400 bp,尽可能防止出现二级结构。设计的引物由上海生工生物技术有限公司合成。引物命名为Xhwm加序号,例如Xhwm1

1.2.2 PCR扩增与电泳 CTAB法提取DNA。PCR反应体积为20 μL,含1×Buffer(0.01 mol/L Tris-HCl,pH值8.3,0.05 mol/L KCl)、0.001 5 mol/L MgCl2、0.2 mol/L dNTPs、50 ng引物和60 ng模板DNA。扩增:94 ℃预变性5 min;然后94 ℃变性1 min,50~60 ℃退火1 min,72 ℃延长1min,35个循环;72 ℃延长10 min。扩增产物进行8%非变性聚丙烯酰胺凝胶电泳,硝酸银染色。

2 结果与分析

2.1 SSR位点的查找

利用SSRHunter软件在中国春2B染色体25 Mb的DNA序列中共找到2 852个SSR位点(表1),这些位点中二核苷酸重复最多,有2 293个,占所发现SSR位点总数的80.40%,其次是三核苷酸,有537个,占所发现SSR位点总数的18.83%;四核苷酸、五核苷酸重复单元数量很低,分别仅出现了21,1个。

2.2 SSR分布特征及重复次数

如表2所示,在2 852个SSR中,二核苷酸重复序列有6种,其中GA/CT、AG/TC数量最多,分别占

表1 不同重复核苷酸的SSR分布
Tab.1 Distribution of SSR based on different repeating nucleotides

重复单元Repeats数量Number百分比/%Percentage 二核苷酸Dinucleotide2 29380.40三核苷酸Trinucleotide53718.83四核苷酸Tetranucleotide210.74五核苷酸Pentanucleotide10.03合计Total2 852100.00

SSR总数的20.44%,19.00%(表2);其次为AT/TA,占SSR总数的17.15%;AC/TG、CA/GT的数量接近,分别占SSR总数的10.76%,10.31%,CG/GC的数量最少,占SSR总数的2.73%。三核苷酸重复序列共30种,其中,CTT/GAA数量最多,占SSR总数的2.56%;其次是TTC/AAG、TCT/AGA、CCT/GGA,分别占SSR总数的1.79%,1.16%,1.02%;其余26种类型占SSR总数的比例均小于1.00%。四核苷酸重复序列共17种,五核苷酸仅有1种,各种重复占SSR总数的比例都较低。

表2中二核苷酸、三核苷酸分别统计重复次数≥10或8的SSR数量。进一步分析SSR的重复次数,发现二核苷酸重复次数总体较高,重复次数≥10的SSR序列有327个,占所有二核苷酸序列的14.26%,其中二核苷酸AT/TA最高重复次数达到了47次,AG/TC、AT/TA 2种重复基元中重复次数≥10的SSR序列分别有98,97个,而CG/GC仅有1个SSR序列的重复次数≥10。三核苷酸的重复次数总体偏低,重复次数≥8的SSR数量仅有62个,占所有三核苷酸序列的11.55%。其中TTC/AAG重复基元中重复次数≥8的SSR数量最多,有12个;而TAC/ATG的最高重复次数达到了33次。四核苷酸重复基元中只有ACAT/TGTA、TAGA/ATCT的重复次数分别达到了16,14次,其他重复基元的重复次数主要为5~7 次。五核苷酸TTTTA/AAAAT重复了5次。

表2 二核苷酸和三核苷酸重复基元的SSR分布
Tab.2 SSR distribution of dinucleotide and trinucleotide types

重复基元Repeat motif数量/个Number比例/%Percentage 最高重复次数/次Maximum of repetition重复次数≥10或8的SSR数量Number of repetition ≥10 or 8GA/CT58320.442461AG/TC54219.002998AT/TA48917.154797AC/TG30710.762743CA/GT29410.313127CG/GC782.73101CTT/GAA732.56126TTC/AAG511.792912TCT/AGA331.16188CCT/GGA291.02145GAG/CTC270.9591TTG/AAC270.95148GGC/CCG250.8870TAC/ATG240.84335CAA/GTT230.81102TCG/AGC230.8160CGG/GCC190.6770TCC/AGG190.67101CCA/GGT190.67112CGC/GCG170.6081GTA/CAT160.5660TCA/AGT140.49232GCT/CGA130.4660TAA/ATT100.35182GTG/CAC90.3281CTG/GAC90.3260GTC/CAG80.2870TAG/ATC80.2881TGG/ACC70.2581CGT/GCA70.2560TGA/ACT60.2170TTA/AAT60.21242TGC/ACG50.1870ACA/TGT50.18161TAT/ATA30.11171GAT/CTA20.0760

2.3 SSR有效性验证

根据上述的SSR位点共设计了135对SSR引物,以2个小麦品系Cf5019-21和Cf5240-41的DNA为模板进行PCR检测,发现有101对引物在这2个材料中扩增出了清晰的DNA条带(表3),占所设计SSR引物的74.81%,其中17对(16.83%)引物在二者间表现出差异扩增。图1为部分SSR引物的扩增结果。

表3 101个在小麦品系Cf5019-21和Cf5240-41上有扩增产物的SSR引物
Tab.3 Information of 101 SSR primers which amplified clear bands in wheat lines Cf5019-21 and Cf5240-41

引物名称Name ofprimers重复单元Repeat引物上链(5'-3')Forward primer引物下链(5'-3')Reverse primer 退火温度/℃Tm 产物长度/bpProduct size Xhwm1ATTAAATAGATAATCAGTTCCA-CACTTATAGGGCTGCTGTGA50209Xhwm2ACATAAACAAGCATTATACAGCACTCCTCCCCTTTCCTTCT50212Xhwm3GAATAGCAAAGCTCACGGTACGATGAGGAGGGAGTTGTTC50137Xhwm4ATGCCACCACCAACTTTCTCTAGGGTCCGATCACATTC50274Xhwm5TCACGAGGAGGGAGTAGTTCACCATTACAAGAAAGTAGAGGG50208Xhwm6ATCAAAACGCAAACGGTGGTGCTTGGGCTGGTTTGAGT55248Xhwm8TGGGAAACTTATTGTTGGTATGAAATAGGCCAGCCCAGTA50202Xhwm11CCTCCCTTGCCACGTTCAGTCGGGAGGAATGGGACTCGGATGT60168Xhwm12ATTTTGGAAATGGAAAGACAGCACCCACATCATCTTCCTG50248Xhwm13TACACAGGGTGAGGCTGACTTTAGCACGGGAGACCTATT50286Xhwm14TCCCATGACAAGGAGGGAGTCATCAAGATCGTGCCATAGA50141Xhwm16ACTCCCCGAGCCCATACACCCATCTAACATGCATTCATAC50161Xhwm17GAATGGTGCCAGGGCAGAATTGAAGATGGCGGAGGTGTT55280Xhwm18GACGTGCCAAATCAAGAACACATCATCCCGACGCTCT50121Xhwm20ACACAGGAGCGTGAAATAGAAGCCTTGATTGGCCTCCCT50188Xhwm21AGACAGGAGCGTGAAATAGAAGAAGATGGGAGGAGGTTTCC55169Xhwm22ACCGCAATCGGAGTTATGGGATGGGAGGAGGTTTCC50244Xhwm23AGCAGGAGCGTGAAATAGAAGAAGATGGGAGGAGGTTTCC55190Xhwm24GAGACAACGAAATCTCAAAGGTCATCATCCCGATAGCC50231Xhwm25CTGGGGACGGTGCTATCCAATGGCGGACCTGGCACTCAAAT60173Xhwm26TGATGTCAAGCGTCTGAGGAAGAGTCATGTACTGACCGTGAGAC55217Xhwm27CAATGGAAATGTGGGTTTGTCCACATCCTCCCTTTCTGC50154Xhwm28TATTCACTGTTTCCGTCGTTAGGGTCCGATCACATTC50158Xhwm29TCATCTCGGCGGTCTCCATCGTGCCAAATCAAGAACAA55131Xhwm30ATCATGAAGTCCTTTACCCTGGAAGTGCTGGTGAAGATGTTGATG55218Xhwm31TGTGTTGTTGTTGCTGCTGTTGCGGGCTGATGGCAAGGATA55128Xhwm32TCCTCGGAGCTGAGGGTATGATCCGATAAGATAACT-TCAAGAGG55195Xhwm33CTTCCCAAGTGACACCTAACCTCCTACCCAAGCCAAA50158Xhwm34GGACCCCGGAAGGAAACAACCCGGTCCCGATCATGCGAAACTC60176Xhwm35AGAATCCAATCTCAGTCCCTTTCATGTTCTTTCCTCCC50282Xhwm36TACAATGACCTATGGCACCTTGGGATTGAGTTGGAGGA50320Xhwm37TT-GCCACTTGTTGTTGGGTAAATGTCCCACATCCCAGTCAGTCTTCA55227Xhwm38CCGTTGTCTTACATGGTAT-CACGCTAGGAGAAGTGCCGCGAGGGAG60190Xhwm39GACATCAAGATCGTGCAACAGTCATTGACGAGAAGGGAGT50119Xhwm40TTGAAAGCCCATAAACATCCGGCAGCAGAATGCCTTGAT50198Xhwm41ATACGTAAAATTACGGTGCACTCGTCGTCAAAATGATGTA50251Xhwm43CTCCTCAAGAAATTCTGCGTGTTCGCCGTAATGTTGGTCTATGC60273Xhwm48ATCGAAAGAACCGTGGACTATGATCTTGAGGAGGTGTT50166Xhwm50CATACCCACCTCAAGGCCACACGCCGTCTTTGATCTACTCG60296Xhwm51GAAAGTGGAAGCACGAGTGTACAACTCCTGCTTTCACTC50190Xhwm52TAGGTTGGACGAACGACAGTACAACCACCTGAAACC50165Xhwm53GAGTCGTAATGTTGCTCTATGCTCTACGTGTTGCTTTTGTC50258Xhwm54TATATTCTCAAGATCAGAGGGTATCCCGTAGATGTGAATTTTG50192Xhwm55GACCGATAAGATAACTTCAAAGGCATCATACCAGGGCTCTTC50240Xhwm57CACGAGGAACCATCCATTTGCAAGCCTCCTCGTTAGAC50208Xhwm58TCACGAGGAGGGAGTAGTTCACATCAAGATCATGCCATAGA50108Xhwm59AGCTGAATCCGTCGGTCTGATGCGACATTTGTGAGTTG50217

表3(续)

引物名称Name ofprimers重复单元Repeat引物上链(5'-3')Forward primer引物下链(5'-3')Reverse primer退火温度/℃Tm 产物长度/bpProduct size Xhwm60GAACCGACTACGGATGAAACACCTCGTGGCTCACAGATTA50196Xhwm61GAAGACTGAACCCAAAGAGGCCTGGGCAGTAGTGGTTTT50163Xhwm63AAGCCAAAAGAAGTTCACAAACTAAAAGTTTCCGTCCC50180Xhwm65ATACAACCTCTGCTTCCCTCCAATCGGACACTGAGAAAG50263Xhwm68AGACAACAAGGAAGCACCAAAAGCTTCAAGAACAGACAA50254Xhwm69AGAACAACAAGGAAGCACCAAAAATAGCCCAAGAACCC50327Xhwm70GAAGCACGGGTGGTGAAGGAGCCCACTAGGTACGCTCAAAGAAC60144Xhwm71TAGCACCCTCCACCCTTGTAATAGGGTTTCGTGGTGCT55138Xhwm72TCCTGGCAGGAGGAAGAAGTGCCCAAATAATCATAAACT50293Xhwm73TCTTGTCTTCTCCTCTGCCTTCTAAGCCACAAAGATGCAGAAA55232Xhwm74GAATACATCAAGATCGTGCCAGATAAGGAGGGAGTGGTTC50116Xhwm75ATCCTTACGGAAGTTTGGCAAGCCTCTGCTGACTTGAT50188Xhwm76TCCGCCCCGTTCTCACAAAGTGGGACATAGTAGTCAGAAA50187Xhwm77AAGTGATCTCGGCGACATGGACGAGGCACTCATCTTCCTTGGTC60196Xhwm78TTT-TACCATTGAACATGCCCTAAAGCCGTTTGATAATCTTTC50164Xhwm79TCCAATCGGGACCCTGTTCAAGATCGTGCCATAGAGGA50209Xhwm80ATTTCAGAAGATTCAACTCG-GAGACTTCGCATTTGGTTTGTCTTC55196Xhwm82ATGATGGCGTGGTGACAGTCGGTGGGTTTCTCAATCT50280Xhwm83CACGATCGCTAATCCTTTGCTCGAAGTAGATGCCGAACAGC50131Xhwm84ATGGGCTACACTTAGGAAATTATGCGGGCTATTTGAG50245Xhwm85ATCTGAAGCCGACAACTGCGCAGTGCTCGAAGAATGT50214Xhwm86GTAAAGTGTCCCCAGTTGAACGTAGATGCGAGTTGATG50180Xhwm87TGGACCATCAACTCGCATCTACATCGACATGCAATTACGG5087Xhwm88TGAAGGGTCCTGAGTTGCACATCCCTTGGTTGTGAAT50262Xhwm89CCATTTAGCATCCGCTTCACCTTTTTTGGGGTTTTGGTTTGCTC60132Xhwm90TGGGGGCACCAATGCTCCAATCTTACCTTATCCTCGCCTCCAA60217Xhwm91ACGGCTGCCCACAGTCATAAGAACATAATTAACCCCTAG50221Xhwm92TCCCTTTGGAGCGTGGATCGTTGAGGAGTGGCTCGGGCTAAAC60192Xhwm93TAGACGTGCGATCACTTCCTTACTCGTGCTTGATGAAGATGG55249Xhwm94AGCTTCCCGCTCATTATTCGGCTTGGGTGAGTTCAGTCG55149Xhwm95AGATTACATCGGATCATTCTTCGATCATGGAGGGCTTCT50215Xhwm96ACTCTCGCAAATTAACTGGACATTCTTCTTGGTCCGTTTT50181Xhwm97TGTAAGGGATGTTGGGTAGAAGCCTCCTTCCTCCTTGGTTCG55122Xhwm98CACCAACGGATAGGTATCTCACGCGAGCCAGGCAAATATGAA55148Xhwm99ATATGAAGAGTGATGGGGTGATGGGGTTGAGATATTGTTATG50136Xhwm100TGGCCAGCGAGTGATGGTGAAGTATCCCTCTTCCTCTTTGTAGTGC55124Xhwm101AATGAGGAAAGGACGATGGACACCCAGGGATAGTTGC50188Xhwm102TACTCGCTTTGGAGTATCTTAGTAGCCGCCAGCATAG50302Xhwm103TCGGGAATCATCACCAGAGGCATCAAGACCGTGCTAAA50162Xhwm104TACTTATAGTCTCGCCTCCCTCCTTTGGCAAGCACTA50146Xhwm105CTTTTAGATGTGGGCGAGACGACAGCACGCCAATAGTT50213Xhwm106GTTTTGCGTTACTGTAGTTGTGGCTGGTAGGAGCATTAGG50188Xhwm107TAATAATAGCCCATGCCAACTCTCCTCGTGTTTGAAAGATC50113Xhwm108ATAACACCCACGATACCAAGATGTCAGGCGGTAAGC50229Xhwm109ATAAGGGTCCGATCACATTGTTACGCCACCACAAAA50242Xhwm110CTCCTGTTTTGGCACTCCGCGATAAAACAAAATCTCAAAGG55298Xhwm111TCGCGAACACCCACCACAATCAAGAAACGAAGGGAACAGG55247Xhwm113AGATCTTCACGATCCAGCTCAAGACCTTGATGAGGACTT50214Xhwm115TCTGAGCCTTGCCAGATGAGCAAGAAACCTGGTCACTACA50200Xhwm119TGATACTTATTGGATTGTTGTT-GTGAACGTGGATTTCACATTTCAT50187Xhwm120TTGCAACTTGCTTGGGACTAATGCTCACCCACCGTAAT50179Xhwm133TCGTCACTCAGGATGGCAACACGGGTCCCAACAAACAC55246Xhwm134AACTCACCCAGTTGATCCAGTAGCATCTTCTACAATCGGCTCA50182Xhwm135CCAGGCTGACGTGACGGAGGTGTTATCAAGTTTCCAGGCGAGGC60135

M.Marker;1,2分别为Cf5019-21、Cf5240-41。
M.Marker;1 and 2 are wheat lines Cf5019-21 and Cf5240-41,respectively.

图1 部分SSR引物在小麦品系Cf5019-21和Cf5240-41的扩增结果
Fig.1 Amplification results of some SSR markers in wheat lines Cf5019-21 and Cf5240-41

3 结论与讨论

Nicot等[9]发现,在555个小麦SSR序列中66.5%是三核苷酸重复,二核苷酸重复比例仅为15.5%;Chen等[11]发现,在小麦2 038个SSR序列中三核苷酸重复的出现频率明显高于其他类型,达到51.1%;陈军方等[17]在10 380个EST序列中检索到444个SSR,其中,三核苷酸重复单元比例达到78.0%。然而,潘海涛等[12]在小麦6 314个SSR中发现二核苷酸和三核苷酸重复序列最多,分别达到35.4%和33.0%;Li等[1]在黑麦51 138个SSR序列中发现二核苷酸重复序列比例最高,达到49.0%,其次是三核苷酸(38.0%)。本研究发现,小麦2B染色体25 Mb区段的DNA序列中二核苷酸的重复类型最多,占所有SSR位点总数的80.40%,其次为三核苷酸重复类型,占18.83%。不同研究的核苷酸重复数的差异可能和设置的SSR查找标准及所研究的基因组或基因组区段有关。例如,本研究查找SSR序列是以二、三、四、五核苷酸SSR重复次数均大于或等于5次为标准,这在一定程度上也提高了二核苷酸重复序列的出现频率。另外,本研究中GA/CT重复基元占SSR总数的比例最高(20.44%),潘海涛等[12]和Nicot等[9]也发现小麦SSR序列中二核苷酸重复基元出现频率最多的是GA/CT,该二核苷酸重复基元在黑麦、水稻、玉米、大豆和高粱中出现频率也很高[18],与本研究的结果相一致。

Nicot等[9]根据小麦SSR设计了688对引物,其中70%的引物扩增出清晰的DNA条带,53%的引物在8个小麦品种间表现多态;潘海涛等[12]根据小麦中筛选到的6 314个微卫星序列设计了596对SSR引物,电泳检测发现引物得分在95以上的194对引物中有165对(85%)能在3个小麦品种扩增出稳定清晰的带型,并利用重组自交系(RIL)群体将其中的23个位点整合到已有的小麦遗传图谱上。陈军方等[17]、刘泽涛等[19]分别在135,64对设计的SSR引物中发现60.7%,64.1%的引物在小麦品种扩增出DNA条带。Pestsova等[20]通过筛选粗山羊草基因组文库,根据二核苷酸微卫星设计了149对引物,其中65(43.6%)对引物在粗山羊草基因组扩增出预期大小的DNA片段,48对引物在小麦品种Opata85和W7984间呈现多态。本研究根据小麦2B染色体25 Mb区段的SSR序列设计了135对引物,有101(74.81%)对引物能在小麦品系Cf5019-21和Cf5240-41扩增出清晰的DNA条带,其中,17对引物在这2个材料间表现多态。多态引物比例(16.83%)低于Pestsova等[20]的研究结果,主要原因可能与Cf5019-21和Cf5240-41是来自同一杂交组合的姊妹系有关。本研究成功开发的小麦2B染色体SSR引物可用于小麦及其近缘植物的相关研究。

参考文献:

[1] Li J,Zhou R,Endo T R,Stein N. High-throughput development of SSR marker candidates and their chromosomal assignment in rye(Secale cereale L.)[J]. Plant Breeding,2018,137(4):561-572. doi:10.1111/pbr.12619.

[2] 朱振东,贾继增. 小麦SSR标记的发展及应用[J]. 遗传,2003,25(3):355-360. doi:10.16288/j.yczz.2003.03.026.

Zhu Z D,Jia J Z. Microsatellite marker development and applications in wheat genetics and breeding[J]. Hereditas,2003,25(3):355-360. doi:10.16288/j.yczz.2003.03.026.

[3] Rasheed A,Hao Y,Xia X,Khan A,Xu Y,Varshney R K,He Z. Crop breeding chips and genotyping platforms:Progress,challenges,and perspectives[J]. Molecular Plant,2017,10(8):1047-1064. doi:10.1016/j.molp.2017.06.008.

[4] Liu J,Luo W,Qin N,Ding P,Zhang H,Yang C,Mu Y,Tang H,Liu Y,Li W,Jiang Q,Chen G,Wei Y,Zheng Y,Liu C,Lan X,Ma J. A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat[J]. Theoretical and Applied Genetics,2018,131(11):2439-2450. doi:10.1007/s00122-018-3164-9.

[5] Sun C,Zhang F,Yan X,Zhang X,Dong Z,Cui D,Chen F. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China[J]. Plant Biotechnology Journal,2017,15(8):953-969. doi:10.1111/pbi.12690.

[6] Cui F,Zhang N,Fan X L,Zhang W,Zhao C H,Yang L J,Pan R Q,Chen M,Han J,Zhao X Q,Ji J,Tong Y P,Zhang H X,Jia J Z,Zhao G Y,Li J M. Utilization of a Wheat 660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number[J]. Scientific Reports,2017,7(1):3788. doi:10.1038/s41598-017-04028-6.

[7] Guyomarc′h H,Sourdille P,Charmet G,Edwards K J,Bernard M. Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat[J]. Theoretical and Applied Genetics,2002,104(6):1164-1172. doi:10.1007/s00122-001-0827-7.

[8] Röder M S,Korzun V,Wendehake K,Plaschke J,Tixier M H,Leroy P,Ganal M W. A microsatellite map of wheat[J]. Genetics,1998,149(4):2007-2023. doi:10.0000/PMID9691054.

[9] Nicot N,Chiquet V,Gandon B,Amilhat L,Legeai F,Leroy P,Bernard M,Sourdille P. Study of simple sequence repeat(SSR)markers from wheat expressed sequence tags(ESTs)[J]. Theoretical and Applied Genetics,2004,109(4):800-805. doi:10.1007/s00122-004-1685-x.

[10] Gao L F,Jing R L,Huo N X,Li Y,Li X P,Zhou R H,Chang X P,Tang J F,Ma Z Y,Jia J Z. One hundred and one new microsatellite loci derived from ESTs(EST-SSRs)in bread wheat[J]. Theoretical and Applied Genetics,2004,108(7):1392-1400. doi:10.1007/s00122-003-1554-z.

[11] Chen H M,Li L Z,Wei X Y,Li S S,Lei T D,Hu H Z,Wang H G,Zhang X S. Development,chromosome location and genetic mapping of EST-SSR markers in wheat[J]. Chinese Science Bulletin,2005,50(20):2328-2336. doi:10.1360/982005-379.

[12] 潘海涛,汪俊君,王盈盈,齐照良,李斯深. 小麦EST-SSR标记的开发和遗传作图[J]. 中国农业科学,2010,43(3):452-461. doi:10.3864/j.issn.0578-1752.2010.03.002.

Pan H T,Wang J J,Wang Y Y,Qi Z L,Li S S. Development and mapping of EST-SSR markers in wheat[J]. Scientia Agricultura Sinica,2010,43(3):452-461.

[13] Cho Y G,Ishii T,Temnykh S,Chen X,Lipovich L,McCouch S R,Park W D,Ayres N. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice(Oryza sativa L.)[J]. Theoretical and Applied Genetics,2000,100(5):713-722. doi:10.1007/s001220051343.

[14] Kantety R V,La Rota M,Matthews D E,Sorrells M E. Data mining for simple sequence repeats in expressed sequence tags from barley,maize,rice,sorghum and wheat[J]. Plant Molecular Biology,2002,48(5-6):501-510. doi:10.1023/A:1014875206165.

[15] 李立新,司守霞,魏安智,刘玉林,冯世静,杨途熙. 基于花椒转录组序列SSR分子标记开发及花椒种质鉴定[J]. 华北农学报,2017,32(5):69-77. doi:10.7668/hbnxb.2017.05.011.

Li L X,Si S X,Wei A Z,Liu Y L,Feng S J,Yang T X. Study on development of SSR molecular markers based on transcriptome sequencing and germplasm identification in germplasm[J]. Acta Agriculturae Boreali-Sinica,2017,32(5):69-77.

[16] Li Q,Wan J M. SSRHunter:Development of a local searching software for SSR sites[J]. Hereditas,2005,27(5):808-810. doi:10.3321/j.issn:0253-9772.2005.05.023.

[17] 陈军方,任正隆,高丽锋,贾继增. 从小麦EST序列中开发新的SSR引物[J]. 作物学报,2005,31(2):154-158. doi:10.3321/j.issn:0496-3490.2005.02.004.

Chen J F,Ren Z L,Gao L F,Jia J Z. Developing new SSR markers from EST of wheat[J]. Acta Agronomica Sinica,2005,31(2):154-158.

[18] Li L,Wang J,Guo Y,Jiang F,Xu Y,Wang Y,Pan H,Han G,Li R,Li S. Development of SSR markers from ESTs of gramineous species and their chromosome location on wheat[J]. Progress in Natural Science,2008,18(12):1485-1490. doi:10.1016/j.pnsc.2008.05.012.

[19] 刘泽涛,苑少华,杨迪,王玉昆,张立平,赵昌平,刘丽华,李宏博,庞斌双. 小麦穗部组织EST-SSR标记引物开发及其在小麦遗传多样性分析中的应用[J].麦类作物学报,2013,33(6):1093-1099. doi:10.7606/j.issn.1009-1041.2013.06.005.

Liu Z T,Yuan S H,Yang D,Wang Y K,Zhang L P,Zhao C P,Liu L H,Li H B,Pang B S. Development of SSR markers derived from EST of wheat spikes and their use in genetic diversity analysis of wheat[J]. Journal of Triticeae Crops,2013,33(6):1093-1099.

[20] Pestsova E,Ganal M W,R der M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat[J]. Genome,2000,43(4):689-697. doi:10.1139/g00-042.

Development of Novel SSR Markers on Wheat Chromosome 2B

LI Xiaojun1,XU Xin2,ZHANG Ziyang1,LIU Mingjiu1,RU Zhengang1

(1.Henan Institute of Science and Technology,Henan Modern Biological Breeding Collaborative Innovation Center,Henan Key Laboratory of Hybrid Wheat,Xinxiang 453003,China; 2.Xinxiang University,Xinxiang 453003,China)

Abstract In order to develop novel SSR markers for wheat breeding,simple sequence repeat(SSR)was identified from a 25 Mb region according to the Chinese Spring 2B chromosome reference sequence. In 2 852 SSR loci identified,80.40% belonged to dinucleotides repeat.Six,thirty,seventeen,one kinds of SSR repeats were found in dinucleotide,trinucleotide,tetranucleotide,pentanucleotide repeats,respectively. For dinucleotides,GA/CT,AG/TC,AT/TA had the highest frequencies,occupying 20.44%,19.00%,17.15% of all SSR loci identified,respectively; for trinucleotides,CTT/GAA had the highest frequency,occupying 2.56% of all SSR loci identified; whereas the frequencies of tetranucleotide and pentanucleotide repeats were relatively low. Furthermore,the replication numbers were higher in dinucleotide than others,and 327 SSR loci which occupied 14.26% of all dinucleotides loci identified were with ≥10 replications. The numbers of SSR loci with ≥10 replications for AG/TC and AT/TA reached 98 and 97,respectively. The replication numbers in trinucleotide were relatively low,and 62 SSR loci which occupied 11.55% of all trinucleotides loci identified were with ≥8 replications. The number of TTC/AAG with ≥8 replications was the biggest,reached 12. For tetranucleotide,the numbers in ACAT/TGTA and TAGA/ATCT reached 16 and 14,respectively,and the replication numbers in other repeats of tetranucleotide varied between 5 and 7. Based on the found SSR loci,135 SSR primer pairs were designed and synthesized. Of these,101(74.81%)SSR primer pairs amplified clear products in wheat lines Cf5019-21 and Cf5240-41,and 17 SSR primer pairs showed polymorphism between them.

Key words: Wheat; SSR; Primer; 2B chromosome

中图分类号:S512.1

文献标识码:A

文章编号:1000-7091(2019)03-0068-07

收稿日期:2019-02-20

基金项目:国家自然科学基金项目(31571752)

作者简介:李小军(1977-),男,陕西西安人,副教授,博士,主要从事小麦分子遗传研究。

通讯作者:刘明久(1966-),男,河南获嘉人,教授,主要从事小麦遗传育种研究。

茹振钢(1958-),男,河南沁阳人,教授,主要从事小麦遗传育种研究。

doi:10.7668/hbnxb.201751761