PH-START1调控拟南芥发育的功能分析

赵亚卓,王 鑫,冯佳佳,孙丹丹,王凤茹,董金皋

(河北农业大学 生命科学学院,河北省植物生理和分子病理学重点实验室,河北 保定 071001)

摘要:为明确PH-START1(At2g28320)调控拟南芥生长发育的功能,利用Real-time PCR技术对PH-START1在不同生长时期拟南芥的不同器官中的表达情况进行了分析,明确了PH-START1的时空表达特性;通过创制PH-START1功能获得和缺失的转基因拟南芥并分析其表型,明确了PH-START1在调控拟南芥生长发育过程中的生物学功能。Real-time PCR 结果表明:PH-START1在拟南芥的根、叶、花、角果中都有表达。在幼苗期的根中表达量最多,在成苗期根中表达量逐渐减少;莲座叶中第6片莲座叶表达量最多,然后随着发育时间的延长逐渐减少;在花的发育过程中,随着花发育时间延长,PH-START1的表达量逐渐增多;授粉后3~5 d的角果中PH-START1的表达量最高,然后表达量逐渐降低,到授粉后9 d角果中PH-START1的表达量又略有增加。花中PH-START1在雄蕊中的表达量最高,其次是花瓣、萼片,在雌蕊中表达量最少。对PH-START1功能获得(过表达,OE)和缺失(T-DNA插入,ph-start1)的转基因拟南芥表型进行观察,分析PH-START1在调控拟南芥生长发育中的功能,发现过表达PH-START1拟南芥营养生长受到明显的抑制,地上部株型矮小、茎细弱、叶片明显变小,地下部根系发育也受到明显的抑制。这说明PH-STARTI在拟南芥生长发育中起负调控作用,为阐明和促控植物生长发育提供了理论依据。

关键词:PH-START1;拟南芥;生长发育;Real-time PCR

START(The lipid/sterol-binding StAR-related lipid transfer protein domains)结构域广泛存在于动物、植物和微生物中,此结构域调控着磷脂运输和脂质代谢。在人类和动物很多蛋白质中含有START结构域,与疾病的发生密切相关;在植物中START结构域往往和其他植物特有的结构域同时存在于一个蛋白质中,调控着植物各个生长发育过程,如ATML1(A. thaliana MERISTEM LAYER1)在皮层的发育过程中起重要的调控作用[1],PDF2(PROTODERMAL FACTOR2)可调控花器官的形成[2],GL2(GLABRA2)调控表皮毛的生长[3]。ATML1、PDF2和GL2均属于START结构域蛋白家族中的HD-ZLZ START(Homeodomain zipper-loop-zipper StAR-related lipid transfer)亚家族,这类亚家族成员属于转录因子,START结构域在这些转录因子中的作用类似于动物中的甾醇类激素受体,通过结合脂类或甾醇类物质来调控转录过程。拟南芥中含START结构域家族成员共35个,但已知功能的仅有9个,均为转录因子家族[4]。在START结构域家族中,还有PH-START(Pleckstrin homology StAR-related lipid transfer)亚家族,但此亚家族成员在调控植物生长发育方面的功能还未见报道。

拟南芥中PH-START蛋白亚家族由At4g19040、At5g45560、At3g54800、At2g28320 4个成员组成。除有研究发现At4g19040突变体可增强拟南芥对白粉菌(Erysiphe cichoracearum)的抗性外[5],此亚家族成员对拟南芥生长发育的调控作用未见报道。PH(Pleckstrin homology)结构域首先在普雷克底物蛋白中识别,大约含有120个氨基酸残基,是血小板中蛋白激酶C(PKC)的主要底物[6-7]。PH结构域是很多与细胞膜结构结合的第二信使蛋白质所具有的结构域。已证实PH结构域参与了细胞内信号传导、细胞骨架组成、膜磷脂的转运和修饰[8-9]。在人类基因组中,已经发现了252 种蛋白质含有不同结构的PH结构域[10],在酿酒酵母中,有33种蛋白质具有不同结构的PH结构域[11]。迄今为止,一些PH结构域的结构已经通过核磁共振和X射线获得,尽管不同PH结构域之间的序列相似性很低,但其三维结构却具有显著的保守性[12]。虽然已经在不同基因组中识别了大量的PH结构域,但PH结构域的功能尚不清楚[13]。PH结构域首次被识别时,认为是一个蛋白质结合域,并且可以识别蛋白质配体,例如异源三聚体G蛋白的β/γ亚基、WD40重复蛋白和酪氨酸激酶等[14]。然而,PH结构域最显著的功能是它们与磷脂(例如磷酸肌醇或肌醇磷脂酸)结合的能力[15],与磷酸肌醇类物质的结合可以使具有PH结构域的蛋白质对脂类细胞信使做出反应,从而转移至细胞膜结构上。蛋白磷脂酶C(PLC)家族具有PH结构域,PLC酶是存在于胞浆膜上的一个关键酶,可以水解磷脂酰肌醇4,5-二磷酸(PIP2),产生1,4,5-磷酸三肌醇和二酰甘油2个第二信号分子,调节细胞内的Ca2+释放和激活蛋白激酶C[15]

本研究以PH-START亚家族成员At2g28320(命名为PH-START1)作为研究对象,分析其时空表达特性,探究其在拟南芥生长发育中的作用,为更好地促控植物生长发育、提高作物产量提供理论依据。

1 材料和方法

1.1 试验材料

野生型拟南芥(Arabidopsis thaliana):Columbia(Col-0),由河北农业大学植物生理和分子病理学重点实验室种植;拟南芥PH-START1(At2g28320)基因的T-DNA插入突变体(SALK-060171、SALK-120376),购自美国ABRC(Arabidopsis Biological Resource Center)突变体库。拟南芥生长培养条件为:温度22 ℃,光周期16 h光照/8 h黑暗。

1.2 试验方法

1.2.1 PH-START1基因表达量分析 为研究PH-START1基因在拟南芥的时空表达情况,以Col-0野生型为材料,分别以根、茎、不同位置的莲座叶、不同花期的花、授粉后不同时间的角果为材料,提取总RNA,经反转录后,利用Real-time PCR分析PH-START1基因的表达情况。

1.2.2 PH-START1过表达转基因拟南芥的获得 以PH-START1基因的CDS序列和拟南芥过表达载体pSN1301的MCS分析其酶切位点并选定为BamH Ⅰ和Kpn Ⅰ,以野生型拟南芥的cDNA作为模板,扩增PH-START1目的序列。对PCR扩增得到的目的片段经胶回收后与克隆载体pMD19-T Vector连接,转化大肠杆菌,对筛选得到的阳性克隆菌液检测并测序,将测序正确的菌液提取质粒,双酶切回收目的条带,然后与载体片段连接、转化、验证。将最终得到的含有目的基因的过表达载体命名为pSN1301-PH-START1。用电击法转化农杆菌GV3101,利用花絮侵染法转化野生型拟南芥,抗生素筛选阳性苗[16],并用Real-time PCR进行基因表达量的验证。

1.2.3 PH-START1 T-DNA插入突变体的获得 将购买的PH-START1基因突变体种子播种在含有Kan抗性的MS平板上(Kan:100 mg/L)筛选,选取叶片鲜绿下胚轴较长的植株移栽,收获种子继续筛选并进行验证。

三引物法:提取T3不再出现分离的突变体植株幼苗和野生型拟南芥的DNA,以T-DNA Primer Design(http://signal.salk.edu/tdnaprimers.2.html)设计插入位点上下游的引物LP、RP,以LBb1作为T-DNA特异引物,通过琼脂糖凝胶电泳验证T-DNA插入位点。

PH-START1基因表达量验证:提取28 d的Col-0野生型拟南芥和PH-START1突变体植株的RNA,反转录后用SqRT-PCR和Real-time PCR 验证PH-START1基因的表达情况。

1.2.4 拟南芥叶面积的测定 将生长环境完全一致的野生型和突变体植株相同部位的叶片展平,用Image J软件测量叶片的面积,野生型和突变体各测量30个叶片。

2 结果与分析

2.1 PH-START1时空表达分析

分别提取野生型拟南芥不同生长时期的根、茎、莲座叶、花、角果的总RNA并反转录,然后利用Real-time PCR分析PH-START1基因的表达量(图1)。结果发现,在拟南芥的各个器官中均有PH-START1基因的表达,在叶中表达最多,然后依次是根、花、角果和茎,且在各个器官中的表达差异达极显著水平(图1-A);从子叶期到幼苗期,根中PH-START1基因的表达量极显著上升,但到成苗期根中PH-START1的表达无显著改变(图1-B);对第2,4,6,8,10片莲座叶中PH-START1的表达分析发现,每片莲座叶中均有PH-START1的表达,在第6片莲座叶中的表达量最高,其次是第2片莲座叶,在第8,10片莲座叶中表达量最低(图1-C);授粉后的角果中PH-START1均有表达,授粉后第5天(5DAP)的角果中PH-START1表达量极显著高于3 d的角果,而在以后时期角果的表达量更低(图1-D);比较不同花期的花中PH-START1表达量,发现随着花的发育,花中PH-START1表达量逐渐增高,差异均达极显著水平(图1-E);比较花器官中花萼、花瓣、雄蕊、雌蕊PH-START1基因的表达情况,发现雄蕊中PH-START1的表达量最高(差异极显著)、其次是花瓣和萼片,而雌蕊中最少,差异达极显著水平(图1-F)。

不同小写和大写字母分别表示5%和1%水平差异显著。图9同。
Different small and capital letters indicate 5% and 1% significant level respectively.The same as Fig.9.

图1 拟南芥不同生长时期和不同组织部位中PH-START1基因的表达分析
Fig.1 The expression analysis of PH-START1 in different growth stages and different tissues in Arabidopsis

2.2 PH-START1过表达载体的构建

根据PH-START1 CDS序列引物扩增得到PH-START1 CDS序列,经琼脂糖凝胶电泳检测,在2 214 bp处得到单一条带,与PH-START1片段大小一致(图2-A)。回收目的条带,并与克隆载体pMD19-T vector 16 ℃连接1 h,转化E.coli DH5α,PCR检测阳性菌落(图2-B)。选择阳性克隆进行测序,并提取测序正确的阳性克隆质粒,用BamH Ⅰ和Kpn Ⅰ对其双酶切(图2-C),回收目的片段。目的片段与pSN1301载体片段用T4 DNA Ligase在16 ℃过夜连接,转化E.coli DH5α后对阳性克隆进行PCR检测(图2-D)。将阳性克隆用BamH Ⅰ和Kpn Ⅰ进行双酶切验证,得到PH-START1目的条带(图2-E),表明PH-START1过表达载体构建成功,命名为35S∶pSN1301-PH-START1。将构建好的35S∶pSN1301-PH-START1转化GV3101,用基因序列引物检测阳性克隆,得到PH-START1基因目的条带(图2-F),说明构建好的过表达载体成功转入农杆菌感受态GV3101中。

A.PH-START1基因扩增;B.阳性克隆PCR检测;C.pMD19- PH-START1双酶切验证;D.pSN1301-PH-START1的PCR检测;E.35S∶pSN1301-PH-START1双酶切验证;F.35S∶pSN1301-PH-START1转化GV3101后PCR检测。M.5 kb Marker;1-3.目的条带。

A. PH-START1 gene amplification; B. Positive clone detection by PCR; C.pMD19-PH-START1 double enzyme digestion test; D. pSN1301-PH-START1 PCR detection; E.35S∶pSN1301-PH-START1 double enzyme digestion test; F.PCR detection of pSN1301-PH-START1 transformation into GV3101. M. 5 kb Marker; 1-3. Target band.

图2 PH-START1过表达载体的构建
Fig.2 Construction of PH-START1 overexpressing vector

2.3 过表达PH-START1转基因拟南芥的遗传转化和筛选

用花絮侵染法转化拟南芥,将转化得到的种子经抗性筛选(图3-A),得到T3纯合株系,提取纯合株系DNA,可以扩增出目的条带(图3-B),说明过表达PH-START1转基因拟南芥创制成功。

2.4 过表达拟南芥植株中PH-START1的表达量分析

为了解PH-START1过表达拟南芥中PH-START1的表达情况,从得到的阳性植株中选取了2个转基因株系提取总RNA,反转录后对PH-START1基因进行SqRT-PCR分析(图4),结果发现2个转基因植株中pH-START1的表达量均高于野生型植株,表明确实为PH-START1过表达株系,将其分别命名为OE1OE2

A.潮霉素平板上转基因阳性苗的筛选;B.PCR检测35S pSN1301-PH-START1转基因阳性纯合株系。M.2 kb Marker;1-2.WT对照;3-4.目的条带。

A.Screening of transgenic positive seedlings on the hygromycin plate; B.PCR detection of the 35S∶pSN1301-PH-START1 transgenic positive homozygous lines. M.2 kb Marker;1-2.Control;3-4.Objective stripe.

图3 过表达PH-START1转基因阳性苗的筛选与纯合验证
Fig.3 Screening and homozygous validation of 35S∶pSN1301-PH-START1 overexpression transgenic positive seedlings

图4 SqRT-PCR分析PH-START1-OE转基因植株PH-START1表达量
Fig.4 The expression analysis of PH-START1 by SqRT-PCR in PH-START1-OE transgenic plants

2.5 PH-START1缺失突变体转基因拟南芥的创制

2.5.1 PH-START1 T-DNA插入突变体插入位点分析 由ABRC突变体库购得拟南芥PH-START1的2株不同T-DNA插入位点突变体,其编号分别为SALK_060171、SALK_120376。通过拟南芥数据库TAIR网站,得到其插入位点(图5),箭头所指的位置及方向就是载体插入的位置及方向。SALK_060171插入位置在起始密码子ATG后205 bp的位置,将之命名为ph-start1-1,SALK_120376插入位置在起始密码子ATG前534 bp的位置,将之命名为ph-start1-2,背景为 Col-0 野生型拟南芥。

图5 ph-start1突变体中T-DNA插入位点示意图
Fig.5 The T-DNA insertion sites in ph-start1 mutant

提取T3不再出现分离比的突变体植株幼苗和野生型拟南芥的DNA,以T-DNA Primer Design设计插入位点上下游的引物LPRP,以LBb1作为T-DNA特异引物,通过琼脂糖凝胶电泳验证T-DNA插入位点。结果表明(图6),ph-start1-1ph-start1-2株系为T-DNA插入突变体纯合株系。

M.2 kb Marker;1.以LBb1RP为引物;2.以LPRP为引物。
M.2 kb Marker; 1.LBb1 and RP as primers; 2.LP and RP as primers.

图6 三引物法验证PH-START1 T-DNA插入位点
Fig.6 Validation of PH-START1 T-DNA insertion site by three primers method

2.5.2 T-DNA插入突变体中PH-START1的表达量分析 为了解PH-START1 T-DNA插入突变体中PH-START1表达情况,提取野生型拟南芥和ph-start1突变体幼苗RNA,用SqRT-PCR技术分析PH-START1基因的表达情况(图7),结果表明ph-start1-1ph-start1-2PH-START1表达,说明确实为PH-START1功能缺失突变体。

图7 SqRT-PCR技术分析PH-START1 T-DNA插入突变体中PH-START1的表达量
Fig.7 Expression analysis of PH-START1 by SqRT-PCR in PH-START1 T-DNA insertion mutants

2.6 PH-START1 转基因拟南芥表型分析

将收获的Col-0野生型拟南芥、PH-START1-OE、缺失突变体拟南芥种子播种在培养基中,放置于培养室相同环境下培养,观察各时期生长发育情况(图8)。发现播种12 d,Col-0野生型拟南芥为四叶期而OE转基因拟南芥已到达六叶期,OE植株明显较野生型大;播种25 d,OE生长发育已变得迟缓,植株明显小于野生型;播种40 d,OE转基因拟南芥各个器官的生长发育都明显小于野生型。ph-start1无论是在四叶期还是在营养生长时期的生长发育都略优于野生型。综上所述,PH-START1对拟南芥的生长发育起着重要的调控作用。

A.拟南芥四叶期植株表型对比(播种12 d);B.拟南芥四叶期植株表型对比(播种10 d);C-D.在同样正常的环境条件下,Col-0野生型和OE表型对比(播种25 d);E.Col-0野生型和ph-start1表型对比(播种30 d);F.Col-0野生型和OE表型对比(播种40 d)。

A.Phenotypic comparison of 4-leaf stage of Arabidopsis (12 d after sown); B.Phenotypic comparison of 4-leaf stage of Arabidopsis (10 d after sown); C-D.Phenotypic comparison of Col-0 wild type and OE (25 d after sown) under the same normal environmental conditions; E.Phenotypic comparison of Col-0 wild type and ph-start1 (30 d after sown); F.Phenotypic comparison of Col-0 wild type and OE (40 d after sown).

图8 PH-START1功能获得和缺失转基因拟南芥表型分析
Fig.8 Phenotypic analysis of PH-START1 transgenic Arabidopsis with functional acquisition and loss

A-B.OE拟南芥叶片的表型; C-D. ph-start1拟南芥叶片的表型;E.OE叶面积统计;F.ph-start1叶面积统计。
A-B.OE Arabidopsis leaves phenotype; C-D.ph-start1 Arabidopsis leaves phenotype; E.Comparison of leaf area of OE Arabidopsis;F.Comparison of leaf area of ph-start1 Arabidopsis.

图9 PH-START1转基因拟南芥叶的表型分析
Fig.9 Phenotype analysis of PH-START1 transgenic Arabidopsis leaves

观察相同培养条件下培养的OEph-start1的全部莲座叶,选择同一部位的莲座叶进行叶面积和叶柄长度的测定(图9)。结果发现,与野生型相比,OE的叶片极显著变小,叶面积为0.11,0.12 cm2,只占对照的4.89%,5.33%;ph-start1的叶片极显著变大,叶面积为2.94,3.05 cm2,占对照的142%,148%。表明PH-START1的过量表达严重影响了拟南芥叶片的发育,PH-START1表达量的下降可以促进叶片的发育。

3 讨论

拟南芥中PH-START1含有PH-START结构域,PH结构域首次被鉴定时认为是蛋白质结合域,现多参与细胞内信号传导、细胞骨架组织、膜转运和磷脂修饰[17-18]。START结构域首次被发现是在急性调节蛋白中,它是一个与脂类和甾醇类物质结合相关的结构域,负责将急性调节蛋白中的胆固醇转移到线粒体内膜[19-20]。在拟南芥中含START结构域的蛋白质家族共有35个成员,其中21个被融合在同源异型结构域中,此现象表明START结构域在植物的生长发育过程中起到了重要的作用[21-22]。随着拟南芥的生长发育,PH-START1在各个组织中均有不同程度的表达,根中主要在幼苗期表达量较高,莲座叶中主要在生长的第6片莲座叶表达量较高,花中主要在15花期表达量较高,角果中主要在授粉后5 d表达量较高,在花器官发育过程中,相对萼片、花瓣和雌蕊而言,雄蕊中PH-START1的表达量最高。

植物的生长周期分为2个阶段即营养生长阶段和生殖生长阶段。营养生长是生殖生长的基础,根系的发达才能从周围土壤中吸收大量的水分和营养物质,通过轴向和径向运输传递给茎和叶,使其茁壮生长,可以有效地抵制各种生物和非生物胁迫,并且为生殖生长做好准备。与野生型相比,过表达PH-START1拟南芥主根短、主茎细弱、莲座叶小,ph-start1的主根较长、主茎较粗、莲座叶大。PH-START1表达量的升高严重抑制了拟南芥的发育,说明PH-START1在拟南芥生长发育中起着负调控作用。至于PH-START1负调控拟南芥生长发育的分子机制,还需要对其进行转录组、蛋白质组及互作蛋白进行分析,建立植物生长发育调控网络,阐明植物生长发育调控机制。

参考文献:

[1] Ogawa E, Yamada Y, Sezaki N, Kosaka S A, Kamata N, Abe M, Komeda Y, Takahashi T.ATML1 and PDF2 play a redundant and essential role in Arabidopsis embryo development[J].Plant and Cell Physiology,2015,56(6):1183-1192.doi:10.1093/pcp/pcv045.

[2] Rombola-Caldentey B, Rueda-Romero P A, Carbonero P, Onate-Sanchez L. Arabidopsis DELLA and two HD-ZIP transcription factors regulate GA signaling in the epidermis through the L1 box cis-Element[J].Plant Cell,2014,26(7):2905-2919.doi:10.1105/tpc.114.127647.

[3] Zhu Y, Rong L, Luo Q, Wang B H, Zhou N A, Yang Y E, Zhang C, Feng H Y, Zheng L A, Shen W H, Ma J B, Dong A W. The histone chaperone NRP1 interacts with WEREWOLF to activate GLABRA2 in Arabidopsis root hair development[J].Plant Cell,2017,29(2):260-276.doi:10.1105/tpc.16.00719.

[4] Schrick K, Nguyen D, Karlowski W M, Mayer K F. START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors[J].Genome Biology,2004,5(6):R41.doi:10.1186/gb-2004-5-6-r41.

[5] Tang D Z, Ade J, Frye C A, Innes R W. Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein[J].Plant Journal,2005,44(2):245-257. doi:10.1111/j.1365-313X.2005.02523.x.

[6] Shaw G.Identification of novel pleckstrin homology(PH)domains provides a hypothesis for PH domain function[J].Biochemical and Biophysical Research Communications, 1993, 195(2):1145-1151. doi:10.1006/bbrc.1993.2164.

[7] Sneha R, Pallavi M, Modeling S B. Dynamics and phosphoinositide binding of the pleckstrin homology domain of two novel PLCs:η1 and η2[J].Journal of Molecular Graphics & Modelling,2018(85):130-144. doi: 10.1016/j.jmgm.2018.07.012.

[8] Kang Y L, Kim B G, Kim S, Lee Y A.Inhibitory potential of flavonoids on Ptdlns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain[J].Bioorganic & Medicinal Chemistry Letters,2017,27(3):420-426.doi:10.1016/j.bmc1.2016.12.051.

[9] Rebecchi M J, Scarlata S.Pleckstrin homology domains: A common fold with diverse functions[J].Annual Review of Biophysics and Biomolecular Structure,1998,27(4):503.doi:10.1146/annurev.biophys.27.1.503.

[10] Naughton F B, Kalli A C, Sansom M S. Modes of interaction of pleckstrin homology domains with membranes: toward a computational biochemistry of membrane recognition[J].Journal of Molecular Biology,2018,430(3):372-388.doi:10.1016/j.jmb.2017.12.011.

[11] Kalli A C, Campbell I D, Sansom M S. Interactions of the kindlin family pleckstrin homology domains with model membranes containing zwitterionic lipids and phosphatidyl inositol phosphates[J].Biophysical Journal,2014,106(2, 1):517A.doi:10.1016/j.bpj.2013.11.2889.

[12] Goraia S, Bagdia P R, Boraha R, Paulb D, Santrab M K, Khanc A T, Mannaa D. Insights into the inhibitory mechanism of triazole-based small molecules on phosphatidylinositol-4,5-bisphosphate binding pleckstrin homology domain[J].Biochemistry and Biophysics Reports, 2015, 2:75-86. doi: 10.1016/j.bbrep.2015.05.007.

[13] Panda P K, Behera B, Meher B R, Mukhopadhyay S, Sinha N A, Roy B, Das J, Paul S, Maiti T K, Agarwal R, Bhutia S K. Abrus agglutinin, a type Ⅱ ribosome inactivating protein inhibits Akt/PH domain to induce endoplasmic reticulum stress mediated autophagy-dependent cell death[J].Molecular Carcinogenesis,2017,56(2):389-401.doi:10.1002/mc.22502.

[14] Lemmon M A.Phosphoinositide recognition domains[J].Traffic,2003,4(4):201-213. doi:10.1034/j.1600-0854.2004.00071.x.

[15] Kumagai K, Elwell C A, Ando S, Engel J N, Hanada K.Both the N-and C-terminal regions of the Chlamydial inclusion protein D (IncD) are required for interaction with the pleckstrin homology domain of the ceramide transport protein CERT[J].Biochemical and Biophysical Research Communications,2018,505(4):1070-1076. doi:10.1016/j.bbrc.2018.09.168.

[16] 周苹. GH3.9基因过表达对拟南芥生长发育的影响研究[D]. 长沙: 湖南大学, 2013.doi: 10.7666/d.Y2523085.

Zhou P. Effect of over-expression og GH3.9 gene on the plant growth and development of Arabidopsis[D]. Changsha: Hunan University, 2013.

[17] Romanowski M J, Soccio R E, Breslow J L, Burley S K.Crystal structure of the Mus musculus cholesterol-regulated START protein 4 (StarD4) containing a StAR-related lipid transfer domain[J].Proceedings of the National Academy of Sciences of the United States of America,2002,99(10):6949-6954.doi:10.1073/pnas.052140699.

[18] Kang Y, Jang G, Ahn S, Lee Y A, Yoon Y. Regulation of AKT activity by inhibition of the pleckstrin homology Doniam-PtdIns(3,4,5)P-3 interaction using flavonoids[J].Journal of Microbiology and Biotechnology,2018,28(8):1401-1411.doi:10.4014/jmb.1804.04051.

[19] Yamada S, Yamaguchi T, Hosoda A, Iwawaki T, Kohno K. Regulation of human STARD4 gene expression under endoplasmic reticulum stress[J].Biochemical and Biophysical Research Communications,2006,343(4):1079-1085. doi:10.1016/j.bbrc.2006.03.051.

[20] Sluchanko N N, Tugaeva K V, Maksimov E G.Solution structure of human steroidogenic acute regulatory protein STARD1 studied by small-angle X-ray scattering[J].Biochemical and Biophysical Research Communications,2017,489(4):445-450.doi:10.1016/j.bbrc.2017.05.167.

[21] Kubo H, Peeters A J, Aarts M G, Pereira A, Koornneef M.ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis[J].The Plant Cell,1999,11(7):1217-1226. doi:10.2307/3870744.

[22] Schrick K, Bruno M, Khosla A, Cox P N, Marlatt S A, Roque R A, Nguyen H C, Snyder M P, Singh D, Yadav G.Shared functions of plant and mammalian StAR-related lipid transfer (START) domains in modulating transcription factor activity[J].BMC Biology,2014,12:70-78.doi:10.1186/s12915-014-0070-8.

Functional Analysis of PH-START1 in Regulating Growth and Development of Arabidopsis thaliana

ZHAO Yazhuo, WANG Xin, FENG Jiajia, SUN Dandan, WANG Fengru, DONG Jingao

(Department of Life Science, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology,Hebei Agricultural University, Baoding 071001,China)

Abstract In order to clarify the function of PH-START1(At2g28320) in regulating the growth and development of Arabidopsis, the expression of PH-START1 in different organs of Arabidopsis during different growth periods was analyzed by Real-time PCR, and the space-time expression characteristics of PH-START1 was determined. The PH-START1 function-obtaining and function-missing transgenic Arabidopsis were created and their phenotypes were analyzed. The biological function of PH-START1 in regulating the growth and development of Arabidopsis was elucidated. The Real-time PCR results showed that the expression of PH-START1 gene presented in the roots, leaves, flowers and siliques, and the highest expression level of PH-START1 was found in roots at seedling stage. The highest expression of the gene was in the 6th rosette leaf, then gradually decreased as the development time extended. In the development period of flowers, the expression of PH-START1 increased gradually with the development time of flowers. The highest expression of PH-START1 in kernels presented in 3-5 d after pollination, and then gradually decreased, but the expression of PH-START1 increased slightly in 9 d kernels after pollination. The highest expression of PH-START1 was in stamens, followed by petals and sepals, and the least in pistil. In order to analyze the function of PH-START1 in regulating the growth and development of Arabidopsis, the phenotype of the gain-of-function (overexpression, OE) and deletion (T-DNA insertion, ph-start1) transgenic Arabidopsis of PH-START1 was observed. The vegetative growth of PH-START1 overexpressing Arabidopsis was significantly inhibited, presenting shorter plant, weaker stems, smaller leaves and less roots. This suggested that PH-STARTI had a negative regulatory role in the growth and development of Arabidopsis, which provided a theoretical basis for elucidating and promoting the plant growth and development.

Key words: PH-START1; Arabidopsis thaliana; Growth and development; Real-time PCR

中图分类号:Q945.49

文献标识码:A

文章编号:1000-7091(2019)02-0087-08

doi:10.7668/hbnxb.201751132

收稿日期:2018-12-01

基金项目:河北农业大学大学生创新创业训练计划(201810086021;2018090);河北省自然科学基金项目(C2017204060);河北省高等学校科学技术研究项目(ZD2018085);国家重点研发计划(2016YFD0300704)

作者简介:赵亚卓(1997-),男,河北邢台人,主要从事植物生长发育调控研究。

通讯作者:王凤茹(1972-),女,河北景县人,教授,博士,主要从事植物生长发育调控研究。