深松措施下磷肥施用深度对春玉米根系特性的影响

张瑞富,张玉芹,杨恒山

(内蒙古民族大学 农学院,内蒙古饲用作物工程技术研究中心,内蒙古 通辽 028000)

摘要为探明深松措施下磷肥施用深度对春玉米根系特性的影响,实现根系与磷素在空间上充分耦合,可为玉米高产栽培磷肥合理运筹提供科学依据,采用裂区设计,以耕作方式为主区,副区为施磷深度,研究深松措施下不同施磷深度不同春玉米品种的根系生物量、比根长和根系活力,并分析其与产量的相关性。结果表明:旋耕措施下,0~20 cm土层根干质量吐丝期P12和P18 较高,乳熟期P12较高,P24吐丝期低于P6而乳熟期高于P6;20~60 cm土层吐丝期和乳熟期磷肥深施处理均高于P6,以P12最高。深松+旋耕措施下,0~20 cm土层春玉米根干质量吐丝期施磷深度处理均高于正常施磷P6,0~20 cm土层乳熟期和20~60 cm土层吐丝期和乳熟期均为P12和P18较高。旋耕措施下0~20 cm和40~60 cm 土层比根长P12最大,与P6差异显著,20~40 cm土层P24最高。旋耕措施下3个土层根系活力和0~20 cm,40~60 cm比根长均表现为P12最高,深松+旋耕措施下根系活力除20~40 cm吐丝期外,P12与P18差异不显著,均高于P6,比根长0~20 cm土层吐丝期和乳熟期P12最高,P24最低,40~60 cm土层P12和P18差异不显著,P12高于P6和P24。除吐丝期20~60 cm土层根系生物量外,2个生育期各土层根干质量、比根长和根系活力与产量呈显著、极显著相关,根系干质量和比根长主要影响因素是深松和磷肥施用深度,根系活力与深松密切相关。综上,春玉米总根干质量、比根长和根系活力与产量呈正相关,总体表现为深松+旋耕>旋耕措施,磷肥施用深度在旋耕措施下12 cm左右较为适宜,在深松+旋耕措施下12~18 cm较为适宜。

关键词春玉米;深松;磷肥施用深度;根系特性

有研究表明,玉米吸收养分根系的吸收活力区主要在 0~40 cm 土层[1],大喇叭口期吸收的活跃层在10~20 cm 土层,乳熟期下移到20~40 cm 土层[2],吐丝后高吸收活力的根系主要集中在 5~20 cm 土层[3],浅层施磷难以实现根层磷素分布与玉米根系吸收活跃层在时空上的耦合,导致磷素对玉米的有效性降低[4]。肥料深施促进根系向下生长,将深松与磷肥下移相结合,促进玉米深层根系的发生,迎合高产玉米“横向紧缩、纵向延伸”的特点,又能使磷素养分空间的分布与玉米根系分布实现耦合,有利于磷素养分吸收[5]。磷肥深施能够诱导根系向土壤深层生长,赵亚丽等[3]提出,磷肥集中施在 15 cm 土层效果最好,优于磷肥平均分层施用和浅施,杨云马等[6]指出,磷肥施用深度对夏玉米总根长及在土壤中的分布有显著影响,以磷肥集中施在 24 cm 土层最好。施磷的适宜深度不同,与土壤类型、土壤水分[7]、土壤养分[8]、耕作方式[9]等环境因子有关。西辽河平原为石灰性土壤,磷素有效养分含量低,春玉米种植磷肥普遍高量浅施,施磷深度大多5~6 cm,加之磷素在土壤中移动较慢,导致土壤磷素的垂直分布呈表层富集而下层不足的特点[10-11],深松是东北春玉米高产栽培的主要措施之一,深松可促进根系的生长,尤其深层根系比例增加[12-13],与磷肥供需空间上矛盾更为突出。深松措施下如何施磷肥,使玉米根系与磷素在空间上充分耦合,提高磷肥利用效率亟待解决。本研究以不同玉米品种为试验材料,探讨深松措施下磷肥施用深度对春玉米根系特性的影响,为西辽河平原玉米高产栽培磷肥合理运筹提供科学依据。

1 材料和方法

1.1 试验区概况

西辽河平原灌区,海拔178 m,年平均气温6.8 ℃,≥10 ℃的活动积温平均3 200 ℃,平均无霜冻期150 d左右,平均降水量384.6 mm,土壤肥沃,井灌条件良好,具有实现玉米大面积超高产的潜力和优势,玉米播种面积占粮食播种面积的75%,单产较全国平均单产高40%以上,总产约占内蒙古自治区玉米总产的30%。试验田土壤为灰色草甸黑土,是当地主要土壤类型,2014年在内蒙古通辽市现代农业科技园区进行,2015年在开鲁县蔡家堡进行,2年0~20 cm表层土壤养分含量见表1。

表1 020 cm土层土壤养分含量
Tab.1 Nutrient content in 0-20 cm soil layer

年份Year有机质/(g/kg)Organic matter全氮/(g/kg)Total N碱解氮/(mg/kg)Alkalic N速效磷/(mg/kg)Olsen-P速效钾/(mg/kg)Exchangeable K201420.690.7138.287.0266.88201522.150.9354.1813.5980.66

1.2 试验设计

采用裂区设计,以耕作方式为主区,设旋耕(R)和深松+旋耕处理(S+R)2个处理,旋耕作业深度15 cm,深松作业深度35 cm;供试品种为郑单958和先玉335;施磷深度为副区,在旋耕和深松旋耕措施下分别设施磷6(P6),12(P12),18(P18),24 cm(P24)4个处理,采用2BYSF~3型精密玉米播种机调整施肥犁铧入土深度达到处理要求后进行施肥并精量点播。每处理3次重复,小区面积200 m2(4 m×50 m),种植密度为7.5万株/hm2;试验田均基施氮(N)15 kg/hm2、钾肥(K2O)45 kg/hm2、磷肥(P2O5)125 kg/hm2;在小喇叭口期随趟地一次性追施氮(N)356 kg/hm2。氮肥为尿素,磷肥为过磷酸钙,钾肥为硫酸钾。采用低压管灌的方式分别在拔节期、吐丝期、灌浆前期灌水3次,灌水量40~60 m3/次。2014年5月1日播种,9月29日收获;2015年5月3日播种,10月2日收获。

1.3 测定项目及方法

1.3.1 根系生物量及比根长 各小区均吐丝期和乳熟期在同行内取连续3株,以第1株1/2株距处到第3株1/2株距处为长,以1/2行距为宽,每20 cm一层挖长方形样方,取根深度为60 cm,共3层,将每层根系和土壤装入网袋,用水浸泡后洗净并剔除杂质,捡出死根后于105 ℃杀青30 min,在80 ℃下烘干至恒质量,称干质量。吐丝期将根系样品洗净后,用美国CID公司的CI~400型根系图像分析系统测定根系的长度,根据根干质量和根长度折算比根长,比根长为根系长度和根干质量的比值。

1.3.2 根系活力活性 吐丝期、乳熟期与生物量测定取样同步,取样方法相同,挑取足量新鲜根系洗净,放入保鲜箱带回实验室采用氯化三苯基四氮唑(TTC)还原法测定。

1.4 数据处理与统计分析

采用SPSS软件进行处理间的差异显著性分析和方差分析。

图1 深松措施下磷肥施用深度对春玉米根干质量的影响
Fig.1 Effect of phosphorus application depth of spring maize on root dry weight under the measures of subsoiling

2 结果与分析

2.1 深松措施下磷肥施用深度对春玉米根系生物量的影响

由图1可知,旋耕措施下吐丝期0~20 cm土层根干质量P12和P18与P6(常规施磷深度)差异不显著,均显著高于P24;乳熟期P24与P6差异不显著,均显著低于P12和P18;吐丝期20~40 cm和40~60 cm土层根干质量磷肥深施均高于P6,以P12最高,说明磷肥适当深施下层根干质量增加,浅施和过度深施均不利于根系发育。在深松+旋耕措施下0~20 cm土层根干质量吐丝期施磷深度处理间差异均不显著,除先玉335乳熟期外均高于正常施磷P6;20~40 cm土层吐丝期和乳熟期均为P12和P18较高,40~60 cm土层郑单958吐丝期和乳熟期均为 P12最高,先玉335 P12和P18较高。说明深松利于深层根系发育,磷肥下移与根系分布相吻合,且促进根系发生,磷肥施入12~18 cm有利于根干质量的积累。2个品种春玉米各层根系干质量变化趋势基本一致。不同耕作措施下2个品种春玉米根干质量总体为深松+旋耕>旋耕措施,可能深松+旋耕措施促进春玉米根系发生,尤其下层根系,且下层根系生育后期衰老较慢所致。

图2 深松措施下磷肥施用深度对春玉米比根长的影响
Fig.2 Effect of phosphorus application depth of spring maize on specific root length under the measures of subsoiling

2.2 深松措施下磷肥施用深度对春玉米比根长的影响

由图2可知,旋耕措施下吐丝期0~20 cm土层和40~60 cm土层比根长均以P12最高,除郑单958 40~60 cm土层外,P18与P6(常规施磷深度)差异不显著,P24最低;20~40 cm土层P24最高,P12次之,P18最小,乳熟期和吐丝期趋势基本一致。深松+旋耕措施下0~20 cm土层吐丝期和乳熟期均为P12最高,P18和P6差异不显著,P24最低;40~60 cm土层吐丝期和乳熟期P12和P18差异不显著,P12高于P6和P24,除郑单958乳熟期外,P6和P24差异不显著,乳熟期P24显著高于P6,说明深松措施下磷肥深施可延缓生育后期根系衰老维持较高根系长度。2个品种春玉米各层根系比根长变化趋势基本一致,不同耕作措施下2个品种春玉米根系比根长总体为深松+旋耕>旋耕措施。

2.3 深松措施下磷肥施用深度对春玉米根系活力的影响

由图3可知,旋耕措施下,0~20 cm土层根系活力吐丝期和乳熟期均为P12最大,P18和 P6(常规施磷深度)差异不显著,P24最小;20~40 cm土层和40~60 cm土层吐丝期和乳熟期均为P12最高。深松+旋耕措施下0~20 cm,40~60 cm土层吐丝期、乳熟期均为 P12和P18二者差异不显著,均高于P6(常规施磷深度);20~40 cm吐丝期P12最高,P18和P24差异不显著,三者均高于P6,乳熟期P12和P18差异不显著,高于P24。2个品种春玉米根系活力变化趋势基本一致,吐丝期和乳熟期深松+旋耕措施下各土层根系活力均高于旋耕,说明深松+旋耕措施下对根系活力影响更为明显,不同磷肥施用深度下,施磷12~18 cm对提高春玉米的根系活力最为有利。

图3 深松措施下施磷深度对春玉米根系活力的影响
Fig.3 Effect of phosphorus application depth of spring maize on root activity under the measures of subsoiling

2.4 春玉米根系干质量比根长和根系活力与产量相关性

由表2可知,吐丝期0~20 cm土层根系干质量与产量相关性显著,20~60 cm根干质量与产量相关不显著,乳熟期各土层根系干物质重与产量均极显著相关;吐丝期20~40 cm土层比根长与产量显著,吐丝期0~20 cm,40~60 cm土层和乳熟期各土层比根长与产量极显著相关;吐丝期0~20 cm和乳熟期0~60 cm各土层根系活力与产量均极显著相关,且吐丝期20~40 cm和40~60 cm土层根系活力与产量显著相关。综合分析,深松和磷肥深施后,延缓后期根系早衰,保持较高的根系长度及较高的根系活力是增产的主要因素,因此,以下对乳熟期根干质量、比根长和根系活力进行方差分析。

表2 根系干质量比根长和根系活力与产量的相关关系
Tab.2 The correlation between yield and root dry weight, specific root length,root activity

指标Index生育时期Stage0~20 cm20~40 cm40~60 cmrPrPrP根系干质量吐丝期0.443 9∗0.049 90.405 40.076 20.390 00.089 2Root dry weight乳熟期0.827 1∗∗0.001 30.591 0∗∗0.006 10.671 5∗∗0.001 2比根长吐丝期0.773 7∗∗0.001 10.519 5∗0.018 90.631 2∗∗0.002 8Specific root length乳熟期0.676 0∗∗0.001 10.561 4∗∗0.010 00.687 2∗∗0.000 8根系活力吐丝期0.841 4∗∗0.003 20.483 3∗0.030 90.659 6∗0.011 6Root activity乳熟期0.823 8∗∗0.002 40.438 9∗∗0.002 90.727 0∗∗0.000 3

注:**.0.01水平显著;*.0.05水平显著。表3-5同。

Note: **.Extremely remarkable difference(P<0.01);*.Remarkable difference(P<0.05).The same as Tab.3-5.

2.5 深松措施下不同施磷深度处理春玉米乳熟期根干质量比根长和根系活力方差分析

2.5.1 根干质量方差分析 以品种为A因素,耕作措施为B因素,施磷深度为C因素,依据根系生物量结果进行方差分析,分析结果见表3,0~20 cm土层根系干物质质量品种间、耕作措施间和施磷深度间差异均达到了极显著水平;20~40 cm和40~60 cm土层根系干质量耕作措施间和施磷深度间差异均达到了极显著水平,品种间差异不显著。从各因素交互作用的方差结果来看,耕作措施和施磷深度交互0~20 cm和20~40 cm土层根系干物质质量差异达到了显著水平,耕作措施与品种间、施磷深度与品种间和三者之间的交互作用0~20 cm土层根系干物质质量差异达显著水平,20~60 cm土层差异不显著。说明品种、深松和磷肥深施对0~20 cm土层根系均有影响,品种对20 cm以下根系干物质质量影响较小,20 cm以下根系生物量增加主要与深松和磷肥深施有关。

表3 深松措施下不同施磷深度处理春玉米根系生物量方差分析
Tab.3 Results of different treatments on spring maize root dry weight variance analysis under the measures of subsoiling

差异源Source difference0~20 cm20~40 cm40~60 cmFPFPFP因素A Factor A87.761 3∗∗0.011 26.982 40.118 419.243 30.045 0因素B Factor B169.741 1∗∗0.002 4123.431 3∗∗0.000 423.264 3∗∗0.008 5交互A×B Interaction A×B0.103 5∗0.774 86.832 20.059 34.091 10.113 2因素C Factor C 407.032 4∗∗0.001 313.353 2∗∗0.001 714.013 4∗∗0.001 4交互A×C Interaction A×C4.041 1∗∗0.009 21.281 40.297 06.154 30.113 4交互B×C Interaction B×C12.270 2∗∗0.001 56.242 2∗∗0.001 81.582 10.220 4交互A×B×C Interaction A×B×C3.143 3∗∗0.012 01.276 20.299 81.817 90.149 7

2.5.2 比根长方差分析 如表4所示,比根长方差分析结果表明,0~20 cm比根长品种间差异显著,40~60 cm土层比根长品种间差异未达显著水平。0~60 cm各土层比根长耕作措施间和施磷深度间差异均达到了极显著水平。从各因素交互作用的方差结果来看,耕作措施和施磷深度间0~40 cm土层比根长差异达到了极显著水平,耕作措施与品种间、施磷深度与品种间和三者之间的交互作用均不显著。说明0~20 cm土层比根长与品种关系密切,影响比根长的主要因素是深松和磷肥施用深度,尤其是深层土层。

2.5.3 根系活力方差分析 由表5可知,根系活力方差分析结果显示,品种间和施磷深度间各土层根系活力差异均未达显著,耕作措施间20~40 cm土层根系活力差异极显著,40~60 cm土层差异显著。从各因素交互作用的方差结果来看,耕作措施与品种间、施磷深度与品种间和三者之间的交互作用均不显著。说明根系活力主要与深松关系密切,尤其20 cm以下土层影响更大。

表4 深松措施下不同施磷深度处理春玉米比根长方差分析
Tab.4 Results of different treatments on spring maize specific root length variance analysis under the measures of subsoiling

差异源Source difference0~20 cm20~40 cm40~60 cmFPFPFP因素A Factor A344.430 4∗0.029 0147.021 10.067 2130.223 40.054 0因素B Factor B538.591 1∗∗0.001 4461.110 3∗∗0.001 4224.272 4∗∗0.004 3交互A×B Interaction A×B73.772 30.170 276.343 40.072 164.014 30.132 7因素C Factor C84.564 3∗∗0.001 6249.641 3∗∗0.001 334.771 3∗∗0.004 4交互A×C Interaction A×C1.482 30.230 22.323 20.210 62.751 10.201 1交互B×C Interaction B×C7.531 0∗∗0.001 426.142 3∗∗0.004 61.252 40.304 0交互A×B×C Interaction A×B×C2.942 20.035 51.734 40.093 41.114 30.217 6

表5 深松措施下不同施磷深度处理春玉米根系活力方差分析
Tab.5 Results of different treatments on spring maize root activity variance analysis under the measures of subsoiling

差异源Source difference0~20 cm20~40 cm40~60 cmFPFPFP因素A Factor A3.048 80.222 92.747 30.239 34.179 90.177 6因素B Factor B1.414 80.300 076.287 4∗∗0.000 917.720 5∗0.013 6交互A×B Interaction A×B1.042 60.365 01.772 00.253 91.051 70.363 1因素C Factor C1.496 60.226 52.152 60.047 01.246 70.311 1交互A×C Interaction A×C0.191 70.941 00.028 00.998 40.239 90.913 7交互B×C Interaction B×C0.094 30.983 60.151 30.961 00.089 70.988 0交互A×B×C Interaction A×B×C0.066 10.991 60.015 10.999 50.161 80.956 1

3 结论与讨论

深松可以疏松土壤,打破犁底层,改善土壤的通透性,促进根系生长[14-15],特别是下层根系干质量的增加,增加根系纵深分布,春玉米根系重心下移[12,16]。而把磷施在植株根系密集区域,可以增加根系与土壤接触面积,促进根系生长。范秀艳等[17]指出分层施磷(磷肥下移) 能促进较深土层根系的生长,陈梦楠等[18]深施磷肥可以调节冬小麦根长分布,促进根系下扎,本研究中,深松措施下,2个品种深施磷肥(≥12 cm)20~40 cm和40~60 cm土层根干质量较高,通过根系方差分析结果表明,20 cm以下根系生物量增加主要与深松和磷肥深施有关,品种对20 cm以下根系干物质质量影响较小。

研究指出,深松和磷肥深松均可延缓生育后期根系衰老,保持较高活力[12,19]。本研究中,旋耕和深松旋耕措施下总体表现0~20 cm土层P12比根长最高,20~40 cm土层P24旋耕措施下较高,这可能是由于犁底层的存在,旋耕措施下根系的下扎受阻而表现出增粗生长,所以深土层P6比根长小而P24比根长较大。不同耕作措施间各土层比根长表现为深松+旋耕处理高于旋耕处理,深松+旋耕措施下P18和P12较高,与深松打破犁底层根条数增加且促进下层根系发生有关。比根长和根系活力方差分析表明,影响比根长的主要因素是深松和磷肥施用深度,尤其是深层土层,根系活力主要与深松关系密切,尤其20 cm以下土层影响更大,与磷肥施用深度不显著。

关于磷肥深施后的效果结论不一,有研究指出,磷肥深施只能促进玉米生育前期的生长发育[20-21],也有研究表明,只有当土壤磷含量较低时,磷肥深施才有效果[22-23]。磷肥最佳施用深度也有不同结论,赵亚丽等[3]指出,磷肥集中深施在15 cm土层时效果最好,范秀艳等[17]研究表明,8,16 cm处各施1/2效果较好。从本研究结果来看,在长期小动力机械作业的连作玉米区,深松措施下施磷深度为12 cm效果明显,玉米生产免耕、深松等措施不尽相同,需根据春玉米根系在土壤中的分布特点及生理特性合理调控施磷深度,以实现春玉米根系生长与磷肥施用的时空耦合,提高磷肥的吸收和利用效率。

深松措施下,2个品种春玉米0~20 cm根干质量不同施磷深度间差异不显著,20~40 cm土层根干质量P12最高,且各土层比根长、根系活力均以施磷12 cm处理最高。生育后期根系生物量、比根长和根系活力与产量极显著相关,其中,根系生物量和比根长的主要影响因素是深松和磷肥施用深度,较高的根系活力与深松密切相关。

参考文献

[1] Fusseder A.The longevity and activity of the primary root of maize[J]. Plant and Soil, 1987, 101: 257-265. doi:10.1007/BF02370653.

[2] 陈学留, 朱献玳, 刘益同. 玉米根系对磷肥的吸收利用研究[J]. 核农学报, 1986 (2): 29-33.

Chen X L, Zhu X D, Liu Y T. Studies on rhe uptake of phosphorous by corn root system[J]. Journal of Nuclear Agricultural Sciences, 1986 (2):29-33.

[3] 赵亚丽, 杨春收, 王群, 刘天学, 李潮海. 磷肥施用深度对夏玉米产量和养分吸收的影响[J]. 中国农业科学, 2010, 43(23): 4805-4813. doi:10.3864/j.issn.0578-1752.2010.23.005.

Zhao Y L, Yang C S, Wang Q, Liu T X, Li C H. Effects of phosphorus placement depth on yield and nutrient uptake of summer maize[J]. Scientia Agricultura Sinica, 2010,43(23):4805-4813. doi:10.3864/j.issn.0578-1752.2010.23.005.

[4] 王珍,李久生,栗岩峰,郝锋珍.磷肥施入方式对土壤速效磷含量及玉米生长的影响[J]. 排灌机械工程学报, 2018,36(10) :1023-1028.doi:10.3969/j.issn.1674-8530.18.1206.

Wang Z,Li J S,Li Y F,Hao F Z.Effects of phosphorus fertigation on distribution of Olsen-P in soil and yield of maize[J]. Journal of Drainage and Irrigation Machinery Engineering(JDIME) ,2018,36(10) :1023-1028.doi: 10.3969/j.issn.1674-8530.18.1206.

[5] 苏志峰,杨文平,杜天庆, 郝教敏,孙敏,高志强,杨珍平.施肥深度对生土地玉米根系及根际土壤肥力垂直分布的影响[J].中国生态农业学报,2016,24(3):142-153. doi:10.13930/j.cnki.cjea.150781.

Su Z F, Yang W P, Du T Q,Hao J M, Sun M, Gao Z Q,Yang Z P. Effect of fertilization depth on maize root and rhizosphere soil fertility vertical distribution in immature loess subsoil[J].Chinese Journal of EcoAgriculture, 2016, 24(3):142-153. doi:10.13930/j.cnki.cjea.150781.

[6] 杨云马,孙彦铭,贾良良,贾树龙,孟春香. 磷肥施用深度对夏玉米产量及根系分布的影响[J].中国农业科学, 2018,51(8):1518-1526. doi: 10.3864/j.issn.0578-1752.2018.08.009.

Yang Y M, Sun Y M, Jia L L, Jia S L, Meng C X. Effects of phosphorus fertilization depth on yield and root distribution of summer maize[J]. Scientia Agricultura Sinica, 2018,51(8):1518-1526. doi: 10.3864/j.issn.0578-1752.2018.08.009.

[7] 张旭东, 王智威, 韩清芳, 王子煜, 闵安成, 贾志宽, 聂俊峰. 玉米早期根系构型及其生理特性对土壤水分的响应[J]. 生态学报, 2016, 36(10): 2969-2977. doi:10.5846/stxb201409181852.

Zhang X D, Wang Z W, Han Q F, Wang Zi Y, Min A C, Jia Z K, Nie J F. Effects of water stress on the root structure and physiological characteristics of early-stage maize[J]. Acta Ecologica Sinica, 2016,36(10):2969-2977. doi:10.5846/stxb201409181852.

[8] Shen J, Li C, Mi G, Li L, YuanL X, Jiang R F, Zhang F. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China[J]. Journal of Experimental Botany, 2013, 64: 1181-1192. doi:10.1093/jxb/ers342.

[9] 赵伟,宋春,周攀,王嘉雨,徐锋,叶芳,王小春,杨文钰.施磷量与施磷深度对玉米-大豆套作系统磷素利用率及磷流失风险的影响[J].应用生态学报,2018, 29(4):1205-1214. dio:10.13287/j.1001-9332.201804.026.

Zhao W, Song C, Zhou P, Wang J Y, Xu F, Ye F, Wang X C, Yang W Y. Effects of phosphorus application rates and depths on P utilization and loss risk in a maize-soybean intercroppin system[J]. Chinese Journal of Applied Ecology, 2018, 29(4):1205-1214. dio:10.13287/j.1001-9332.201804.026.

[10] 阴淑婷, 常庆瑞, 李晓明, 杨琨. 基于GIS的耕地土壤速效磷分布特征——以富县为例[J]. 西北林学院学报, 2010, 25(6): 227-230.

Yin S T, Chang Q R, Li X M, Yang K. Distribution of soil rapidly available phosphorus by GIS-A case study of fuxian county[J]. Journal of Northwest Forestry University, 2010,25(6):227-230.

[11] 马进川. 我国农田磷素平衡的时空变化与高效利用途径[D]. 北京:中国农业科学院, 2018.

Ma J C. Temporal and spatial variation of phosphorus balance and solutionsto improve phosphorus use efficiency in chinese arable land[D]. Beijing:Chinese Academy of Agricultural Sciences,2018.

[12] 张瑞富, 杨恒山, 高聚林, 张玉芹, 王志刚, 范秀艳, 毕文波. 深松对春玉米根系形态特征和生理特性的影响[J]. 农业工程学报, 2015, 31(5): 78-84. doi:10.3969/j.issn.1002-6819.2015.05.012.

Zhang R F, Yang H S, Gao J L, Zhang Y Q, Wang Z G, Fan X Y, Bi W B. Effect of subsoiling on root morphological and physiological characteristics of spring maize[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(5):78-84. doi:10.3969/j.issn.1002-6819.2015.05.012.

[13] 薛永杰, 姚影, 赵文生, 冯玉涛, 李金琴, 吕岩, 常立兴. 通辽地区玉米机械化深松改土效果分析[J]. 北方农业学报, 2017, 45(4): 6-10. doi:10.3969/j.issn.2096-1197.2017.04.

Xue Y J, Yao Y, Zhao W S, Feng Y T, Li J Q, Lü Y, Chang L X. Analysis of maize mechanized subsoiling for soil improvement in Tongliao[J]. Journal of Northern Agriculture, 2017,45(4):6-10. doi:10.3969/j.issn.2096-1197.2017.04.

[14] 袁静超,刘剑钊,习孝贡,张洪喜,梁尧,蔡红光,任军. 春玉米连作体系高产栽培模式优化研究[J]. 植物营养与肥料学报, 2018, 24(1): 53-62. doi:10.11674/zwyf.2013.0403.

Yuan J C, Liu J Z, Xi X G, Zhang H X, Liang R, Cai H G, Ren J. Effects of subsoiling and N fertilizer application on dry matter accumulation,nitrogen use efficiency and yield of summer maize [J]. Plant Nutrition and Fertilizer Science, 2018, 24(1): 53-62. doi:10.11674/zwyf.2013.0403.

[15] 梁熠, 马琨, 朱海燕, 齐华, 刘明. 深松与施氮量对春玉米产量及氮素吸收利用率的影响[J]. 玉米科学, 2014, 28(2): 129-134. doi:10.13597/j.cnki.maize.science.2014.02.028.

Liang Y, Ma K, Zhu H Y, Qi H, Liu M. Effect of subsoiling strategies and nitrogen application on the nitrogen utilization efficiency and grain yield of spring maize[J]. Journal of Maize Science, 2014,28(2):129-134. doi:10.13597/j.cnki.maize.science.2014.02.028.

[16] 王新兵, 侯海鹏, 周宝元, 孙雪芳, 马玮, 赵明. 条带深松对不同密度玉米群体根系空间分布的调节效应[J]. 作物学报, 2014, 40(12): 2136-2148. doi:10.3724/SP.J.1006.2014.02136.

Wang X B, Hou H P, Zhou B Y, Sun X F, Ma W, Zhao M. Effect of strip subsoiling on population root spatial distribution of maizeunder different planting densities[J]. Acta Agronomica Sinica, 2014,40(12):2136-2148. doi:10.3724/SP.J.1006.2014.02136.

[17] 范秀艳, 杨恒山, 高聚林, 张瑞富, 王志刚, 张玉芹. 超高产栽培下磷肥运筹对春玉米根系特性的影响[J]. 植物营养与肥料学报, 2012, 18(3): 562-570. doi:10.11674/zwyf.2012.11303.

Fan X Y, Yang H S, Gao J L, Zhang R F, Wang Z G, Zhang Y Q. Effects of phosphorus application on root characteristics of super-high-yield spring maize[J]. Plant Nutrition and Fertilizer Science, 2012,18(3):562-570. doi:10.11674/zwyf.2012.11303.

[18] 陈梦楠, 孙敏, 高志强, 温斐斐, 郝兴宇, 杨珍平. 深施磷肥对旱地小麦土壤水分、根系分布及产量的影响[J]. 灌溉排水学报, 2016, 35(1): 47-52. doi:10.13522/j.cnki.ggps.2016.01.010.

Chen M N, Sun M, Gao Z Q, Wen F F, Hao X Y, Yang Z P. Effect of deep application of phosphorus fertilizer on soil moisture,root distribution and grain yield of dryland wheat[J]. Journal of Irrigation and Drainage, 2016,35(1):47-52. doi:10.13522/j.cnki.ggps.2016.01.010.

[19] 尹宝重, 甄文超, 冯悦. 海河低平原深松播种对夏玉米根系生理的影响及其节水增产效应[J]. 作物学报, 2015, 41(4): 623-632. doi:10.3724/SP.J.1006.2015.00623.

Yin B C, Zhen W C, Feng Y. Effects of Subsoiling-Seeding on root physiological indices, Water-Saving and Yield-Increasing behaviors in summer maize (Zea mays L.) in haihe lowland plain of China[J]. Acta Agronomica Sinica, 2015,41(4):623-632. doi:10.3724/SP.J.1006.2015.00623.

[20] Orges R, Mallarino A P.Deep banding phosphorus and potassium fertilizers for corn produced under ridge tillage[J].Soil Science Society of American Journal,2001,65(2):376-384. doi: 10.2136/sssaj2001.652376x.

[21] Mallarino A P, Bordoli J M, Borges R.Phosphorus and potassium placement effects on early growth and nutrient uptake of no-till corn and relationships with grain yield[J].Agronomy Journal,1999,91(1):37-45. doi:10.4141/cjps90-119.

[22] Mallarino A P, Webb J R, Blackmer A M.Corn and soybean yields during 11 years of phosphorus and potassium fertilization on a high-testing soil[J].Journal of Production Agriculture,1991,4(3):312-317. doi:10.2134/jpa1991.0312.

[23] Webb J R, Mallarino A P, Blackmer A M.Effects of residual and annually applied phosphorus on soil test values and yields of corn and soybean[J].Journal of Production Agriculture,1992,5(1):148-152. doi:10.2134/jpa1992.0148.

Effect of Phosphorus Application Depth on Root Characteristics of Spring Maize under the Subsoiling Measures

ZHANG Ruifu,ZHANG Yuqin,YANG Hengshan

(Agricultural College of Inner Mongolia University for the Nationalities, Inner Mongolia Region Feed Crop Engineering Technology Research Center,Tongliao 028000,China)

Abstract To reveal the effects of phosphorus placement depth on root characteristics of spring maize under the subsoiling measures, achieve adequate spatial coupling between root system and phosphorus, to provide scientific basis for the rational operation of high yield phosphate fertilizer in maize cultivation, the root biomass, specific root length and root activity of maize with different phosphorus placement depth were studied, and the correlation between the indicators and yield was analyzed by means of the split plot design. In the main area of tillage practices, rotary tillage and subsoiling plus rotary tillage were set up, and the secondary area was phosphorus placement depth with 6 (P6, normal phosphorus placement depth), 12 (P12), 18 (P18), and 24 cm (P24) treatments. The results showed that the P12 and P18 treatments at silking stage and P12 treatment at milking stage in root dry weight of spring maize in 0-20 cm soil layers under rotary tillage measure. But the P24 treatment showed lower and higher root dry weight compared with P6 at silking stage and milking period, respectively. In 20-60 cm soil layers, the root dry weight of three phosphorus treatments were heavier than P6 at silking stage and milking stage, and the P12 treatment reached the highest value. Under subsoiling plus rotary tillage measures, three phosphorus treatments in the root dry weight at silking stage were heavier than P6. In 0-20 cm soil layers, the P12 and P18 treatments showed higher root dry weight at milking stage. Similarly, better performances also were found in P12 and P18 treatments in 20-60 cm soil layers at silking stage and milking stage. Under rotary tillage condition, the P12 treatment, significantly differing from P6, had the biggest specific root length in 0-20 cm and 40-60 cm soil layers at two stages. However, the P24 treatment had the highest value in 20-40 cm soil layers. To specific root activity in three soil layers and root length in 0-20 cm and 40-60 cm soil layers, the P12 treatment showed the highest value under rotary tillage. Under subsoiling plus rotary tillage condition, except for the root activity of 20-40 cm soil layer at silking stage, P18 were significantly differ from P12 ,they were higer than P6. The P12 treatments showed highest specific root length in 0-20 cm, and the P24 treatment was lowset at silking stage and milking, P18 were no significantly differ from P12 in 40-60 cm soil layers, the P12 was higer than P6 and P24. The changing trends of the root biomass, specific root length and root activity of two spring maize varieties were basically the same. Except for the root biomass of 20-60 cm soil layer at silking stage, the root dry weight, specific root length and root activity of various soil layer were significantly correlated with yield at two growth stages. The correlation analysis suggested that the root biomass and specific root length at milking stage were mainly affected by the subsoiling treatment and phosphorus placement depth, and the higher root activity of each soil layer was closely related to the subsoiling treatment. In conclusion, the root dry weight, specific root length and root activity of various soil layer were significantly correlated with yield at two growth stages;the subsoiling plus rotary tillage treatment was better than rotary tillage;the phosphorus placement depth was suitable for 12 cm under rotary tillage treatment and 12-18 cm for subsoiling plus rotary tillage treatment.

Key words: Spring maize; Subsoiling; Phosphorus placement depth; Root characteristics

中图分类号S513.01;S143.2

文献标识码:A

文章编号:1000-7091(2019)01-0204-09

doi:10.7668/hbnxb.201750319

收稿日期2018-10-29

基金项目国家自然科学基金项目(31360308);内蒙古民族大学校级课题(NMDGP1409);内蒙古饲用作物工程技术中心(MDK2016027)

作者简介张瑞富(1979-),男,内蒙古赤峰人,副教授,博士,主要从事作物高产栽培与资源高效利用研究。

通讯简介杨恒山(1967-),男,内蒙古兴和人,教授,博士,博士生导师,主要从事作物高产栽培与资源高效利用研究。