沙漠生物土壤结皮中可培养芽孢杆菌对植物种子萌发和幼苗生长的影响

胡 琳,靳新影,李靖宇,李 敏,马 莉,刘建利

(北方民族大学 生物科学与工程学院,国家民委生态系统建模和应用重点实验室,宁夏 银川 750021)

摘要:为了揭示生物土壤结皮中一些可培养微生物对植物种子萌发以及幼苗生长的影响。以腾格里沙漠东南缘生物土壤结皮中可培养芽孢杆菌为材料,以小麦为指示植物,测定30% PEG6000模拟干旱胁迫条件下沙漠生物土壤结皮中可培养芽孢杆菌对植物种子萌发和幼苗生长的影响。结果表明,76.4%沙漠土壤结皮芽孢杆菌菌株在30% PEG6000模拟干旱胁迫下耐旱性低于50%,生长均受抑制;除菌株Z43表现出既不促进也不抑制外,其余沙漠结皮的芽孢杆菌对模拟干旱胁迫条件下小麦种子萌发表现出抑制作用;所有沙漠生物土壤结皮中芽孢杆菌增加了30% PEG6000模拟干旱胁迫下小麦幼苗的平均单株总叶面积,但对地上株高、主根长、根数目、地上部分含水率、地上干质量占全株比、地上地下鲜质量比、地上地下干质量比等7个幼苗生长发育参数既不抑制也不促进,部分菌株在地上株鲜质量、地上株干质量、基径、根体积、根鲜质量、根干质量、全株鲜质量、全株干质量、根含水率、地上鲜质量占全株比、根鲜质量占全株比、根干质量占全株比等12个生长发育指标上表现出促进幼苗生长作用,其中X51菌株促进作用较强。试验结果为阐明结皮中各组分对植物定植、生长发育的影响提供参考。

关键词:生物土壤结皮;芽孢杆菌;小麦;干旱胁迫

生物土壤结皮(Biological soil crusts,BSCs)是在沙漠藻类、地衣等拓殖作用下,由活的微小生物及其代谢产物与沙粒组成紧密结合在土壤表层形成的一种壳状体,在促进沙漠土壤演替、改善表层土壤养分状况、防止土壤侵蚀方面起着重要的作用,也是沙漠植被演替的重要基础[1-3]。BSCs可对土壤中的植物种子库[4-8]、种子萌发[8-16]、幼苗生长[10,16-18]、植物多样性[19-22]甚至繁殖特性[23]产生重要的影响。大多数研究者认为,BSCs影响植物种子萌发的结果促进或抑制不确定性与结皮类型、发育程度和种子本身的生物学特性有关[24]。由于BSCs是由生物组分和非生物组分组成的特殊复合体,BSCs的各个生物组分理应对植物种子萌发和生长的都有影响,结皮中各生物组分的代谢产物对植物种子萌发和幼苗生长发育的影响有多大?一直未被关注,关于生物土壤结皮BSCs中一些可培养微生物对植物种子萌发以及幼苗生长的影响鲜有报道[13,25]。在已有关于BSCs细菌的研究结果中,可以看出,芽孢杆菌属(Bacillus)作为BSCs中优势属之一,在各种BSCs中均出现频率较高[26-29]。因此,本试验以前期从腾格里沙漠南缘沙坡头地区沙漠土壤结皮中分离的芽孢杆菌为对象,以小麦(Triticum aestivum L.)为指示植物,研究在30% PEG6000模拟干旱胁迫下芽孢杆菌对小麦种子萌发和幼苗生长的影响,为阐明结皮中不同组分对植物定植、生长发育的影响提供参考。

1 材料和方法

1.1 试验材料与试剂

供试芽孢杆菌:55株芽孢杆菌分离自腾格里沙漠南缘BSCs中,于国家民委生态系统建模和应用重点实验室保存。小麦种子:品种为宁春42号,常温贮存于塑料袋中,选取均匀、饱满、无病虫害的种子用于试验。牛肉浸粉(青岛海博生物技术有限公司),蛋白胨(安琪酵母股份有限公司)。牛肉膏蛋白胨培养基:牛肉膏粉3 g,蛋白胨10 g,NaCl 5 g,用去离子水定容至1 L,在121 ℃高压下蒸汽灭菌20 min。

改良Hoagland′s(霍格兰氏)营养液配方:Ca(NO3)2·4H2O 945 mg/L,KNO3 506 mg/L,NH4NO3 80 mg/L,KH2PO4 136 mg/L,MgSO4 493 mg/L,铁盐溶液 2.5 mL/L,微量元素5 mL/L,pH=6.0。

铁盐溶液:FeSO4·7H2O 2.78 g, Na2EDTA 3.73 g,蒸馏水 500 mL,pH=5.5。

微量元素液:KI 0.83 mg/L,硼酸 6.2 mg/L,MnSO4 22.3 mg/L,ZnSO4 8.6 mg/L,Na2MoO4 0.25 mg/L,CuSO4 0.025 mg/L,CoCl2 0.025 mg/L。

1.2 试验仪器

便携式叶面积仪(美国LI-COR公司,Li-3050C)

1.3 试验方法

1.3.1 BSCs中芽孢杆菌菌株耐旱能力评价 取5 μL保藏菌液接种于5 mL 牛肉膏蛋白胨液体培养基,37 ℃,140 r/min,摇床培养48 h活化。取5 μL菌液接种于5 mL 含30% PEG6000的液体牛肉膏蛋白胨培养基,摇床培养18 h,测其OD600值,以接种于不含30% PEG6000的液体牛肉膏蛋白胨培养基同样培养为对照。菌株耐旱性计算公式为:

菌株耐旱性=菌株干旱胁迫下OD600值/菌株对照OD600值×100%

1.3.2 BSCs中芽孢杆菌菌株对模拟干旱胁迫下小麦种子萌发的影响 取5 μL活化菌液接种于 5 mL含30% PEG6000的液体牛肉膏蛋白胨培养基中,培养24 h后,调整其浓度为108个细胞/mL,作为菌悬液备用。将小麦种子用75%酒精浸泡1 min,5%浓度次氯酸钠浸泡10 min,用灭菌蒸馏水冲洗3次,再用无菌水浸泡吸水12 h,无菌滤纸吸干表面水分,试验组再将种子浸泡在菌悬液中5 min,取出平铺在铺有2层滤纸的培养皿中,每皿20粒种子,每天加入3 mL 30% PEG6000 的液体牛肉膏蛋白胨培养基,盖上平板盖子置于25 ℃人工气候箱中,每个菌株3个培养皿,每天观察发芽情况,胚根0.5 cm长作为萌发标准,每天记录萌发种子数并将以萌发种子移出。以表面消毒后在液体牛肉膏蛋白胨培养基浸泡5 min,发芽时每天加入30% PEG6000的液体牛肉膏蛋白胨培养基处理的种子为对照(CK),计算种子发芽指标[30]

发芽率(GP)=第7天时累计种子发芽数/供试种子总数×100%

发芽势=发芽种子数达到最高峰(第3天)时发芽率

发芽指数(GI)=∑(Gt/Dt),Dt为发芽天数;Gt为时间t d的发芽累计数。

萌发速率(GR)=[(∑DGS)/NGP×10,DGS是日累积萌发数除以相应的萌发天数所得商,N为从萌发开始到结束的天数,GP为发芽率。

萌发值(GV)= PV·MDG,PV为日累积萌发种子数除以试验时间所得商(DGS)最大值,MDG是平均每天萌发的种子数,为第7天时累计种子发芽数/7。

平均发芽天数=∑(Gt×Dt)/∑Gt,式中GtDt与发芽指数公式中相同。

1.3.3 模拟干旱胁迫下BSCs中芽孢杆菌菌株对小麦幼苗生长的影响 将表面消毒的小麦种子,无菌水浸泡24 h,移至铺有2层灭菌滤纸的无菌白瓷盘中盖上纱布,于20 ℃人工气候培养箱中黑暗条件下催芽,待种子露白1 cm后,选择健壮且长势一致的移至装有已灭菌蛭石的塑料组培瓶中,每瓶移入3颗幼苗,置于平均温度20 ℃/18 ℃( 昼/夜)、光强300 μmol/(m2·s),光照周期15 h/9 h(昼/夜)的人工气候培养箱中培养,每5 d浇50 mL霍格兰氏营养液,当出现第2片真叶时,试验组浇以含30% PEG6000的霍格兰氏营养液稀释细胞浓度为108的芽孢杆菌菌悬液,每个菌株处理5瓶,对照(CK)为浇含30% PEG6000的霍格兰氏营养液的幼苗,三叶一心期测定株高、基径、叶面积、地上株鲜质量、地上株干质量、根体积(水位取代法)、根鲜质量、根干质量、地上部分含水率、根含水率、根数目、主根长、全株鲜质量、全株干质量、地上鲜质量占全株比、地上干质量占全株比、根鲜质量占全株比、根干质量占全株比、地上地下鲜质量比、地上地下干质量比[31]

1.3.4 数据分析 使用SPSS 17.0软件进行数据统计与分析。

2 结果与分析

2.1 BSCs中芽孢杆菌菌株耐旱性

用30% PEG6000模拟干旱处理55株芽孢杆菌菌株,24 h后测定菌液OD600值,检测其耐旱能力,76.4%菌株生长均受到抑制,耐旱性低于50%(表1)。耐旱性高于50%的菌株有13株,占23.6%;高于70%的有4株,占0.73%;高于80%的只有2株,其中菌株Z51耐旱性最好,在含30% PEG6000的牛肉膏蛋白胨培养基中的生长未受到抑制,Z44菌株耐旱性也高于90%,耐旱性也较强。

表1 BSCs中芽孢杆菌菌株耐旱性结果
Tab.1 The drought tolerance of Bacillus strains in BSCs

菌株Strains耐旱性/%Drought tolerance菌株Strains耐旱性/%Drought tolerance菌株Strains耐旱性/%Drought toleranceX51101±91.09aX5633±5.72cdeX6618±3.53deZ4491±80.25abZ3133±7.77cdeX1118±9.24deZ4579±35.40abcX1733±37.71cdeX5418±5.52deX1571±15.90abcdZ6232±21.29cdeZ1117±6.22eX1359±5.74abcdeX3632±18.01cdeX1616±1.87eX2456±8.01abcdeX5330±27.49cdeZ6115±12.51eX6156±25.11abcdeX3529±25.86cdeZ4212±3.28eZ3255±34.53abcdeX3127±9.51cdeX6212±0.84eX4255±34.06abcdeX3227±14.46cdeX6711±5.56eX1853±33.24abcdeZ5327±15.14cdeZ3311±2.15eX6452±35.28abcdeX2225±15.98cdeZ1210±3.49eZ4351±41.99abcdeZ5224±12.37deX6510±5.84eZ6350±42.51abcdeX5522±1.30deZ139±2.22eX2542±11.07bcdeX3322±17.76deZ228±1.89eX6342±30.04bcdeX5220±20.46deX237±2.69eZ4640±37.91bcdeX1220±1.91deZ515±2.46eX4137±31.21cdeX3420±18.54deZ415±4.98eX1437±27.92cdeZ2120±19.03deX2134±26.36cdeX2619±6.64de

注:数据为平均值±标准差;不同字母表示在0.05水平显著性检验。表2同。

Note: Data were mean±s; The different letters indicate significant differences at P=0.05 level。The same as Tab.2.

2.2 模拟干旱胁迫下BSCs中芽孢杆菌菌株对小麦种子萌发的影响

用30% PEG6000模拟干旱胁迫下55株芽孢杆菌菌株对小麦种子萌发的影响结果如表2。在6个发芽参数中,除菌株Z43以外,其余菌株的种子发芽率、萌发速率、发芽势、发芽指数等4个参数显著低于对照,菌株Z43的这4个参数与对照无显著性差异;而对于萌发值,包括Z43在内的所有菌株都显著低于对照;在平均发芽天数这个参数上,只有菌株Z63、X41的显著低于对照,菌株X35、X15、X26、Z32、X24、Z23、X42等7株菌发芽天数显著高于对照,菌株X11、X13、X33、X54、X67、Z42、Z53等7株菌菌悬液的小麦种子没有萌发,其余菌株发芽天数和对照无显著差异。因此,除菌株Z43表现出既不促进也不抑制外,其余沙漠结皮的芽孢杆菌在30% PEG6000模拟干旱胁迫条件下小麦种子萌发表现出抑制作用。

表2 菌株对干旱胁迫下小麦种子萌发影响
Tab.2 The effects of strains on wheat seed germination under simulated drought stress

菌株Strains发芽率/%Percentage of germination 萌发速率Rate of germination发芽势/%Germination potential发芽指数Index of germination 萌发值Value of germination 平均发芽天数/dAverage days of germination CK85.00±5.00a 40.06±2.56a 78.00±2.89a 15.67±2.36a 35.38±10.51a 1.81±0.25def Z4382.00±15.28a40.42±11.93a77.00±10.41a12.69±1.31a24.86±4.74b1.64±0.30efX1455.00±8.66b10.68±4.46bc43.00±10.41b4.21±1.03bcde4.86±2.24cde2.96±0.26abcdZ4147.00±38.19bc17.60±18.06b40.00±35.00bc6.69±5.65b10.55±10.26c2.00±0.19cdefX5342.00±12.58bcd7.00±4.24c37.00±16.07bcd3.72±1.26bcde3.60±3.04de2.56±0.41abcdeZ4440.00±13.23bcde6.07±2.89c32.00±7.64bcdef3.27±3.27bcde2.63±1.33de2.70±0.43abcdeX5240.00±8.66bcde8.25±4.27bc35.00±8.66bcde5.01±2.15bc4.57±2.23cde2.18±0.79bcdefX5535.00±21.79bcdef5.61±6.69c27.00±11.55bcdefg2.77±1.92bcde2.90±3.43de2.85±0.13abcdeX5133.00±22.55bcdefg4.93±5.19c23.00±15.28bcdefg2.58±1.66bcde2.17±2.29de2.78±0.72abcdeZ1333.00±16.07bcdefg5.20±4.06c27.00±17.56bcdefg3.02±1.59bcde2.62±2.37de2.59±0.45abcdeX3533.00±7.64bcdefg3.57±1.83c20.00±10.00bcdefg2.28±0.71cde1.50±0.79de3.30±0.30abZ4533.00±5.77bcdefg4.44±1.65c27.00±5.77bcdefgh3.08±0.88bcde1.71±0.57de2.69±0.67abcdeX3132.00±11.55bcdefg3.93±3.00c28.00±10.41bcdefgh2.48±0.96bcde1.90±1.33de2.76±0.08abcdeX6630.00±22.91bcdefghi6.39±6.31c25.00±18.03bcdefgh3.77±3.11bcde2.92±2.83de2.40±0.53bcdeX6430.00±5.00bcdefghi4.75±2.01c28.00±2.89bcdefgh3.81±1.94bcde3.02±1.91de1.88±0.77defX5628.00±23.63bcdefghi6.55±9.8bc23.00±18.93bcdefgh3.62±4.23bcde3.95±6.11cde2.33±0.81bcdeX1528.00±16.07bcdefghi2.83±2.62c17.00±12.58bcdefgh1.82±1.27cde1.27±1.09de3.67±0.58aX6527.00±2.89bcdefghi2.51±0.57c20.00±8.66bcdefgh2.06±0.27cde1.17±0.27de2.81±0.40abcdeZ6325.00±35.00bcdefghi10.22±17.06bc25.00±35.00bcdefgh4.78±6.62bcd7.62±12.70cd1.08±0.11gX2523.00±15.28cdefghi3.67±3.94c22.00±12.58bcdefgh3.12±1.85bcde1.62±1.62de1.88±0.33defZ5223.00±14.43cdefghi2.77±3.21c20.00±8.66bcdefgh2.26±1.52cde1.05±1.07de2.58±0.52abcdeZ1223.00±11.55cdefghi2.41±1.88c20.00±10.00bcdefgh1.97±1.09cde1.30±1.20de2.61±0.67abcdeX2123.00±5.77cdefghi2.19±1.17c20.00±5.00bcdefgh1.98±0.54cde1.05±0.59de2.58±0.38abcdeX2322.00±20.82cdefghi2.59±3.57c18.00±15.28bcdefgh2.21±1.15cde1.33±1.49de1.89±1.02cdefX2222.00±10.41cdefghi2.18±1.66c22.00±10.41bcdefgh1.89±0.95cde1.03±0.77de2.41±0.08bcdeX6220.00±18.03cdefghi2.05±2.98c15.00±13.23cdefgh1.51±1.32cde0.88±1.22de2.74±0.68abcdeZ6120.00±18.03cdefghi2.43±2.37c15.00±13.23cdefgh1.86±1.65cde0.90±0.88de2.66±0.08 abcdeX1720.00±5.00cdefghi1.66±1.21c15.00±5.00cdefgh1.83±1.09cde0.77±0.58de2.91±0.47abcdX6320.00±5.00cdefghi1.56±1.00c17.00±10.41bcdefgh1.59±0.72cde0.77±1.91de2.88±0.97abcdZ1120.00±5.00cdefghi2.04±0.45c15.00±5.00cdefgh2.64±0.32cde1.13±0.17de2.03±0.90cdefX1618.00±31.75cdefghi5.99±10.37c15.00±25.98cdefgh2.83±4.91cde3.67±6.35de1.73 ±0.11defX4118.00±31.75defghi7.21±12.49c18.00±31.75bcdefgh3.50±6.06bcde5.24±9.07cde1.09±0.10gX3618.00±11.55defghi1.74±1.43c15.00±10.00cdefgh1.80±1.21cde0.90±0.72de2.47±0.42abcdeZ4618.00±5.77defghi1.14±0.60c13.00±5.77cdefgh1.31±0.25cde0.57±0.34de2.96±0.27abcdX2615.00±18.03defghi1.01±1.44c8.00±7.64efgh0.88±0.90cde0.53±0.76de3.32±1.16 abZ2215.00±15.00defghi1.33±1.75c12.00±12.58defgh1.15±1.21cde0.57±0.76de3.00±0.47 abcdX3415.00±8.66defghi0.78±0.59c12.00±7.64defgh0.98±0.43cde0.43±0.35de2.92±0.88abcdZ3215.00±5.00defghi0.84±0.63c12.00±7.64defgh1.13±0.49cde0.40±0.32de3.11±0.54abZ6213.00±10.41efghi1.13±1.55c8.00±10.41efgh1.42±1.26cde0.58±0.74de2.90±0.96abcdX1210.00±5.00efghi0.36±0.23c8.00±2.89efgh0.73±0.20cde0.18±0.11e2.72±0.86abcdeZ5110.00±5.00efghi0.46±0.35c7.00±2.89fgh1.00±0.25cde0.24±0.16de2.22±1.07abcdeX248.00±14.43fghi0.64±1.11c7.00±11.55fgh0.57±0.98de0.32±0.55de3.20 ±0.73abX328.00±14.43ghi0.76±1.32c7.00±11.55fgh0.68±1.17cde0.36±0.62de2.80 ±0.54abcdZ238.00±14.43fghi0.64±1.11c7.00±11.55fgh0.57±0.98de0.32±0.55de3.20±1.04abX428.00±10.41fghi0.57±0.96c7.00±11.55fgh0.68±1.01cde0.30±0.49de3.63±1.94 aZ218.00±10.41fghi0.57±0.88c7.00±7.64fgh0.75±0.90cde0.31±0.48de2.25±0.35abcdeX615.00±8.66fghi0.48±0.84c5.00±8.66fgh0.83±1.44cde0.29±0.49de2.66±0.08abcdeZ313.00±5.77ghi0.18±0.30c3.00±5.77gh0.44±0.77de0.10±0.16e2.00±0.57cdefX182.00±2.89hi0.03±0.05c2.00±2.89gh0.11±0.19e0.02±0.03e3.00±0.48abcdX110.00±0.00i0.00±0.00c0.00±0.00h0.00±0.00e0.00±0.00e-X130.00±0.00i0.00±0.00c0.00±0.00h0.00±0.00e0.00±0.00e-X330.00±0.00i0.00±0.00c0.00±0.00h0.00±0.00e0.00±0.00e-X540.00±0.00i0.00±0.00c0.00±0.00h0.00±0.00e0.00±0.00e-X670.00±0.00i0.00±0.00c0.00±0.00h0.00±0.00e0.00±0.00e-Z420.00±0.00i0.00±0.00c0.00±0.00h0.00±0.00e0.00±0.00e-Z530.00±0.00i0.00±0.00c0.00±0.00h0.00±0.00e0.00±0.00e-

2.3 模拟干旱胁迫下BSCs中芽孢杆菌菌株对小麦幼苗生长的影响

随机选取X14、X17、X21、X23、X51、X67、X65、X25、X31和X32等10株菌株测定30% PEG6000模拟干旱胁迫下其对小麦幼苗生长的影响。所有菌株的平均单株总叶面积均显著高于胁迫对照;所有菌株的地上株高、主根长、根数目、地上部分含水率、地上株占全株比、地上地下鲜质量比、地上地下干质量比等7个幼苗生长发育指标上与胁迫对照无显著性差异;剩余12个指标上,部分菌株显著高于胁迫对照,部分菌株与胁迫对照无显著差异,例如菌株X51、X14、X65的地上株鲜质量,X51菌株的地上株干质量,X51和X25的基径, X31和X32的根体积,除过X25外所有菌株的根鲜质量,X51、X25、X14、X21和X23的根干质量,X51、X17、X65、X31、X14、X21和X23全株鲜质量,X51和X14全株干质量,X67和X31的根含水率,X51的地上鲜质量占全株比,X17、X67、X31、X32和X23的根鲜质量占全株比,X25、X21和X23的根干质量占全株比,都显著高于对照(图1-8)。

不同小写字母表示处理间差异显著(P<0.05) 。图1-8同。
Different lowercases indicate significant differences at 0.05 level among different treatments. The same as Fig.1-8.

图1 结皮中芽孢杆菌对模拟干旱胁迫下小麦幼苗地上株高、主根长和单株总叶面积的影响
Fig.1 Effects of Bacillus strains in crusts on aboveground plant height, main root length
and total leaf area of wheat seedlings under simulated drought stress

图2 结皮中芽孢杆菌对模拟干旱胁迫下小麦幼苗地上株鲜质量、根鲜质量和全株鲜质量的影响
Fig.2 Effects of Bacillus strains in crusts on the fresh weight of aboveground plant, fresh weight of roots
and fresh weight of whole plant of wheat seedlings under simulated drought stress

图3 结皮中芽孢杆菌对模拟干旱胁迫下小麦幼苗地上株干质量、根干质量和全株干质量的影响
Fig.3 Effects of Bacillus strains in crusts on the dry weight of aboveground plant, dry weight of roots
and dry weight of whole plant of wheat seedlings under simulated drought stress

图4 结皮中芽孢杆菌对模拟干旱胁迫下小麦幼苗根体积的影响
Fig.4 Effects of Bacillus strains in crust on the volume of roots of wheat seedlings under simulated drought stress

图5 结皮中芽孢杆菌对模拟干旱胁迫下小麦幼苗基径和根数目的影响
Fig.5 Effects of Bacillus strains in crusts on the diameter of basal stem and number
of roots of wheat seedlings under simulated drought stress

因此,所有BSCs中芽孢杆菌增加了30% PEG6000模拟干旱胁迫下小麦幼苗的平均单株总叶面积,但对地上株高、主根长、根数目、地上株含水量、地上株占总干质量比、地上地下鲜质量比、地上地下干质量比等7个幼苗生长发育参数没有表现出抑制作用也没有表现出促进作用,部分菌株在地上株鲜质量、地上株干质量、基径、根体积、根鲜质量、根干质量、全株鲜质量、全株干质量、根含水率、地上鲜质量占全株比、根鲜质量占全株比、根干质量占全株比等12个生长发育指标上表现出促进幼苗生长作用,其中X51菌株促进作用较强。

图6 结皮中芽孢杆菌对模拟干旱胁迫下小麦幼苗地上地下鲜质量比和地上地下干质量比的影响
Fig.6 Effects of Bacillus in crusts on the fresh weight ratio and dry weight ratio of aboveground to
underground plant of wheat seedlings under simulated drought stress

图7 结皮中芽孢杆菌对模拟干旱胁迫下小麦幼苗地上部分含水率和根含水率的影响
Fig.7 Effects of Bacillus strains in crusts on the water content of aboveground plant and the water
content of roots of wheat seedlings under simulated drought stress

图8 结皮中芽孢杆菌对模拟干旱胁迫下小麦幼苗地上鲜质量占全株比、地上干质量
占全株比、根鲜质量占全株比和根干质量占全株比的影响
Fig.8 Effects of Bacillus strains in crusts on the fresh weight ratio of aboveground to whole plant,
dry ratio of aboveground to whole plant, fresh weight ratio of root to whole plant and of fresh dry ratio
of root to whole plant wheat seedlings under simulated drought stress

3 讨论与结论

关于BSCs对维管植物种子萌发的影响,是BSCs向更高阶段演替中的重要问题,BSCs的出现改变了土壤表面的性质,从而对植物的定居和萌发产生影响[24]。大多数观点认为微生物结皮对植物种子萌发和出苗的影响与植物种子的大小和形状有关,微生物结皮类型及破坏程度的差异会导致影响效应的差异,还与植物种子的萌发特性有关[9-15]。但龚健[25]研究BSCs中优势蓝藻代谢物对植物种子萌发影响时发现,蓝藻胞外多糖组分的差异和不同种子的生物学特性差异,可能是造成不同藻种胞外多糖对种子萌发产生不同影响的原因。而王璐[13]通过研究BSCs水浸提液对于植物种子萌发的影响,发现不同BSCs水浸提液对于同种植物种子萌发的影响不同,其原因可能是由于不同BSCs中蓝藻种类组成差别较大,导致水浸提液中化感物质的种类及含量差异;另外,同一BSCs水浸提液对不同种植物发芽的影响不同,可能因为不同种植物在发芽的过程中对化学物质的应答反应不同。由此可以看出,除过原来关注的结皮表明粗糙程度、黏度、裂隙等物理性质以外,结皮中各生物组分的代谢产物也可影响植物种子萌发,而这方面的研究并未引起重视。本试验就表明,结皮的常见的优势属——芽孢杆菌,其代谢产物就对小麦种子萌发产生较强抑制作用。但本试验使用的是菌悬液,其中包括芽孢杆菌细胞及其发酵液,并未深入研究发酵液中组分对植物种子萌发和幼苗生长影响;另外,本试验只研究了一种植物种子,后续试验应当通过选取狗尾草等形状较小、萌发特性不同的植物种子,研究同一芽孢杆菌对不同类型种子萌发影响是否有差异,这些都是后续研究内容。

关于BSCs对维管植物幼苗生长的影响也已有少量报道,例如王蕊等[10]研究表明,破碎结皮通过裂缝促进水分和结皮中养分元素的传输,有利于植物生长;龙利群等[17]试验表明,生长在有BSCs土壤中的雾冰藜(Bassia dasyphylla)、小画眉草(Eragrostis minor)单个植株的平均干质量明显高于生长在无结皮流沙中的植株干质量;张元明等[18]研究表明,在植物生长初期,BSCs显著促进了荒漠植物的生长速率,对草本植物角果藜(Ceratocarpus arenaarius)、涩芥(Malcolmia africana)与狭果鹤虱(Lappula semiglabra)生长的促进作用较灌木和乔木白梭梭(Haloxylon persicum)、蛇麻黄(Ephedra distachya)明显;对随着植物进一步生长,BSCs增加了草本植物单株地上和地下的生物量,但对灌木的单株的生物量无显著影响。目前还没有BSCs中组分的代谢产物对植物幼苗生长发育影响方面的研究。本试验结果表明,所有沙漠结皮中芽孢杆菌增加了30% PEG6000模拟干旱胁迫下小麦幼苗的平均单株总叶面积,部分菌株在12个生长发育参数上表现出促进幼苗生长作用,但所有菌株对7个生长发育参数没有表现出抑制作用也没有表现出促进作用,可以看出,结皮各生物组分的代谢产物对植物幼苗生长发育是有影响的。因此,结皮中各生物组分的代谢产物也可影响植物幼苗生长发育,也应该引起重视。

以往的研究植物种子多集中于油蒿(Artemisia ordosica)[9]、雾冰藜[9,15]、角果藜[12,14]、涩芥[12]、白梭梭[12]、狭果鹤虱[12]、蛇麻黄[12]、梭梭(Haloxylon ammodendro)[14]、粗枝猪毛菜(Salsola subcrassa)[14]、心叶驼绒藜(Ceratocarpus ewersmanniana)[14]等荒漠植物或归化物种狗尾草[11]、驼绒藜[11]等,这些植物种子萌发差异较大,整齐度较差,结果差异较大。因此,本研究采用的北方常见的作物小麦作为供试材料,虽然萌发试验和幼苗试验组内差异较小,但毕竟不能替代与野外环境中的植物。

本研究对干旱胁迫幼苗表现出有缓解作用的X51菌株,可以作为旱区小麦促生菌剂开发的候选菌株。

76.4%沙漠土壤结皮芽孢杆菌菌株在30% PEG6000模拟干旱胁迫下耐旱性低于50%,生长均受抑制;除菌株Z43表现出既不促进也不抑制外,其余沙漠结皮的芽孢杆菌对模拟干旱胁迫条件下小麦种子萌发表现出抑制作用;所有沙漠生物土壤结皮中芽孢杆菌增加了30% PEG6000模拟干旱胁迫下小麦幼苗的平均单株总叶面积,但对地上株高、主根长、根数目、地上部分含水率、地上干质量占全株比、地上地下鲜质量比、地上地下干质量比等7个幼苗生长发育参数既不抑制也不促进,部分菌株在地上株鲜质量、地上株干质量、基径、根体积、根鲜质量、根干质量、全株鲜质量、全株干质量、根含水率、地上鲜质量占全株比、根鲜质量占全株比、根干质量占全株比等12个生长发育指标上表现出促进幼苗生长作用,其中X51菌株促进作用较强。

参考文献:

[1] 李新荣,谭会娟,回嵘,赵洋,黄磊,贾荣亮,宋光. 中国荒漠与沙地生物土壤结皮研究[J]. 科学通报,2018,63(23):2320-2334. doi: 10.1360/N972018-00390.

Li X R, Tan H J, Hui Z, Zhao Y, Huang L, Jia R L, Song G. Researches in biological soil crust of China: A review[J]. Chinese Science Bulletin, 2018, 63(23): 2320-2334.

[2] 张元明,王雪芹. 荒漠地表生物土壤结皮形成与演替特征概述[J]. 生态学报,2009,30(16):4484-4492.

Zhang Y M, Wang X Q. Summary on formation and developmental characteristics of biological soil crusts in desert areas[J]. Acta Ecologica Sinica, 2009, 30(16):4484-4492.

[3] 李新荣,回嵘,赵洋. 中国荒漠生物土壤结皮生态生理学研究[M]. 北京:高等教育出版社,2017.

Li X R, Hui R, Zhao Y. Eco-physiology of biological soil crust in desert regions of China[M]. Beijing: Higher Education Press, 2017.

[4] Li X R, Jia X H, Long L Q, Stefan Z. Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N China)[J]. Plant and Soil, 2005, 277(1-2):375-385. doi: 10.1007/s11104-005-8162-4.

[5] 邢旭明,马晓东,张元明. 古尔班通古特沙漠生物土壤结皮对土壤种子库多样性与分布特征的影响[J]. 生态学杂志,2016,35(3):612-620. doi:10.13292/j.1000-4890.201603.019.

Xing X M, Ma X D, Zhang Y M. Effects of biological soil crusts on soil seed bank diversity and distribution characteristics in Gurbantunggut Desert[J]. Chinese Journal of Ecology, 2016, 35(3): 612-620.

[6] 苏延桂,李新荣,贾荣亮,潘颜霞. 腾格里沙漠东南缘苔藓结皮对荒漠土壤种子库的影响[J]. 应用生态学报,2007,18(3):504-508. doi:10.3321/j.issn:1001-9332.2007.03.007.

Su Y G, Li X R, Jia R L, Pan Y X. Effects of moss crust on soil seed bank at southeast edge of Tengger Desert[J]. Chinese Journal of Applied Ecology, 2007, 18(3):504-508.

[7] 苏延桂,李新荣,张景光,杨丽雯. 生物土壤结皮对土壤种子库的影响[J]. 中国沙漠,2006,26(6):997-1001. doi:10.3321/j.issn:1000-694X.2006.06.023.

Su Y G, Li X R, Zhang J G, Yang L X. Effects of biological soil crusts on seed bank[J]. Journal of Desert Research, 2006, 26(6):997-1001.

[8] 苏延桂,李新荣,陈应武,谭会娟,贾荣亮. 生物土壤结皮对荒漠土壤种子库和种子萌发的影响[J]. 生态学报,2006,27(3):938-946. doi:10.3321/j.issn:1000-0933.2007.03.014.

Su Y G, Li X R, Chen Y W, Tan H R, Jia R L. Effects of biological soil crusts on soil seed bank and seed germination of desert plants in North China[J]. Acta Ecologica Sinica, 2006, 27(3): 938-946.

[9] 苏延桂,李新荣,黄刚,李小军,郑敬刚. 实验室条件下两种生物土壤结皮对荒漠植物种子萌发的影响[J]. 生态学报,2007,27(5):1845-1851. doi:10.3321/j.issn:1000-0933.2007.05.021.

Su Y G, Li X R, Huang G, Li X J, Zheng J G. Effects of two types of biological soil crusts on the germination of desert vascular plants under laboratory conditions[J]. Acta Ecologica Sinica, 2007, 27(5):1845-1851.

[10] 王蕊,朱清科,赵磊磊,常存,马浩. 黄土高原土壤生物结皮对植物种子出苗和生长的影响[J]. 干旱区研究,2011,28(5):800-807. doi:10.3969/j.issn.1672-2779.2016.07.028.

Wang R, Zhu Q K, Zhao L L, Chang C, Ma H. Effects of biological soil crusts on seed emergence and seedling growth in Loess Plateau, North Shaanxi Province[J]. Arid Zone Research, 2011, 28(5):800-807.

[11] 宋光,李新荣,回嵘,赵洋,周媛媛,管超. 沙区生物土壤结皮对外来植物种子萌发的影响[J]. 兰州大学学报(自然科学版),2017,54(3):521-533. doi: 10.13885/j.issn.0455-2059.2017.04.013.

Song G, Li X R, Hui R, Zhao Y, Zhou Y Y, Guan C. Physical effect of biological soil crusts on germination of exotic species in the desert[J]. Journal of Lanzhou University(Natural Science), 2017, 54(3):521-533.

[12] 聂华丽,张元明,吴楠,张 静,张丙昌. 生物结皮对5种不同形态的荒漠植物种子萌发的影响[J]. 植物生态学报,2009,33(1):161-170. doi:10.3773/j.issn.1005-264x.2009.01.018.

Nie H L, Zhang Y M, Wu N, Zhang J, Zhang B C. Effects of biological crusts on the germination of five desert vascular plants with different seed morphologies[J]. Chinese Journal of Plant Ecology, 2009, 33(1):161-170.

[13] 王璐. 松嫩草原藻结皮与种子植物的关系[D]. 长春:东北师范大学,2015.

Wang L. The relationship between algal crust and seed plants in songnen grassland[D]. Changchun: Northeast Normal University, 2015.

[14] 李国栋,张元明. 生物土壤结皮与种子附属物对4种荒漠植物种子萌发的交互影响[J]. 中国沙漠,2014,34(3):725-731. doi:10.7522/j.issn.1000-694X.2014.00021.

Li G D, Zhanf Y M. Interactive effects of biological soil crusts and seed appendages on seed germination of four desert species.[J]. Journal of Desert Research, 2014, 34(3):725-731.

[15] 龙利群,李新荣. 微生物结皮对两种一年生植物种子萌发和出苗的影响[J]. 中国沙漠,2002,22(6):581-585. doi:10.3321/j.issn:1000-694X.2002.06.010.

Long L Q, Li X R. Effect of soil microbiotic crust on seed germination and emergence of two annual herb species: Bassia dasyphlla and Eragrostics poaeoides[J]. Journal of Desert Research, 2002, 22(6):581-585.

[16] Song G, Li X R, Hui R. Effect of biological soil crusts on seed germination and growth of an exotic and two native plant species in an arid ecosystem[J]. PLoS ONE, 2017, 12(10):e0185839. doi:10.1371/journal.pone.0185839.

[17] 龙利群,李新荣. 土壤微生物结皮对两种一年生植物幼苗存活和生长的影响[J]. 中国沙漠,2003,23(6):656-660. doi:10.3321/j.issn:1000-694X.2003.06.011.

Long L Q, Li X R. Effects of soil microbiotic crusts on seedling survival and seedling growth of two annual plants[J]. Journal of Desert Research, 2003, 23(6):656-660.

[18] 张元明, 聂华丽. 生物土壤结皮对准噶尔盆地5种荒漠植物幼苗生长与元素吸收的影响[J]. 植物生态学报,2011,35(4):380-388. doi: 10.3724/SP.J.1258.2011.00380.

Zhang Y M, Nie H L. Effects of biological soil crusts on seedling growth and element uptake in five desert plants in Junggar Basin, Western China[J]. Chinese Journal of Plant Ecology, 2011, 35(4):380-388.

[19] Zhuang W W, Serpe M, Zhang Y M. The effect of lichen-dominated biological soil crusts on growth and physiological characteristics of three plant species in a temperate desert of northwest China[J]. Plant Biology, 2015, 17(6):1165-1175. doi: 10.1111/plb.12359.

[20] 陈荣毅,魏文寿,张元明, 吴楠,张静. 干旱区生物土壤结皮对种子植物多样性的影响[J]. 中国沙漠,2008,28(5):868-873.

Chen R Y, Wei W S, Zhang Y M, Wu N, Zhang J. Effect of biological soil crust on plant diversity in arid area[J]. Journal of Desert Research, 2008, 28(5):868-873.

[21] 庄伟伟,张元明. 生物结皮对荒漠草本植物群落结构的影响[J]. 干旱区研究,2017,34(6):1338-1344. doi: 10.13866/j.azr.2017.06.16.

Zhuang W W, Zhang Y M. Effect of soil microbiotic crust on plant community in the Gurbantunggut desert[J]. Arid Zone Research, 2017, 34(6): 1338-1344.

[22] Garibotti I A, Polo M G, Tabeni S. Linking biological soil crust attributes to the multifunctionality of vegetated patches and interspaces in a semiarid shrubland[J]. Functional Ecology, 2018, 32(4):1065-1078. doi:10.1111/1365-2435.13044.

[23] 张景光,张志山,王新平,李新荣,王桑,马风云. 沙坡头人工固沙区一年生植物小画眉草繁殖分配研究[J]. 中国沙漠,2005,25(2):202-206. doi:10.3321/j.issn:1000-694X.2005.02.007.

Zhang J G, Zhan Z S, Wang X P, Li X R, Wang S, Ma F Y. Reproductive allocation of annual plant Eragrostis poaeoides in planted area for sand fixation in Shapotou region[J]. Journal of Desert Research, 2005, 25(2):202-206.

[24] 陈孟晨,张景光,刘立超,冯丽,滕嘉玲. 生物土壤结皮对一年生植物影响研究进展[J]. 中国沙漠,2017,37(3):483-490. doi:10.7522/j.issn.1000-694X.2016.00011.

Chen M C, Zhang J G, Liu L C, Feng L, Teng J L. Advances and prospects for the effects of biological soil crusts on annual plants[J]. Journal of Desert Research, 2017, 37(3):483-490.

[25] 龚健. 生物结皮中藻类、齿肋赤藓和种子植物之间的种间关系[D]. 乌鲁木齐:新疆大学,2014.

Gong J. Species relationship among algae, Syntrichia caninervis and seed plants in biological soil crusts[D]. Urumqi:Xinjiang University, 2014.

[26] Bates S T, Garcia-Pichel F. A culture-independent study of free-living fungi in biological soil crusts of the Colorado Plateau: their diversity and relative contribution to microbial biomass[J]. Environmental microbiology, 2009, 11(1):56-67. doi: 10.1111/j.1462-2920.2008.01738.x.

[27] Zhang B C, Kong W D, Wu N, Zhang Y M. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China[J]. Journal of Basic Microbiology, 2016, 56(6):670-679.doi:10.1002/jobm.201500751.

[28] 吴楠,张元明,潘惠霞,邱东. 古尔班通古特沙漠地衣结皮中可培养细菌多样性初探[J]. 中国沙漠,2013, 33(3):710-716. doi:10.7522/j.issn.1000-694X.2013.00102.

Wu N, Zhang Y M, Pan H X, Qiu D. Culture-dependent bacteria diversity of lichen crusts in the Gurbantunggut Desert[J]. Journal of Desert Research, 2013, 33(3):710-716.

[29] 吴楠,张元明,潘惠霞,邱东. 古尔班通古特沙漠苔藓结皮中可培养细菌多样性特征[J]. 干旱区地理,2014,37(2):250-258.

Wu N, Zhang Y M, Pan H X, Qiu D. Culture-dependent bacteria diversity of moss crusts in the Gurbantunggut desert[J]. Arid Land Geography, 2014, 37(2): 250-258.

[30] 李永涛,陈苗苗,王振猛,刘桂民,王莉莉,刘德玺. NaCl胁迫下外源钙对芦苇种子萌发的影响[J]. 华北农学报,2016,31(S1):276-281. doi: 10.7668/hbnxb.2016.S1.045.

Li Y T, Chen M M, Wang Z M, Liu G M, Wang L L, Liu D X. Effects of exogenous calcium on the seed germination in Phragmites australis under NaCl stress[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(S1):276-281.

[31] 马兴立,赵昆昆,赵品源,李珊珊,马小强,李忠峰,张幸果,殷冬梅. 纳米碳点对花生幼苗生长及其相关生理生化指标的影响[J]. 华北农学报,2019,34(2):142-148. doi: 10.7668/hbnxb.201751301.

Ma X L, Zhao K K, Zhao P Y, Li S S, Ma X Q, Li Z F, Zhang X G, Yin D M. Effects of carbon nanodots on seedling growth and related physiological and biochemical parameters in peanut[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(2): 142-148.

Effects of Culturable Bacillus in Biological Soil Crust on Seed Germination and Seedling Growth of Wheat

HU Lin, JIN Xinying, LI Jinyu, LI Min, MA Li, LIU Jianli

(College of Biological Sciences and Engineering, North Minzu University, Key Laboratory of Ecosystem Modelling and Application, State Ethnic Affairs Commission, Yinchuan 750021, China)

Abstract It is aim to reveal the effects of some culturable microorganisms in biological soil crust on plant seed germination and seedling growth. Taking Bacillus strains isolated from the biological soil crust of the southeastern margin of Tengger Desert as materials, wheat as indicator plant, it was studied the effects of culturable Bacillus strains in biological soil crust on plant seed germination and seedling growth under drought stress simulated with 30% PEG6000. The results showed that 76.4% of Bacillus in desert biological soil crusts were drought tolerance less than 50% under drought stress of simulated with 30% PEG6000, and their growth was inhibited. Besides strain Z43 which neither promoted nor inhibited wheat seed germination under simulated drought stress, others showed inhibition. All Bacillus strains in desert soil crusts increased the average total leaf area per plant of wheat seedlings under drought stress simulated with 30% PEG6000, but neither inhibited nor promoted about 7 parameters of seedlings growth and development, such as above ground plant height, main root length, number of roots, water content of aboveground plant, dry weight ratio of above ground to whole plant, fresh weight ratio of aboveground to underground plant and dry weight ratio of aboveground to underground plant. Some strains showed promoting effects on 12 parameters of seedlings growth and development, such as fresh weight of above ground plant, dry weight of above ground plant, diameter of basal stem, volume of roots, fresh weight of roots, dry weight of root, fresh weight of whole plant, water content of roots, fresh weight ratio of aboveground to whole plant, fresh weight ratio of root to whole plant, dry weight ratio of root to whole plant. X51 strain promoted seedling growth strongly. The results provide a reference for elucidating the effects of components in biological soil crust on plants.

Key words: Biological soil crust; Bacillus strains; Wheat; Drought stress

中图分类号:Q93

文献标识码:A

文章编号:1000-7091(2019)增刊-0143-10

doi:10.7668/hbnxb.20190553

收稿日期:2019-07-19

基金项目:国家级大学生创新训练计划项目(201811407018); 国家自然科学基金项目(41661053)

作者简介:胡 琳(1995-),女,湖北咸丰人,主要从事微生物研究。

通讯作者:刘建利(1973-),男,陕西凤翔人,副教授,博士,主要从事微生物与植物互作研究。