膜下滴灌追肥量对花生生长发育及产量的影响

刘兆娜,田树飞,郭润泽,张晓军,司 彤,王月福,邹晓霞

(青岛农业大学,山东省旱作农业技术重点实验室,山东 青岛 266109)

摘要:为了确定花生生长所需的适宜追肥量,提供花生高产高效施肥理论依据。以高产花生品种青花7号为材料,于2017-2018年连续2 a采用水肥一体化技术进行田间试验,以不灌水不追肥处理(CK1)和只灌水不追肥处理(CK2)为对照在花针期设置4个追肥量处理,研究了膜下滴灌追肥量对花生生长发育及产量的影响。花生主茎高、侧枝长、分枝数、叶片和茎秆干质量在各期均表现为随追肥量增加而显著提高,于每公顷施尿素261 kg、硼砂30 kg、硝酸钙221 kg时,达到最大值,且显著高于不追肥处理,而花生总果针和入土果针数、荚果数和干质量、荚果产量、单株结果数、百果质量和百仁质量、出仁率则随追肥量的增加呈先增加后降低的趋势,于每公顷施尿素131 kg、硼砂15 kg、硝酸钙132 kg时,达到最大值,之后随追肥量的增加反而呈下降趋势,2017年T2(追施纯氮硼砂氧化钙各60,15,45 kg/hm2)产量较CK1和CK2分别提高48.53%,46.00%,2018年T2产量较CK1和CK2分别提高38.20%,34.76%。各追肥处理下花生茎叶生长显著高于不追肥处理,促进地上部生长效果明显,但果针和荚果的生长随追肥量增加呈先增后降的趋势,因此适量追肥既可以促进花生营养生长又可促进生殖生长,从而提高花生产量,但追肥量过多易引起花生营养生长过度,抑制生殖生长,造成花生营养生长和生殖生长不协调,从而降低产量。综上,适宜的追施量为公顷施纯氮60 kg、硼砂15 kg、氧化钙45 kg。

关键词:花生;膜下滴灌;花针期;追肥量;生长发育;产量

花生含有丰富的油脂和蛋白质,是食用油和蛋白质的重要来源,是重要的油料作物和经济作物,在国民经济发展和农业发展中占有重要地位[1-2]。我国是世界上最大的花生生产和消费国,年产量占全世界45%,种植面积居世界第二位,占世界花生种植面积的22%左右[3]。因此,加强花生高产优质栽培理论与技术研究,对促进花生产业发展具有重要意义。

随着经济水平的提高,人们对花生品质和产量的要求也越来越高。而在生产中,施肥是获得高产优质的重要条件。但长期以来,由于传统的施肥习惯和花生地上开花地下结果的特性,花生生长过程不便追肥,通常将肥料做基肥一次施入,但该施肥方式易造成前期生长过旺,表现为疯长,甚至倒伏,后期容易产生脱肥现象而严重减产。追肥是根据作物不同阶段养分需求特点进行营养供给,能有效调节作物营养生长和生殖生长,促进作物生长发育,提高产量[4-5]。在粮食[6-7]、蔬菜[8-11]、果树等作物上,适宜的追肥量有利于叶果比合理,干物质转化充足,进而提高产量,提升效益。因此,如何追肥、什么时间追、追多少等问题是进一步提高花生产量的关键问题。

膜下滴灌水肥一体化技术作为现代农业发展的综合管理措施,是解决花生追肥难和追施位置不当等问题的重要技术手段,它能够在不同时期将适宜的水肥量准确地供应到花生根系附近,即有利于花生对养分的吸收和利用,也可减少水肥在运输过程中的损耗,提高水肥利用效率,增加产量、改善品质[12-14]。同时可以降低因氮磷等营养流失而造成水体环境污染[15],协调土壤养分结构,改善物理性状,使土壤孔隙度增加,增强土壤微生物活性,减少养分淋失,从而减少土壤次生盐渍化发生和地下水资源污染,提高土壤生态环境质量,缓解施肥对农业环境的破坏,进一步保障生态环境安全[16-19]

目前对花生适宜追肥量的研究较少,且已有研究也只是针对单一肥料开展,多种养分组合施用尚不多见[20-21]。因此,本研究在大田膜下滴灌条件下,针对氮、钙、硼3种元素于花针期设置不同追肥量,研究其对花生生长和产量的影响,以期确定适宜的追肥量,为花生高产优质栽培提供理论指导与技术支持。

1 材料和方法

1.1 供试材料

试验于2017,2018年在青岛农业大学胶州现代农业科技示范园进行。供试土壤为砂姜黑土,0~20 cm土层土壤基础肥力见表1。供试花生品种为青花7号。花生生长期间试验地气象数据见表2。

表1 土壤基础肥力
Tab.1 The nutrient contents of soil

年份Year碱解氮/(mg/kg)Available N速效磷/(mg/kg)Available P速效钾/(mg/kg)Available K有机质/%Organic matterpH值pH value钙含量/(g/kg)Calcium content硼含量/(mg/kg)Boron content201755.9331.8480.38 1.157.683.460.87201857.2830.3975.501.15 7.533.210.80

表2 试验地气象数据
Tab.2 Meteorological data of the experimental field

年份Year要素Elements5月May6月June7月July8月August9月September2017平均温度/℃20.122.927.725.922.4降雨量/mm30.373.6138.1144.1103.0日照时数/h265.3234.5187.5180.2206.72018平均温度/℃18.422.726.227.521.5降雨量/mm82.493.6155.2178.0102.4日照时数/h231.8237.1207.2234.5201.3

1.2 试验设计

试验在每公顷施300 kg基肥(复合肥,N∶P∶K=15∶15∶15)的基础上,以不灌水不追肥处理(CK1)和只灌水不追肥处理(CK2)为对照,在花针期设置4个追肥量处理,T1:追施纯氮硼砂氧化钙各30,7.5,30 kg/hm2;T2:追施纯氮硼砂氧化钙各60,15,45 kg/hm2;T3:追施纯氮硼砂氧化钙各90,22.5,60 kg/hm2;T4:追施纯氮硼砂氧化钙各120,30,75 kg/hm2。各处理追肥种类和数量及灌水量见表3。花生起垄覆膜种植,膜下铺设滴灌带,花生适期播种(2017年5月8日,2018年5月9日),垄宽90 cm,大行距55 cm,小行距35 cm,垄内种植2行花生,每穴2粒,穴距16.5 cm,每小区种植3垄6行,行长20 m,随机区组设计,重复3次。2017,2018年分别于9月13,11日收获,分别于7月3,5日进行追肥,其他管理同一般大田生产。

表3 各处理施肥和灌水量情况
Tab.3 Fertilization and irrigation in different treatments

处理Treatment追肥量/(kg/hm2)Top-dressing quantity尿素Urea硼砂Borax硝酸钙Calcium nitrate灌水量/mmIrrigation amountCK10000CK200010T16588810T21311513210T31962317610T42613022110

1.3 测定项目与方法

自花针期追肥后,每10 d取样1次,共取5次,每次取10株,调查花生主茎高、侧枝长、分枝数、果针数(分入土、未入土);按茎、叶、果针(果柄+果针)、荚果分样,105 ℃杀青0.5 h,后75 ℃烘干至恒质量,称量叶片、茎秆、果针(果柄+果针)、荚果干质量,计算各处理的干物质积累量。收获后将荚果自然风干,调查单株有效荚果数,测定荚果产量、籽仁产量,计算出仁率。

1.4 数据分析

数据、图表处理在Microsoft Excel软件下进行,统计分析和差异显著性检验在SAS 9.0数据处理系统LSD下进行。

2 结果与分析

2.1 不同追肥量对花生营养生长的影响

2.1.1 不同追肥量对花生主茎高和侧枝长的影响 由表4可以看出,2 a数据总体变化趋势一致,随着生育进程的推进,各处理花生主茎高和侧枝长呈现逐渐增大的趋势。CK2的主茎高和侧枝长各期均较CK1的高,但均未达到显著水平,说明花针期灌10 mm水对花生主茎高和侧枝长影响不显著。追肥处理间表现为随着追肥量的增加主茎高和侧枝长逐渐增高,以T4的主茎高和侧枝长最高,T3次之,两者均显著高于CK1和CK2,部分生育时期也显著高于T1和T2,说明增加追施氮硼钙肥量能够显著促进花生主茎和侧枝的生长。

表4 不同追肥量对花生主茎高和侧枝长的影响
Tab.4 Effect of different top-dressing quantity on the height of main-stem and later-stem of peanut

年份Year处理Treatment追肥后天数/dDays after top-dressing主茎高/cm Main-stem侧枝长/m Later-stem102030405010203040502017CK136.38±2.22c43.22±2.33c46.53±2.69e47.90±2.75e48.58±2.76d40.80±2.30c46.07±2.56d49.47±2.74d51.37±2.77d53.08±2.79dCK236.92±2.25c43.95±2.34c47.23±2.67e48.12±2.71e49.49±2.74d41.08±20.27c46.15±2.59d49.78±2.77d52.37±2.79d53.57±2.80dT139.45±2.24bc46.08±2.35b49.60±2.72d50.88±2.78d53.92±2.77c42.35±2.30bc48.63±2.57c52.48±2.75c55.15±2.79c57.28±2.81cT241.88±2.32ab48.81±2.42a51.41±2.70c53.61±2.72c54.34±2.82c44.30±2.33ab50.80±2.65bc54.05±2.80bc56.37±2.82bc58.65±2.82cT342.40±2.47ab49.52±2.57a53.10±2.75b56.85±2.82b57.70±2.80b45.58±2.35a52.72±2.63ab55.68±2.67b57.47±2.78ab60.60±2.80bT443.48±2.43a50.43±2.61a55.17±2.72a59.30±2.75a60.37±2.81a46.82±2.32a53.92±2.66a58.01±2.70a59.22±2.75a62.97±2.83a2018CK135.00±2.12c37.83±2.28c43.00±2.34d47.50±2.60d49.00±2.73d38.83±2.24b39.90±2.36c49.67±2.51c51.33±2.69d52.50±2.70eCK235.50±2.16c38.17±2.28c43.67±2.35cd48.17±2.65d49.33±2.71d39.00±2.22b40.13±2.39c49.83±2.50c51.57±2.67d52.83±2.72eT137.50±2.23b42.17±2.31b45.00±2.40bc50.67±2.70c51.83±2.74c41.67±2.21a42.83±2.41b51.33±2.52b53.50±2.72c54.00±2.75dT237.67±2.13b43.17±2.33ab45.33±2.46b50.83±2.68c52.50±2.78bc42.17±2.20a43.67±2.43ab51.50±2.58b53.90±2.70c55.17±2.78cT338.33±2.28ab44.00±2.43ab47.17±2.48a53.33±2.66b54.17±2.74b42.50±2.31a44.00±2.40ab52.17±2.55ab55.17±2.68b57.00±2.77bT439.00±2.32a45.17±2.41a48.50±2.45a56.83±2.73a58.33±2.77a43.00±2.27a45.50±2.43a53.00±2.65a58.83±2.71a60.50±2.80a

注:同列不同小写字母分别表示处理间差异显著(P<0.05)水平。表5-9同。

Note:Small letters in the same column indicate significant difference among treatments at 0.05 levels. The same as Tab.5-9.

2.1.2 不同追肥量对花生分枝数的影响 由表5可以看出,各处理花生分枝数均随着生育进程的推进,呈现逐渐增多的变化趋势。处理间比较,以T4的分枝数最多,T3次之,两者均高于T2、T1,且均与CK1和CK2差异显著;CK2的分枝数各期均较CK1的高,但均未达到显著水平,说明花针期灌10 mm水对花生分枝数影响不显著。花生分枝数在各期均表现为随着追肥量的增加而显著增多,于T4达到最大值,说明增加追施氮硼钙肥促进了花生的分枝。

表5 不同追肥量对花生分枝数的影响
Tab.5 Effect of different top-dressing quantity on branching numbers of peanut N/株

年份Year处理Treatment追肥后天数/d Days after top-dressing10203040502017CK17.07±0.49d8.10±0.50c9.13±0.55d9.47±0.61d9.70±0.74dCK27.30±0.47d8.30±0.52c9.30±0.58d9.62±0.65d9.90±0.71dT18.30±0.52c9.80±0.58b10.80±0.67c11.30±0.71c11.77±0.77cT29.30±0.56bc10.20±0.59b11.03±0.65c11.60±0.72c12.03±0.80cT310.30±0.63ab10.90±0.66a11.47±0.70b12.07±0.78b12.60±0.82bT411.10±0.69a11.20±0.71a11.80±0.74a12.60±0.75a12.90±0.79a2018CK17.73±0.44c8.20±0.53d8.50±0.54d8.90±0.64d9.10±0.60dCK27.93±0.45c8.33±0.52d8.70±0.57d9.03±0.68d9.20±0.66dT18.80±0.52b9.10±0.57c9.47±0.60c9.70±0.73c10.20±0.72cT29.10±0.50b9.40±0.58bc9.77±0.63bc10.07±0.71c10.43±0.74cT39.53±0.55a9.73±0.57b10.27±0.61b10.53±0.70b10.93±0.71bT49.80±0.58a10.20±0.61a10.73±0.65a11.00±0.73a11.30±0.76a

2.1.3 不同追肥量对花生叶片和茎秆干质量的影响 由表6可以看出,2 a数据总体变化趋势一致,随着生育进程的推进,各处理花生叶片和茎秆干质量均呈现先上升后下降的变化趋势,于追肥后40 d达到最大值。CK2的叶片和茎秆干质量各期均较不灌水不追肥处理CK1高,但均未达到显著水平,说明花针期灌10 mm水对花生叶片和茎秆干质量的影响不显著。处理间花生叶片和茎秆干质量在各期均表现为随着追肥量的增加而显著增大,以T4的叶片和茎秆干质量最高,T3次之,两者均高于T1和T2,显著高于CK1和CK2,说明增加追施氮硼钙肥量有利于花生叶片和茎秆干物质积累。

表6 不同追肥量对花生叶片和茎秆干质量的影响
Tab.6 Effects of top-dressing quantity on dry matter weight of leaves and stem of peanut

年份Year处理Treatment追肥后天数/d Days after top-dressing叶片/(g/株) Leaves茎秆/(g/株) Stem102030405010203040502017CK113.09±1.20b14.08±1.36c14.97±1.52d15.40±1.61d11.67±1.25d11.32±1.10c12.93±1.21d14.60±1.30d14.88±1.34d13.21±1.27dCK214.01±1.25b15.50±1.33c16.00±1.50d17.83±1.66d13.44±1.33d11.93±1.13bc13.15±1.20d14.65±1.32d15.39±1.38d13.55±1.28dT117.31±1.37a19.13±1.45b21.84±1.57c24.05±1.73c20.41±1.58c12.96±1.30abc15.05±1.28c17.10±1.47c17.70±1.57c17.28±1.32cT218.27±1.43a20.95±1.48ab22.13±1.60c25.23±1.71c21.83±1.54c13.32±1.32ab15.90±1.25c18.63±1.47c19.09±1.53c18.42±1.30bcT318.74±1.40a21.90±1.52a24.16±1.58b28.38±1.73b25.31±1.63b13.67±1.33a17.20±1.330b20.57±1.53b21.25±1.60b20.55±1.50abT419.25±1.42a23.09±1.51a26.35±1.63a31.56±1.80a28.06±1.75a14.37±1.30a18.84±1.45a22.66±1.60a23.27±1.64a22.17±1.57a2018CK115.70±1.40d17.70±1.48d19.87±1.55d25.27±1.71d25.47±1.80d13.77±1.30c22.27±1.53c24.10±1.60d25.57±1.71d26.40±1.78eCK216.09±1.44cd18.60±1.51d20.40±1.52d26.77±1.75d26.83±1.82d13.91±1.33c22.33±1.55c24.63±1.63d26.30±1.70d27.07±1.75eT116.76±1.40cd20.30±1.50c21.77±1.58c28.57±1.80c31.27±1.87c14.30±1.35bc24.87±1.68b26.60±1.73c27.53±1.77c28.33±1.81dT217.40±1.47bc20.90±1.47c22.50±1.60c31.23±1.83b34.63±1.90b14.50±1.36bc25.23±1.66b27.20±1.70c27.97±1.82bc30.37±1.86cT318.65±1.45b21.96±1.54b24.47±1.68b33.23±1.87a36.67±1.98ab15.26±1.35bc26.63±1.71a28.00±1.74b28.97±1.80b32.23±1.85bT421.49±1.50a23.27±1.55a26.20±1.71a33.77±1.89a37.57±1.95a18.31±1.53a27.57±1.70a29.37±1.78a30.30±1.83a34.07±1.88a

2.2 不同追肥量对花生生殖生长的影响

2.2.1 不同追肥量对花生总果针和入土果针数的影响 由表7可以看出,2 a数据总体变化趋势一致,随着生育进程的推进,花生总果针和入土果针数均呈逐渐增多的趋势。处理间比较,整个时期均表现为以T2花生总果针数和入土果针数最多,T1次之,且T2均显著高于其他处理。各时期CK2的总果针和入土果针数均较CK1高,但均未达到显著水平,说明花针期灌10 mm水对花生总果针和入土果针数影响不显著。花生总果针和入土果针数在各期均表现为随着追肥量的增加呈现先显著增大,于T2达到最大值,之后再随着追肥量增加反而呈下降趋势。说明追施适宜的氮硼钙肥量有利于花生果针的形成和入土,追肥量过高则不利于花生果针的形成和入土。

表7 不同追肥量对花生总果针和入土果针数的影响
Tab.7 Effect of different top-dressing quantity on the pin number and underground pin number of peanut N/株

年份Year处理Treatment追肥后天数/d Days after top-dressing总果针 Pin number入土果针 Underground pin number102030405010203040502017CK128.50±1.80d37.83±2.15d43.00±2.49d45.00±2.55e47.67±2.65c26.67±1.75c27.83±1.83d30.17±1.91d34.73±1.98d36.07±2.11dCK229.33±1.83cd39.00±2.11d46.17±2.52cd48.17±2.60d49.00±2.68c27.33±1.78c28.67±1.88d31.33±1.95cd36.53±1.97cd37.50±2.17dT134.00±2.03b47.50±2.33b55.17±2.63b55.83±2.69b57.33±2.73b33.17±1.87ab36.57±1.95b41.10±2.20b43.67±2.25b44.17±2.52bT241.33±2.10a51.50±2.45a59.50±2.61a62.17±2.73a63.33±2.80a35.17±1.92a40.30±2.03a45.73±2.42a48.67±2.49a51.17±2.51aT333.33±2.00bc43.67±2.28c52.50±2.58b53.17±2.70c57.83±2.78b30.83±1.83abc34.87±1.90b39.73±2.13b41.90±2.32b42.90±2.45bcT432.00±1.89bcd42.33±2.30c49.17±2.50c49.83±2.65d55.83±2.75b28.83±1.85bc32.50±1.92c32.57±1.98c38.23±2.05c41.67±2.21c2018CK135.67±2.00d41.33±2.27d46.67±2.53d47.00±2.62d49.00±2.63e25.00±1.70c30.00±1.98d33.67±2.03d36.67±2.13d38.00±2.19dCK236.33±2.04d42.67±2.31d48.33±2.50d48.67±2.60d50.00±2.63e26.00±1.73c30.33±1.98d34.33±2.01d37.67±2.10d38.67±2.20dT144.00±2.45b51.00±2.46b57.33±2.60b58.00±2.68b60.00±2.75b35.00±2.07ab37.67±2.10b41.67±2.13b45.00±2.27b46.67±2.38bT247.33±2.51a54.33±2.60a60.00±2.68a62.00±2.70a63.00±2.78a38.33±2.12a40.67±2.21a43.33±2.28a47.33±2.35a49.33±2.52aT341.00±2.48bc50.33±2.49bc55.67±2.63b56.33±2.71b58.00±2.70c30.33±1.95abc36.67±2.13b41.00±2.15b44.00±2.29b46.00±2.42bT439.67±2.40c48.33±2.42c53.33±2.54c54.00±2.63c55.00±2.68d28.33±1.90bc33.67±2.01c39.00±2.08c41.00±2.16c42.33±2.25c

2.2.2 不同追肥量对花生荚果干质量的影响 由表8可以看出,2 a数据总体变化趋势一致,随着生育进程的推进,花生荚果干质量呈逐渐增多的趋势。只灌水不追肥CK2的荚果干质量各期均较不灌水不追肥CK1的高,但均未达到显著水平,说明花针期灌10 mm水对花生荚果干质量影响不显著。花生荚果干质量在各期均表现为随着追肥量的增加呈先增大后下降趋势,于T2达到最大值,之后再随着追肥量增加反而呈下降趋势。处理间比较,整个时期均表现为以T2花生荚果干质量最高,T1次之,两者大多取样时期差异显著(除2017年追肥后20 d和2018年追肥后10 d,T2与T1差异不显著外)。说明追施适宜的氮硼钙肥量有利于花生荚果干物质积累,追肥量过高则不利于花生荚果干质量的增加。

表8 不同追肥量对花生荚果干质量的影响
Tab.8 Effect of different top-dressing quantity on the pods dry weight of peanut g/株

年份Year处理Treatment追肥后天数/d Days after top-dressing10203040502017CK11.43±0.04d5.45±0.23c11.55±0.65d14.88±0.85d23.48±1.23dCK21.50±0.06d5.75±0.22c12.49±0.63d16.49±0.93d22.31±1.27dT12.41±0.13b9.23±0.41ab16.53±0.97b24.48±1.35b30.47±1.81bT22.96±0.15a10.67±0.53a19.68±1.12a27.55±1.47a34.47±1.98aT32.17±0.10bc8.22±0.32b15.76±0.91bc22.53±1.23b28.91±1.55bT41.93±0.07c7.08±0.28bc14.59±0.87c19.22±0.90c25.36±1.44c2018CK15.34±0.20d9.47±0.46d13.20±0.72d15.77±0.95d25.10±1.46dCK25.44±0.21d10.30±0.51d13.77±0.70d17.23±1.03d25.93±1.42dT16.64±0.24ab13.73±0.72b15.90±0.92b23.30±1.20b29.77±1.63bT27.06±0.27a14.73±0.85a17.27±1.02a25.80±1.40a34.30±1.95aT36.23±0.25bc13.27±0.70b15.70±0.90b22.43±1.25b29.33±1.67bT45.88±0.20cd11.70±0.62c14.73±0.87c19.60±1.15c27.87±1.52c

2.3 不同追肥量对花生产量及其构成因素的影响

由表9可以看出,只灌水不追肥CK2除单株结果数和出仁率显著高于不灌水不追肥CK1外,荚果产量、百果质量和百仁质量虽均较不灌水不追肥CK1的高,但均未达到显著水平,说明花针期灌10 mm水对花生产量及产量构成因素的影响不显著。荚果产量、单株结果数、百果质量和百仁质量、出仁率2 a数据均表现出随着追肥量的增加而逐渐增大,到T2达到最高,之后再增加追肥量则反而下降,荚果产量、单株结果数、百果质量和百仁质量、出仁率均以T2为最高,其次为T1,两者差异不显著(除2017年荚果产量和单株结果数,2018年百仁质量外),均显著高于CK1和CK2。其中2017年T2产量较CK1和CK2分别提高48.53%,46.00%,2018年T2产量较CK1和CK2分别提高38.20%,34.76%。2017年T2单株结果数较CK1和CK2分别提高38.89%,18.35%,2018年T2单株结果数较CK1和CK2分别提高26.58%,24.00%。说明适量追施氮硼钙肥量能够显著提高花生荚果产量及其构成因素的水平,但追肥量过大反而影响荚果产量及其构成因素水平的提高。

表9 不同追肥量对花生产量及其构成因素的影响
Tab.9 Effect of top-dressing quantity on yield and its component factors of peanut

年份Year处理Treatment荚果产量/(kg/hm2)Pot yield单株结果数/(N/株)Pod number百果质量/gHundred fruit weight百仁质量/gHundred kernel weight出仁率/%Shelling percentage2017CK14 476.84±204.31d17.23±1.05d202.37±9.71b91.65±4.00b67.03±0.02bCK24 554.41±206.25d20.22±1.23c205.45±10.25a93.60±5.13ab71.45±0.01aT15 431.15±210.32b22.43±1.29b215.78±9.26ab98.76±4.14ab72.01±0.01aT26 649.37±232.56a23.93±1.31a220.99±11.56a100.26±4.51a74.27±0.01aT35 228.63±216.11b22.11±1.25bc214.46±10.31ab95.79±4.32ab71.81±0.01aT44 947.60±201.79c20.83±1.20bc209.96±10.12ab94.49±5.36ab71.95±0.02a2018CK14 207.43±202.17c16.33±0.93d199.40±9.33c93.03±4.21d68.19±0.01bCK24 314.99±201.96c16.67±0.97cd200.40±10.65bc94.80±4.38cd68.95±0.02abT15 355.58±217.38ab19.33±1.01ab206.40±10.56ab98.50±5.02b70.45±0.01abT25 814.85±227.71a20.67±1.23a208.67±10.23a101.77±4.85a71.57±0.01aT35 074.10±213.22abc18.33±1.09bc204.47±10.71abc96.97±4.63bc70.36±0.02abT44 574.10±204.59bc17.33±0.83cd201.33±10.37bc96.30±4.75bc70.02±0.01ab

3 讨论

花生生长发育主要通过吸收和利用土壤矿质营养,向体内运输,供应其各部分生长。因此,花生生长发育的好坏和产量的高低与施肥关系密切。在花生生产中,随地力和产量水平的提高,不科学施肥往往导致花生枝叶繁茂或疯长,生殖生长受到抑制,表现为花量减少,针少不实,果少不饱,影响产量的提高。花生属于地上开花地下结果的作物,果针入土,追肥难以深施。因此,一般将肥料做基肥一次施入,该施肥方式易造成前期生长过旺,后期容易脱肥而减产。

追肥对促进作物生长发育和提高产量具有重要作用。李云飞[22]研究认为追肥能促进鼠尾草植株高度、花序长度、花期持续时间及植株干鲜质量的提高。林爱惜[23]研究发现钙肥有利于提高花生主茎高、总分枝数。张慧娜[24]研究表明,增加氮肥追肥量有利于增加小麦地上部分茎、叶干质量。郑顺林等[25]研究认为,追肥有利于冬马铃薯总干物质的积累。周录英等[26]研究表明,施钙增产的原因,主要是增加了单株结果数、提高出仁率,降低了公斤果数,从而增加果质量,提高了产量。本试验结果表明,花生主茎高、侧枝长、分枝数、叶片和茎秆干质量在各期均表现为随追肥量增加而显著提高,而花生总果针和入土果针数、荚果数和干质量则随追肥量的增加而呈先逐渐增加,于T2时,达到最大值,之后再增加追肥量反而呈下降趋势。说明适量追肥既可以促进花生营养生长又可促进生殖生长,即营养生长和生殖生长比较协调,而提高花生产量,但追肥量过多易引起花生营养生长过度,抑制生殖生长,导致营养生长和生殖生长矛盾加大,而降低产量。

过量施肥一方面会导致土壤生态环境恶化,造成大量元素和微量元素积累,土壤养分结构失调,物理性状变差,部分地块有害金属和有害病菌超标,其养分不能被作物有效地吸收利用,从而导致作物本身营养失调,体内部分物质转化合成受阻,造成产品品质降低,另一方面会施肥过多严重污染环境,造成肥料的极大浪费,增加投入成本[27-30],因此降低肥料施用、提高肥料利用率势在必行,花生膜下滴灌可作为提高肥料利用率、降低肥料淋溶对区域生态环境破坏风险、缓解过量施肥污染农业环境的有效措施。本试验表明,从产量和经济角度等综合因素来看,最佳施肥量为每公顷施尿素131 kg、硼砂15 kg、硝酸钙132 kg。

参考文献:

[1] 房增国, 赵秀芬. 胶东地区不同花生品种的养分吸收分配特性[J]. 植物营养与肥料学报, 2015, 21(1): 241-250. doi: 10.11674/zwyf.2015.0127.

Fang Z G, Zhao X F. Nutrient absorption and distribution characteristics of different peanut varieties in Jiaodong Peninsula[J]. Journal of Plant Nutrition and Fertilizers,2015,21(1):241-250.

[2] 万书波, 封海胜, 张建成. 打造强势花生产业, 参与国际竞争[J]. 花生学报, 2003, 32(S1): 5-10. doi: 10.3969/j.issn.1002-4093.2003.z1.002.

Wan S B, Feng H S, Zhang J C. To build a strong peanut industry and participate in international competition[J]. Journal of Peanut Science, 2003, 32(S1): 5-10.

[3] 门爱军, 王耀波. 山东出口花生贸易的现状与展望[J]. 花生学报, 2003, 32(S1): 48-51. doi: 10.3969/j.issn.1002-4093.2003.z1.009.

Men A J, Wang Y B. Present situation and prospect of peanut export trade in Shandong[J]. Journal of Peanut Science, 2003, 32(S1): 48-51.

[4] 郭明明, 赵广才, 郭文善, 常旭虹, 王德梅, 杨玉双, 王美, 亓振, 王雨, 代丹丹, 魏星, 李银银, 刘孝成. 追氮时期和施钾量对小麦氮素吸收运转的调控[J]. 植物营养与肥料学报, 2016, 22(3): 590-597. doi: 10.11674/zwyf.15089.

Guo M M, Zhao G C, Guo W S, Chang X H, Wang D M, Yang Y S, Wang M, Qi Z, Wang Y, Dai D D, Wei X, Li Y Y, Liu X C. Regulation of nitrogen topdressing stage and potassium fertilizer rate on absorption and translocation of nitrogen by wheat[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 590-597.

[5] 孙昭安, 陈清, 吴文良, 孟凡乔. 冬小麦对基肥和追肥15N的吸收与利用[J]. 植物营养与肥料学报, 2018, 24(2): 553-560. doi:10.11674/zwyf.17319.

Sun Z J, Chen Q, Wu W L, Meng F Q. Nitrogen uptake and recovery from basal and top-dressing fertilizer 15N in winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 553-560.

[6] 张鹏飞,张翼飞, 王玉凤, 张文超, 陈天宇, 庞晨, 吴琼, 王怀鹏, 武鹏, 尹雪巍, 杨丽, 唐春双, 杨克军. 膜下滴灌氮肥分期追施量对玉米氮效率及土壤氮素平衡的影响[J]. 植物营养与肥料学报, 2018, 24(4): 915-926. doi:10.11674/zwyf.18013.

Zhang P F, Zhang Y F, Wang Y F, Zhang W C, Chen T Y, Pang C, Wu Q, Wang H P, Wu P, Yin X W, Yang L, Tang C X, Yang K J. Effects of nitrogen topdressing amount at various stages on nitrogen efficiency of maize and soil nitrogen balance under mulched drip irrigation[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 915-926.

[7] 何杰. 不同基、追肥比例对水稻重金属吸收及产量的影响[D]. 长沙:湖南农业大学,2016.

He J. Influence of different fertilizer proportion on heavy metals absorption and yield in rice[D]. Changsha:Hunan Agricultural University, 2016.

[8] 张华, 苏俊波, 林兆里, 杨俊贤, 杨颖颖. 机械化模式下不同追肥量对甘蔗品种产量的影响[J]. 热带作物学报, 2012,33(8): 1354-1358. doi: 10.3969/j.issn.1000-2561.2012.08.004.

Zhang H, Su J B, Lin Z L, Yang J X, Yang Y Y. The yield response of different additional fertilizer application to cane under mechanization mode[J]. Chinese Journal of Tropical Crops, 2012,33(8): 1354-1358.

[9] 张琼, 孙小武, 邓大成, 唐瀚, 罗琳, 易宝元, 杨红波. 不同施肥处理对西瓜产量和品质的影响[J]. 中国瓜菜, 2017, 30(3): 32-34. doi: 10.3969/j.issn.1673-2871.2017.03.009.

Zhang Q, Sun X W, Deng D C, Tang H, Luo L, Yi B Y, Yang H B. Effects of different fertilizer treatment on yield and quality of watermelon[J]. China Cucurbits and Vegetables, 2017, 30(3): 32-34.

[10] 吴立飞. 灌水量与追肥量对黄瓜产量和品质的初步研究[D]. 扬州:扬州大学,2014. doi: 10.7666/d.Y2633022.

Wu L F. Preliminary study on different irrigation and top dressing amount on yield and fruit quality of cucumber[D]. Yangzhou:Yangzhou University, 2014.

[11] 周啸尘. 灌水量与追肥量对番茄产量和品质的影响[D]. 扬州:扬州大学, 2014. doi: 10.7666/d.Y2633024.

Zhou X C. Effects of irrigation and top dressing amount on yield and fruit quality of tomato[D]. Yangzhou:Yangzhou University, 2014.

[12] 路华忠. 水肥一体化技术及其应用[J]. 农业灾害研究, 2014(8): 50-52. doi: 10.19383/j.cnki.nyzhyj.2014.08.020.

Lu H Z. Water and fertilizer integration technology and its application[J]. Research on Agricultural Disasters, 2014(8): 50-52.

[13] 井涛, 樊明寿, 周登博, 秦永林, 石晓华. 滴灌施氮对高垄覆膜马铃薯产量、氮素吸收及土壤硝态氮累积的影响[J]. 植物营养与肥料学报, 2012, 18(3): 654-661. doi: 10.11674/zwyf.2012.11329.

Jing T, Fan M S, Zhou D B, Qin Y L, Shi X H. Effects of nitrogen fertilization on potato tuber yield, N uptake and soil NO3-N accumulation under plastic mulching with drip irrigation[J]. Plant Nutrition and Fertilizers, 2012, 18(3): 654-661.

[14] 张杰, 韩建, 孙卓玲, 张丽娟, 尹兴, 汪新颖, 吉艳芝. 滴灌施肥对红地球葡萄产量、品质及土体氮磷钾分布的影响[J]. 植物营养与肥料学报, 2019, 25(3): 470-480. doi: 10.11674/zwyf.18386.

Zhang J, Han J, Sun Z L, Zhang L J, Yin X, Wang X Y, Ji Y Z. Effects of drip fertigation on yield, quality of red globe grape and distribution of soil NPK[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 470-480.

[15] 赵欣月. 设施番茄种植污染防治技术对土壤生态环境影响研究[D]. 呼和浩特:内蒙古大学, 2018.

Zhao X Y. Study on the effect of plant pollution prevention and control technology on tomato soil eco-environment[D]. Hohhot:Inner Mongolia University, 2018.

[16] 樊兆博, 刘美菊, 张晓曼, 陈永智, 李俊良, 陈清, 王敬国, 林杉. 滴灌施肥对设施番茄产量和氮素表观平衡的影响[J].植物营养与肥料学报, 2011, 17(4): 970-976. doi: 10.11674/zwyf.2011.0202.

Fan Z B, Liu M J, Zhang X M, Chen Y Z, Li J L, Chen Q, Wang J G, Lin S. Effect of dripper fertigation on tomato yield and apparent N balance in a greenhouse[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(4): 970-976.

[17] 李红梅. 河北藁城大棚番茄滴灌施肥综合管理栽培模式评价[D]. 北京:中国农业大学, 2006. doi: 10.7666/d.y938613.

Li H M. The evaluation of integrate fertigation production systemon greenhouse tomatoes in Gaocheng of Hebei Province[D]. Beijing:China Agricultural University, 2006.

[18] Sharmasarkar F C, Sharmasarkar S, Miller S D, Vance G F, Zhang R. Assessment of drip irrigation and flood irrigation on water and fertilizer use efficiencies for sugar beets[J].Agricultural Water Management, 2001, 46(3): 241-251. doi: 10.1016/S0378-3774(00)00090-1.

[19] 樊惠. 滴灌条件下氮素调控对日光温室生菜生长及品质的影响[D]. 北京: 中国农业大学, 2006. doi: 10.7666/d.y938731.

Fan H. The effect of N control with drip irrigation on growth and quality of greenhouse lettuce[D]. Beijing: China Agricultural University, 2006.

[20] 赵秀芬, 房增国, 李俊良. 山东省不同区域花生基肥和追肥用量及比例分析[J]. 中国农学通报, 2009, 25(18): 231-235.

Zhao X F, Fang Z G, Li J L. Analysis about amount and ratio of basal fertilizer and top dressing fertilizer on peanut in different region of Shangdong Province[J]. Chinese Agricultural Science Bulletin, 2009, 25(18): 231-235.

[21] 陈健. 花生膜下滴灌水溶肥适宜施用量与时期及其生理效应研究[D]. 泰安:山东农业大学, 2017.

Chen J. Suitable soluble fertilizer amounts and periods of peanut under drip fertigation and its physiological effects[D]. Taian:Shandong Agricultural University, 2017.

[22] 李云飞. 不同肥料追施对鼠尾草生长的影响[J]. 北方园艺, 2010(1): 132-133. doi: 10.11937/bfyy.201001054.

Li Y F. Preliminary study on netherlands Narcissus introduction in Shenyang[J]. The North Garden, 2010(1): 132-133.

[23] 林爱惜. 花生施钙实用新技术[J]. 福建农业, 2008(7): 15.

Lin A X. New practical technology of calcium application in peanut[J]. Fujian Agriculture, 2008(7): 15.

[24] 张慧娜. 干旱条件下不同追氮量对小麦氮利用及产量的调控效应[D]. 郑州:河南农业大学, 2009. doi: 10.7666/d.y1574332.

Zhang H N. The regulating effects of topdressing nitrogen amount on nitrogen utilization and yield of wheatunder drought condition[D]. Zhengzhou:Henan Agricultural University, 2009.

[25] 郑顺林, 李国培, 杨世民, 袁继超, 郝克伟. 施氮量及追肥比例对冬马铃薯生育期及干物质积累的影响[J]. 四川农业大学学报, 2009, 27(3): 270-274. doi: 10.3969/j.issn.1000-2650.2009.03.002.

Zheng S L, Li P G, Yang S M, Yuan J C, Hao K W. Effect of nitrogen level and top dressing proportion on growing stages and dry matter accumulation in winter potato[J]. Journal of Sichuan Agricultural University, 2009, 27(3): 270-274.

[26] 周录英, 李向东, 王丽丽, 汤笑, 林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008,34(5): 879-885. doi: 10.3724/SP.J.1006.2008.00879.

Zhou L Y, Li X D, Wang L L,Tang X, Lin Y J. Effects of different Ca applications on physiological characteristics, yield and quality in peanut[J]. Acta Agronomica Sinica, 2008,34(5): 879-885.

[27] Hu Y L, Wang S L, Yan S K. Research advances on the factors in-fluencing the activity and community structure of soil microorganism[J]. Chin J Soil Sci,2006, 37(1):170-176.

[28] 庞欣, 张福锁, 王敬国. 不同供氮水平对根际微生物量氮及微生物活度的影响[J]. 植物营养与肥料学报, 2000,6(4):476-480. doi: 10.3321/j.issn:1008-505X.2000.04.018.

Pang X, Zhang F S, Wang J G.Effect of different nitrogen levels on SMB-N and microbial activity[J]. Journal of Plant Nutrition and Fertilizers, 2000,6(4):476-480.

[29] 侯晓杰, 汪景宽, 李世朋. 不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响[J]. 生态学报, 2007, 27(2):655-661. doi: 10.3321/j.issn:1000-0933.2007.02.029.

Hou X J, Wang J K, Li S P. Effects of different fertilization andplastic-mulching on functional diversity of soil microbial community[J]. Acta Ecologica Sinica, 2007, 27 (2) :655-661.

[30] 樊晓刚, 金轲, 李兆君, 荣向农. 不同施肥和耕作制度下土壤微生物多样性研究进展[J]. 植物营养与肥料学报, 2010, 16(3): 744-751. doi: 10.11674/zwyf.2010.0333.

Fan X G, Jin K, Li Z J, Rong X N. Soil microbial diversity under different fertilization and tillage practices: A review[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(3):744-751.

Effect of Topdressing Amount on the Growth and Yield of Peanut Under Film-mulched Drip Irrigation

LIU Zhaona, TIAN Shufei, GUO Runze, ZHANG Xiaojun, SI Tong, WANG Yuefu,ZHOU Xiaoxia

(Qingdao Agricultural University, Dry Farming Key Laboratory of Shandong Province, Qingdao 266109, China)

Abstract In order to determining the optimum amount of topdressing for the growth of peanut can provide theoretical basis for high yield and efficient fertilization of peanut. In this study, the high-yield peanut variety Qinghua 7 was used as the material, in 2017-2018 for two consecutive years field experiment used technology of water and fertilizer, with no irrigation fertilizer treatment (CK1) and irrigation fertilizer not only (CK2) for comparison in the fancy stitch issue four fertilizer quantity processing, the effects of different top-dressing amount were studied under mulch drip irrigation on the growth and yield of peanut. The main stem height, lateral stem length, branching numbers, leaf and stem dry weight showed significantly increasing with the increase of topdressing in each stage, and reaching the maximum under 261 kg urea, 30 kg borax, and 221 kg calcium nitrate per hectare, and significantly higher than the treatment without topdressing. However, the number of total needles and underground needles, pods and dry weight increased gradually with the increase of topdressing, and reaching the maximum under 131 kg urea, 15 kg borax, and 132 kg calcium nitrate per hectare, then showed a downward trend with the increase of fertilizer. The stem and leaf growth of peanut under each fertilizer application treatment was significantly higher than that under no fertilizer application treatment, and the aboveground growth was significantly promoted. However, the growth of fruit needle and pod increased first and then decreased with the increase of fertilizer application amount, so proper amount of topdressing could not only promote the nutritional growth of peanut but also promote the reproductive growth, so as to increase the yield of peanut. However, excessive amount of topdressing could easily cause the excessive nutritional growth of peanut, which inhibit the reproductive growth, and cause the incoordination between the nutritional growth and reproductive growth of peanut, thus reducing the yield. The suitable amount of top dressing was 60 kg/ha of pure nitrogen, 15 kg/ha of borax and 45 kg/ha of calcium oxide per hectare.

Key words: Peanut; Under film-mulched drip irrigation; Flower-pegging stage; Topdressing amount; Growth and development; Yield

中图分类号:S143;S565.2

文献标识码:A

文章编号:1000-7091(2019)增刊-0242-08

doi:10.7668/hbnxb.20190425

收稿日期:2019-06-10

基金项目:国家重点研发计划(2018YFD0201007);山东省农业良种工程(2017LZGC003);山东省花生现代产业技术体系(SDAIT-04-05)

作者简介:刘兆娜(1993-),女,山东栖霞人,在读硕士,主要从事花生栽培生理研究。

通讯作者:邹晓霞(1985-),女,山东莱阳人,讲师,博士,主要从事花生栽培生理生态研究。