无机有机肥配施生物炭对复垦土壤酶活性以及磷形态的影响

魏俊杰,洪坚平

(山西农业大学 资源环境学院,山西 太谷 030801)

摘要:为探究采煤塌陷复垦区贫瘠土壤的培肥措施,利用长治市襄垣县采煤塌陷区复垦5 a 的石灰性生土进行试验,对土壤的酶活性和磷形态的变化规律进行探究。结果表明,在试验周期内,与 CK 处理相比,生物炭促进了土壤中脲酶活性、碱性磷酸酶活性、蔗糖酶活性、过氧化氢酶活性、脱氢酶活性,分别最高提升了647.0%,223.0%,68.6%,93.7%,331.0%;不同施肥处理,对土壤中脲酶活性的促进有机肥与化肥的混施强于单施有机肥或化肥,而单施有机肥却对碱性磷酸酶、蔗糖酶、过氧化氢酶和脱氢酶的促进效应,强于单施化肥和有机肥与化肥混施。随着生物炭的添加,不同施肥处理间各种磷形态含量差异明显,其中,Ca2-P、Ca10-P均相对丰富,分别最高提升了17.09%,4.58%;Ca8-P、Al-P、Fe-P、O-P含量则相对明显在逐渐耗竭,分别最高减少了3.39%,5.40%,7.20%,3.96%;有效磷、全磷含量最高增加了11.0%和4.34%,而无机磷总量却变得相当丰富,与空白CK相比提高了53.5%~63.3%。通过相关性分析结果可知,复垦土壤中有效磷与Ca2-P、Ca8-P、O-P的含量间密切相关;另外,在复垦土壤中,Ca-P、铁铝结合态磷和闭蓄态磷之间保持着一定的比例,一定条件下可通过Ca8-P和O-P这2种形态来相互转化。

关键词:复垦土壤;生物炭;酶活性;无机磷;有效磷

煤炭作为我国的主体能源,其开发形成了约200万hm2的采煤沉陷区,而目前采煤沉陷土地复垦率仅为35%左右。山西省是我国重要的煤炭开采地区,全省因采煤造成的采空区面积达30万hm2以上,导致土壤理化性质改变,有机质含量降低,加之复垦过程中,机械化剥离和压占严重破坏了微生物生存和繁衍条件,导致微生物多样性锐减,耕地质量下降[1]。因此,采煤塌陷区土地的复垦已成为国内外备受关注的研究领域,而制约其复垦土壤生产力提高的主要因素有土壤养分贫瘠、结构性差以及微生物多样性缺乏[2]。研究无机肥、有机肥和生物炭配施对采煤塌陷区复垦土壤酶活性以及磷形态的影响,以便明确不同施肥措施对复垦土壤生物活性以及营养成分的影响程度,对指导采煤塌陷区土壤的生态修复具有重要意义。

国内外学者对不同施肥材料、方式进行了大量研究,对土壤养分利用率的提高、农作物产量提高起到了重要作用。有研究表明,由于生物炭具有结构疏松、比表面积大、很强的吸附能力等特点[3-5],使得其在土壤理化性状改良、农作物产量提高、土壤的微生物数量和生物量的增加、土壤生物活性以及酶活性的改善,土壤有效养分含量、有效性、利用率的提高等方面作用显著[6-18]。因此,生物炭施入土壤后对土壤生物活性和对磷吸附及磷有效性的影响可能是生物炭的材料特性、裂解温度、pH值、CEC以及土壤类型等多种因素综合作用的结果[19-22]。但是关于其在采煤塌陷复垦土壤上的培肥研究较少。

本试验以长治市襄垣县采煤塌陷区复垦土壤为研究对象,通过大田试验探究生物炭与有机肥、无机肥配施对复垦区酶活性和土壤磷形态分级的影响,旨在为煤矿塌陷复垦地土壤培肥措施提供科学依据。

1 材料和方法

1.1 供试材料

1.1.1 土壤 供试土壤为长治市襄垣县王桥镇洛江沟村采煤塌陷区复垦5 a的土壤。土壤类型为石灰性褐土,其理化性状为:有机质9.82 g/kg,全氮0.44 g/kg,全磷0.45 g/kg,碱解氮30.28 mg/kg,有效磷4.58 mg/kg,速效钾118.29 mg/kg。

1.1.2 作物品种 供试作物为玉米,品种为大丰30,由山西大丰种业有限公司选育而成,生育期约130 d。

1.1.3 肥料 供试化肥为尿素(含N 46.4%)、过磷酸钙(含P2O5 16%),硫酸钾(含K2O 45%)。

供试有机肥为完全腐熟的鸡粪(含有机质54.8%、N 1.65%、P2O5 3.09%、K2O 2.59%),由山西省太谷县宏昊养殖专业合作社提供。

供试生物炭由平遥县晟弘生物质能源开发有限公司提供,裂解温度为550~600 ℃。秸秆生物炭含有机质57.2%、N 0.26%、P2O5 1.33%、K2O 4.52%。

1.2 试验方法

本试验采用单因素完全随机设计,在长治市襄垣县王桥镇洛江沟村选取复垦5 a的试验田,试验设置7个处理,分别为对照(CK)、化肥(CF)、化肥+生物炭(CFC)、有机肥(M)、有机肥+生物炭(MC)、有机肥+化肥(MCF)、有机肥+化肥+生物炭(MCFC),每个处理重复3次,共21个小区,小区面积为60 m2(10 m×6 m)。其中,CF和CFC处理中尿素施用量为439.5 kg/hm2、过磷酸钙施用量为2 317.5 kg/hm2、硫酸钾施用量为690 kg/hm2;M和MC处理中只施用有机肥,施用量为12 000 kg/hm2;MCF和MCFC处理中尿素施用量为219 kg/hm2、过磷酸钙施用量为1 158.75 kg/hm2、硫酸钾施用量为345 kg/hm2、有机肥施用量为6 t/hm2;CFC、MC、MCFC等处理中生物炭用量为7.5 t/hm2。播种密度为6.0万株/hm2。试验于2018年4月29日播种,9月3日收获。玉米收获后,采集0~20 cm土壤样品,进行酶活性及无机磷测定。

1.3 测定项目及方法

脲酶活性测定采用靛酚蓝比色法;碱性磷酸酶活性测定采用磷酸苯二钠比色法;蔗糖酶活性测定采用3,5-二硝基水杨酸比色法;过氧化氢酶活性测定采用高锰酸钾滴定法;脱氢酶活性测定采用TTC还原法;土壤全磷含量测定采用HClO4-H2SO4消煮-钼蓝比色法;土壤Olsen-P采用0.5 mol/L NaHCO3浸提、钼蓝比色法测定;脲酶测定采用靛酚蓝比色法。

1.4 数据统计分析

采用Excel 2010进行试验结果的统计运算,采用SAS软件对数据进行单因素方差分析,采用SPSS 23.0软件作显著性检验(P<0.05)以及相关分析。

2 结果与分析

2.1 无机有机肥配施生物炭对复垦土壤酶活性的影响

从表1可以看出,各处理不同酶活性与CK相比均达显著水平,其中土壤脲酶活性、碱性磷酸酶活性、蔗糖酶活性、过氧化氢酶活性、脱氢酶活性,分别最高提升了647.0%,223.0%,68.6%,93.7%,331.0%,其中,MC处理差异最为明显,说明有机肥和生物炭配施可以提高复垦土壤中重要酶的活性,继而影响土壤中营养元素的转换与利用。不同处理条件下,复垦土壤脲酶活性有显著变化,MCFC和MCF处理、CF和CFC处理、M和MC处理中的脲酶活性均显著高于CK,但相同施肥条件下,添加生物炭处理中脲酶活性均显著高于未添加生物炭处理;随着生物炭的添加,土壤脲酶活性呈现增加趋势,增加幅度均较为显著,其中,MCFC比MCF处理高35.67%、CFC比CF处理高34.15%、MC比M处理高63.97%,不同施肥处理对土壤碱性磷酸酶、蔗糖酶、过氧化氢酶和脱氢酶活性的影响均表现出CK

表1 无机有机肥配施生物炭对复垦土壤酶活性的影响
Tab.1 Effect of inorganic organic fertilizer combined with biochar on enzyme activity of reclaimed soil

处理Treatment脲酶/(mg/(g·d))Urease碱性磷酸酶/(μg/(g·h))Alkaline phosphatase蔗糖酶/(μg/(g·d))Sucrase过氧化氢酶/(mL/g)Catalase脱氢酶/(μg /(g·d))DehydrogenaseCK0.83±0.52d8.08±1.11e11.75±1.66d5.05±1.18c8.22±3.21f CF3.08±0.53c16.07±1.32d15.31±3.72c7.59±1.69b15.31±4.54eCFC5.05±0.89b17.37±1.06d16.25±1.94c7.71±1.83b19.15±4.18dM4.48±0.94b24.13±0.63b18.92±2.21a9.58±1.56a30.65±3.54bMC6.01±0.99a26.07±1.33a19.81±2.69a9.78±1.47a35.41±4.31aMCF4.57±0.49b21.60±1.31c17.12±2.08b9.51±1.25a25.67±2.19cMCFC6.20±0.68a23.90±1.25b18.03±2.30b9.54±1.91a28.08±3.17b

注:同列数据后不同小写字母表示差异显著性达到P<0.05水平。表2-3 同。

Note: The difference between the lowercase letters in the same column data indicates that the difference significance is P<0.05. The same as Tab.2-3.

2.2 无机有机肥配施生物炭对复垦土壤无机磷形态的影响

从表2可以看出,各处理与CK相比差异均达显著水平。不同施肥处理间,CFC、MC和MCFC处理相对明显提高了土壤中Ca2-P含量最高提升了317%,而添加与未添加生物炭处理相比,CFC比CF处理高17.09%,MC比M处理高10.4%,MCFC比MCF处理高11.37%,表明施用生物炭能够显著提升复垦土壤中Ca2-P的含量;添加与未添加生物炭处理相比,添加生物炭的处理均明显比未添加生物炭处理土壤中Ca8-P含量低,其中CFC比CF处理低3.09%,MC比M处理低3.39%,MCFC比MCF处理低1.73%,但差异不显著;土壤中Al-P含量、Fe-P含量、O-P含量、Ca10-P含量和无机磷总量在添加生物炭处理与未添加生物炭处理间均表现差异不显著,且Al-P含量、Fe-P含量呈现MC10-P含量则表现为M

表2 无机有机肥配施生物炭对复垦土壤无机磷形态的影响
Tab.2 Effect of inorganic organic fertilizer combined with biochar on the form of inorganic phosphorus in reclaimed soil mg/kg

处理TreatmentCa2-PCa8-PAl-PFe-PO-PCa10-PCK7.51±0.58f51.38±3.34c25.24±3.85cd21.38±1.31cf26.65±2.02d160.3±3.79eCF16.68±0.48e86.17±3.31cab43.62±3.11ca43.34±1.71a54.81±1.78c230.2±3.63aCFC19.53d±0.3983.51±3.81cb41.28±3.71ca42.17±1.45a52.64±1.49c238.5±3.25aM28.37±0.51b95.32±4.31ca32.82±2.91cc30.62±1.98d65.64±2.71a196.3±3.22cMC31.32a±0.6892.09±4.31ca31.74±4.31cc29.27±1.44d63.14±1.51a205.3±3.14cMCF26.98±0.51c91.69±3.01ca39.18±3.24cab35.15±1.30c57.42±1.97b215.5±3.29bMCFC30.05±0.431ab90.10±3.31ca36.86±2.65cb32.62±1.57c55.89±1.371bc221.2±3.59b

2.3 无机有机肥配施生物炭对复垦土壤Olsen-P、全磷含量和无机磷总量的影响

从表3可以看出,各施肥处理与CK相比,Olsen-P和全磷含量MC处理差异最为明显,分别较CK增加了326.0%和98.9%。不同施肥处理下有效磷的含量表现为CF[23]。

表3 无机有机肥配施生物炭对复垦土壤 有效磷(Olsen-P)和全磷含量的影响
Tab.3 Effect of inorganic organic fertilizer combined with biochar on the effective phosphorus(Olsen-P) and total phosphorus content in reclaimed soil

处理TreatmentOlsen-P/(mg/kg)全磷/(g/kg)Total phosphorus无机磷总量Total amount of inorganic phosphorusCK7.94±1.59e0.435±0.09b292.5±4.29dCF25.16±1.83d0.824±0.12a474.9±3.99aCFC27.92±1.25c0.833±0.08a477.6±4.32aM31.99±1.03ab0.837±0.11a449.1±4.38bMC33.83±1.11a0.865±0.18a452.9±4.11bMCF30.82±1.48b0.828±0.16a465.9±4.28cMCFC32.54±1.13a0.864±0.15a467.7±4.34c

2.4 无机有机肥配施生物炭对复垦土壤中无机磷形态相关性的影响

从土壤不同形态无机磷和土壤有效磷之间的相关性可以看出(表4),土壤有效磷与Ca2-P、Ca8-P、O-P呈现极显著相关,相关系数分别为高达 0.942**,0.964**,0.952**(P<0.01),说明石灰性褐土中有效磷的含量与Ca2-P、Ca8-P和O-P的含量密切相关。

另外,Ca2-P与Ca8-P,Al-P与Fe-P以及O-P、Al-P、Fe-P与Ca10-P之间呈现极显著相关,且O-P与Ca2-P和Ca8-P也呈现极显著相关。由此说明,复垦土壤中,Ca-P、铁铝结合态磷和闭蓄态磷之间保持着一定的比例,一定条件下可通过Ca8-P和O-P这2种形态来相互转化。

表4 复垦土壤各形态无机磷与有效磷(Olsen-P)的相关性分析
Tab.4 Correlation analysis of various forms of inorganic phosphorus and available phosphorus(Olsen-P) in reclaimed soil

磷形态Phosphorus formCa2-PCa8-PAl-PFe-PO-PCa10-POlsen-PCa2-P10.878∗∗0.2440.0740.887∗∗0.4210.942∗∗Ca8-P10.6030.5000.986∗∗0.7140.964∗∗Al-P10.969∗∗0.5280.923∗∗0.503Fe-P10.4360.902∗∗0.351O-P10.881∗∗0.952∗∗Ca10-P10.686Olsen-P1

注:r0.05=0.754;r0.01=0.874;*.相关性达到0.05水平; **.相关性达到0.01水平。

Note: r0.05=0.754; r0.01=0.874; * indicates that the correlation reached 0.05 level; ** indicates that the correlation reached 0.01 level.

3 结论与讨论

生物炭的施用促进了土壤中脲酶、碱性磷酸酶、蔗糖酶、过氧化氢酶和脱氢酶5种酶的活性。土壤脲酶和碱性磷酸酶活性与土壤肥力指标有较好的相关性[24-25]。脲酶是具有极为专性的对尿素转化起关键作用的酶,它的活性可以用来表示土壤供氮能力[26]。在相同施肥条件下,添加生物炭的处理土壤均有较高的脲酶活性,这可能是由于大田试验中生物炭起到了很好的保肥能力。不同处理中,添加生物炭处理与未添加生物炭处理有效磷含量差异显著验证了这个结论。土壤碱性磷酸酶是在碱性条件下将土壤中有机磷水解成为磷酸盐的酶,与土壤中有机磷的矿化关系密切。研究发现,处理CF、CFC<处理MCF、MCFC<处理M、MC的碱性磷酸酶活性,这可能是由于试验土壤为石灰性土壤,而有机肥本身较高的酸性促进了土壤中有机磷的矿化。蔗糖酶反映土壤有机质积累和转化状况,本研究中,不同施肥处理均有较高水平的土壤蔗糖酶活性,而有机肥和生物炭混合处理最为显著,这可能与施肥带来的较高有机质转化有关。土壤脱氢酶主要催化大多数的氧化还原反应,随着生物炭的添加,土壤脱氢酶性呈现增加趋势,增长幅度均较明显。

生物炭带有负电荷,能够增强土壤对阳离子的吸附,同时自身也含有多种矿质营养元素,可以通过补充贫瘠土壤养分而提高土壤肥力[27]。生物炭疏松多孔、具有较大吸附性能,通过影响土壤孔性以及微生物活性,从而进一步影响土壤磷素。复垦区石灰性土壤中,Ca2-P含量是影响作物生长的无机磷的重要部分,而有效磷则是直接影响作物生长的关键。本研究中,CFC、MC和MCFC等生物炭处理土壤中Ca2-P、Ca10-P、有效磷、全磷含量均相对明显提高,而Ca8-P、Al-P、Fe-P、O-P含量则相对明显降低,这可能是生物炭通过促进对土壤中5种酶的活性,从而加快土壤中磷素的转化、氧化还原、矿化反应,同时也影响了无机磷与有机磷之间的反应转化。值得注意的是,本试验中,M和MC处理中Ca2-P、Ca8-P、O-P、有效磷含量均值都超过其他处理,这可能是施用有机肥和生物有机肥后,土壤有机质水平显著提升[28-33]。有机肥本身就含有丰富的有机质,其为土壤有益微生物的繁衍提供有机能源,使土壤微生物得以长期保持旺盛的生命力,促进土壤有机质含量的进一步提升。从各形态无机磷与有效磷(Olsen-P)的相关性可以看出,有效磷含量与Ca2-P、Ca8-P、O-P的含量极显著相关,与Al-P、Fe-P、Ca10-P的含量均只呈正相关,差异不显著,说明石灰性褐土中Ca2-P、Ca8-P、O-P的含量与有效磷的含量密切相关。

本研究结果表明,无机肥与生物炭配施对土壤酶活性影响最为明显。不同施肥处理间,土壤中酶的活性随着生物炭的添加均得到不同程度的促进,其中土壤脲酶活性、碱性磷酸酶活性、蔗糖酶活性、过氧化氢酶活性、脱氢酶活性提升最高,分别比空白CK提升了647.0%,223.0%,68.6%,93.7%,331.0%,不同施肥处理,对土壤中脲酶活性的促进有机肥与化肥的混施强于单施有机肥或化肥,而单施有机肥却对碱性磷酸酶、蔗糖酶、过氧化氢酶和脱氢酶的促进效应,强于单施化肥和有机肥与化肥混施。

随着生物炭的添加,土壤中无机磷的不同形态作为土壤磷素供应的主要形态在不断发生明显变化。不同施肥处理,添加与未添加生物炭处理相比,有效性高的磷形态二钙磷含量最高增加了17.09%,而八钙磷、缓效磷源铁磷、铝磷、闭蓄态磷逐渐进行耗竭分别最高减少了3.39%,5.40%,7.20%,3.96%,虽然十钙磷含量增加丰富,最高增加了4.58%,但因为其活性最低,不能作为供磷的主要形态。

不同施肥处理中Olsen-P和全磷的含量,在MC处理差异最为明显,其中,在添加与未添加生物炭处理间相比,二者分别最高增加了11.0%和4.34%,说明在不同肥料混施下,生物炭和有机肥混施可以调高有效磷的含量。虽然有效磷增长明显,但其含量仍然偏低,而复垦土壤中无机磷总量却变得相当丰富,与空白CK相比提高了53.5%~63.3%。

有效磷与Ca2-P、Ca8-P、O-P的含量呈极显著相关性,说明复垦土壤中有效磷与Ca2-P、Ca8-P、O-P的含量之间密切相关。另外,由无机磷各形态之间的相关性结果说明,在复垦土壤中,Ca-P、铁铝结合态磷和闭蓄态磷之间保持着一定的比例,一定条件下可通过Ca8-P和O-P这2种形态来相互转化。

参考文献:

[1] 李斯佳,王金满,万德鹏,白中科.采煤沉陷地微地形改造及其应用研究进展[J].生态学杂志,2018,37(6):1612-1619.doi:10.13292/j.1000-4890.201806.031.

Li S J, Wang J M, Wan D P, Bai Z K. Micro-landform modification and its application of coal-mining subsidence area:A review[J]. Chinese Journal of Ecology, 2018, 37(6): 1612-1819.

[2] 梁利宝,洪坚平,谢英荷,杨彦. 不同培肥处理对采煤塌陷地复垦不同年限土壤熟化的影响[J].水土保持学报,2010,24(3):140-144.doi:10.13870/j.cnki.stbcxb.2010.03.028.

Liang L B, Hong J P, Xie Y H, Yang Y.Effect of reclaimed soil on subsided land resulting from Coal-mine by different treatments of application fertilizers with different reclamation years[J].Journal of Soil and Water Conservation,2010,24(3):140-144.

[3] 陈温福,张伟明,孟军.农用生物炭研究进展与前景[J].中国农业科学,2013,46(16):3324-3333.doi:10.3864/j.issn.0518-1752.2013.16.003.

Chen W F, Zhang W M, Meng J. Advances and prospects in research of biocar utilization in agriculture[J]. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333.

[4] 郭茹,洪坚平.不同生物炭配施腐植酸对铬污染土壤中油菜品质及铬含量的影响[J]. 山西农业科学,2018,46(3):397-401. doi:10.3969/j.issn.1002-2481.2018.03.21.

Guo R,Hong J P.Effect of different types of biochar with humic acid on the quality and chromium content of potted cole of chromium cintaminated soil[J]. Journal of Shanxi Agricultural Sciences,2018,46(3):397-401.

[5] 蒲生彦,上官李想,刘世宾,石清清,王晓科,张颖.生物炭及其复合材料在土壤污染修复中的应用研究进展[J].生态环境学报,2019,28(3):629-635.doi:10.16258/j.cnki.1674-5906.2019.03.025.

Pu S Y, Shangguan L X, Liu S B, Shi Q Q, Wang X K, Zhang Y.A Review of the application of biochar and its composites in soil remediation[J]. Ecology and Environmental Sciences, 2019,28(3):629-635.

[6] Tammeorg P, Simojoki A, Mäkelä P, Stoddard F L, Alakukku L, Helenius J. Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean[J]. Plant and Soil,2014,374(1-2):89-107.doi:10.1007/s11104-013-1851-5.

[7] 李明,李忠佩,刘明,江春玉,吴萌.不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响[J].中国农业科学,2015,48(7):1361-1369.doi:10.3864/j.issn.0578-1752.2015.07.11.

Li M, Li Z P, Liu M, Jiang C Y, Wu M.Effects of different straw biochar on nutrient and microbial community structure of a red paddy soil[J].Scientia Agricultura Sinica,2015,48(7):1361-1369.

[8] 顾美英,刘洪亮,李志强,刘晓伟,唐光木,徐万里.新疆连作棉田施用生物炭对土壤养分及微生物群落多样性的影响[J].中国农业科学,2014,47(20):4128-4138. doi:10.3864/j.issn.0578-1752.2014.20.021.

Gu M Y, Liu H L, Li Z Q, Liu X W, Tang G M, Xu W L.Impact of biochar application on soil nutrients and microbial diversities in continuous cultivated cotton fields in Xinjiang[J]. Scientia Agricultura Sinica,2014,47(20):4128-4138.

[9] Mayer Z A, Eltom Y, Stennett D, Schröder E, Apfelbacher A, Hornung A. Characterization of engineered biochar for soil management[J]. Environmental Progress & Sustainable Energy,2014,33(2):490-496.doi:10.1002/ep.11788.

[10] Xu G, Lü Y C, Sun J N, Shao H B, Wei L L. Recent advances in biochar applications in agricultural soils: benefits and environmental implications[J]. CLEAN-Soil Air Water, 2012, 40(10):1093-1098.doi:10.1002/clen.201100738.

[11] Gomez J D, Denef K, Stewart C E, Zheng J, Cotrufo M F. Biochar addition rate influences soil microbial abundance and activity in temperate soils[J]. European Journal of Soil Science,2014,65(1):28-39.doi:10.1111/ejss.12097.

[12] Li D, Hockaday W C, Masiello C A, Alvareza P J J. Earthworm avoidance of biochar can be mitigated by wetting[J]. Soil Biology and Biochemistry,2011,43(8):1732-1737.doi:10.1016/j.soilbio.2011.04.019.

[13] Paz-Ferreiro J, Fu S, Méndez A, Gascó G. Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities[J]. Journal of Soils and Sediments,2014,14(3):483-494.doi:10.1007/s11368-013-0806-z.

[14] Galvez A, Sinicco T, Cayuela M L, Mingorance M D, Fornasier F, Mondinia C. Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties[J]. Agriculture, Ecosystems and Environment,2012,160:3-14. doi:10.1016/j.agee.2011.06.015.

[15] Oleszczuk P, Jos'ko I, Futa B, Pasieczna-Patkowska S, Pays E, Kraska P. Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil[J]. Geoderma,2014,214-215:10-18.doi:10.1016/j.geoderma.2013.10.010.

[16] 尚杰,耿增超,陈心想,张雯,赵军,王森,王亚萍.生物炭对土壤酶活性和糜子产量的影响[J].干旱地区农业研究,2015,33(2):146-151,158.doi:10.16302/j.cnki.1000-7601.2015.02.024.

Shang J, Zhai Z C, Chen X X, Zhang W, Zhao J, Wang S, Wang Y P.Effects of biochar on soil enzyme activities and millet yield[J].Agricultural Research in the Arid Areas,2015,33(2): 146-151,158.

[17] 侯晓娜,李慧,朱刘兵,韩燕来,唐政,李忠芳,谭金芳,张水清.生物炭与秸秆添加对砂姜黑土团聚体组成和有机碳分布的影响[J]. 中国农业科学,2015,48(4):705-712.doi:10.3864/j.issn.0578-1752.2015.04.08.

Hou X N, Li H, Zhu L B, Han Y L, Tang Z, Li Z F, Tan J F, Zhang S Q. Effects of biochar and straw additions on lime concretion black soil aggregate composition and organic carbon distribution[J].Scientia Agricultura Sinica, 2015, 48(4): 705-712.

[18] 赵兰凤,张新明,程根,张丽娟,刘小锋,李华兴.生物炭对菜园土壤微生物功能多样性的影响[J]. 生态学报,2017,37(14):4754-4762. doi:10.5846/stxb201604220758.

Zhao L F, Zhang X M, Cheng G, Zhang L J, Liu X F, Li H X.Effects of biochar on microbial functional diversity in vegetable garden soil[J].Acta Ecologica Sinica,2017,37(14):4754-4762.

[19] 刘园,Khan M J,靳海洋,白雪莹,谢迎新,赵旭,王慎强,王晨阳.秸秆生物炭对潮土作物产量和土壤性状的影响[J].土壤学报,2015,52(4):849-858. doi:10.11766/trxb201412020611.

Liu Y, Khan M J, Jin H Y, Bai X Y, Xie Y X, Zhao X, Wang S Q, Wang C Y.Effects of successive application of crop-straw biochar on crop yield and soil properties in cambosols[J].Acta Pedologica Sinica,2015,52(4): 849-858.

[20] 李洪达,李艳,周薇,吕家珑.稻壳生物炭对矿区重金属复合污染土壤中Cd、Zn形态转化的影响[J].农业环境科学学报,2018,37(9):1856-1865. doi:10.11654/jaes.2018-0167.

Li H D,Li Y,Zhou W,Lü J L.Effects of rice-husk-derived biochar on the morphological transformation of Cd and Zn in mining area soils polluted by heavy metals[J].Journal of Agro-Environment Science,2018,37(9):1856-1865.

[21] 葛春辉,唐光木,徐万里.生物质炭对沙质土壤理化性质及作物产量的影响[J].新疆农业科学,2013,50(6):1108-1114.doi:10.6048/j.issn.1001-4330.2013.06.020.

Ge C H, Tang G M, Xu W L. Influence of application of bio-carbon on characters of soil and crop yield[J].Xinjiang Agricultural Sciences,2013,50(6):1108-1114.

[22] 郭伟,陈红霞,张庆忠,王一丁.华北高产农田施用生物质炭对耕层土壤总氮和碱解氮含量的影响[J].生态环境学报,2011,20(3):425-428. doi:10.16258/j.cnki.1674-5906.2011.03.016.

Guo W, Chen H X, Zhang Q Z, Wang Y D. Effects of biochar application on total nitrogen and alkali-hydrolyzable nitrogen content in the topsoil of the high-yield cropland in north China Plain[J].Ecology and Environmental Sciences,2011,20(3):425-428.

[23] 严正娟. 施用粪肥对设施菜田土壤磷素形态与移动性的影响[D].北京:中国农业大学,2015.

Yan Z J. Effect of manure application on the form and mobility of soil phosphorus vegetable in greenhouse[D]. Beijing:China Agricultural University, 2015.

[24] 和文祥,王娟,高亚军,田海霞,曹卫东.不同价态铬的土壤碱性磷酸酶效应模拟研究[J].农业环境科学学报,2010,29(1):104-109.

He W X,Wang J,Gao Y J,Tian H X,Cao W D.Effect of different valences chromium on soil Alk-phosphatase characteritics[J]. Journal of Agro-Environment Science,2010,29(1):104-109.

[25] 李东坡,武志杰,陈利军,杨杰,朱平,任军,彭畅,高红军.长期培肥黑土脲酶活性动态变化及其影响因素[J].应用生态学报,2003,14(12):2208-2212.doi:10.13287/j.1001-9332.2003.0487.

Li D P, Wu Z J, Chen L J, Yang J, Zhu P, Ren J, Peng C, Gao H J. Dynamic of urease activity in long-term fertilization black soil and its affecting factors[J]. Chinese Journal of Applied Ecology, 2003,14(12): 2208-2212.

[26] 贾俊香,谢英荷.生物炭对采煤塌陷复垦区土壤养分与酶活性的影响[J].灌溉排水学报,2016,35(11):88-91.doi:10.13522/j.cnki.ggps.2016.11.016.

Jia J X,Xie Y H.Effects of biochar on soil nutrient and enzyme activity from coal mining subsidence reclamation area[J].Journal of Irrigation and Drainage,2016,35(11):88-91.

[27] Novak J, Busscher W, Laird D, Ahmedna M, Watts D, Niandou M. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science,2009,174(2):105-112.doi:10.1097/SS.0b013e3181981d9a.

[28] 刘继培,刘唯一,周婕,李桐,赵跃,张蒙.施用腐植酸和生物肥对草莓品质、产量及土壤农化性状的影响[J].农业资源与环境学报,2015,32(1):54-59.doi:10.19451/j.cnki.issn1671-9212.2016.02.018.

Liu J P, Liu W Y, Zhou J, Li T, Zhao Y, Zhang M.Effect of applying humic acids and bio-fertilizer on the qualities and yields of strawberry and soil agrochemical characters[J].Journal of Agricultural Resources and Environment,2015,32(1):54-59.

[29] 付丽军,张爱敏,王向东,周国顺.生物有机肥改良设施蔬菜土壤的研究进展[J].中国土壤与肥料,2017(3):1-5. doi:10.11838/sfsc.20170301.

Fu L J, Zhang A M, Wang X D, Zhou G S. Advances on application of bio organic fertilizer for restoring facility vegetable soil[J]. China Soil and Fertilizer, 2017(3):1-5.

[30] 冯瑞兴,施洁君,何胥,金梅娟,沈明星,王海候.水葫芦有机肥对小白菜产量品质及土壤肥力的影响[J].浙江农业科学,2017,58(6):932-936.doi:10.16178/j.issn.0528-9017.20170608.

Feng R X, Shi J J, He X, Jin M J, Shen M X, Wang H H. Effects of water hyacinth organic fertilizer on yield and quality of Chinese cabbage and soil fertility[J].Zhejiang Agricultural Sciences,2017,58(6):932-936.

[31] 张余莽,周海军,张景野,刘淑霞,吴海燕.生物有机肥的研究进展[J].吉林农业科学,2010,35(3):37-40.doi:10.16423/j.cnki.1003-8701.2010.03.003.

Zhang Y M, Zhou H J, Zhang J Y, Liu S X, Wu H Y.Progress of studies of Bio-organic fertilizer[J]. Journal of Jilin Agricultural Sciences,2010,35(3):37-40.

[32] 邢素丽,刘孟朝,徐明岗.有机无机配施对太行山山前平原小麦产量和土壤培肥的影响[J].华北农学报,2010,25(S1):212-216.doi:10.7668/hbnxb.2010.S1.048.

Xing S L, Liu M C, Xu M G.The research of NPK fertilizer combined with soil organic manure enhancing soil fertilization in Taihang piedmont plain[J].Acta Agriculturae Boreali-Sinica,2010,25(S1):212-216.

[33] 孙建,刘苗,李立军,刘景辉.不同施肥处理对土壤理化性质的影响[J].华北农学报,2010,25(4):221-225.

Sun J, Liu M, Li L J, Liu J H.The effect of different fertilization treatments on soil physical and chemical property[J].Acta Agriculturae Boreali-Sinica,2010,25(4):221-225.

Effect of Inorganic Organic Fertilizer Combined with Biochar on Enzyme Activity and Phosphorus Forms in Reclaimed Soil

WEI Junjie, HONG Jianping

(College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China)

Abstract To explore the fertilization measures for the poor soil in the coal mining subsidence reclamation area, this paper used the calcareous soil in the coal mining subsidence area of Xiangyuan County, Changzhi City for five years to test the soil enzyme activity and phosphorus form and the variation law was investigated. The results showed that biochar promoted the activity of urease, alkaline phosphatase, invertase, catalase and dehydrogenase in soil during the test period.The highest increase was 647.0%, 223.0%, 68.6%, 93.7%, and 331.0%.Different fertilization treatments, the mixed application of organic fertilizer and chemical fertilizer to promote urease activity in soil is stronger than single application of organic fertilizer or chemical fertilizer, but single application of organic fertilizer has effects on alkaline phosphatase, invertase, catalase and dehydrogenase. The promotion effect is stronger than the single application of chemical fertilizer and the mixed application of organic fertilizer and chemical fertilizer. With the addition of biochar, the content of various phosphorus forms varied significantly among different fertilization treatments. Among them, Ca2-P and Ca10-P were relatively abundant, which increased by 17.09% and 4.58% respectively; Ca8-P, Al-P, the content of Fe-P and O-P was gradually depleted, with a maximum reduction of 3.39%, 5.40%, 7.20%, and 3.96%, respectively. The maximum increments of available phosphorus and total phosphorus were 11.0% and 4.34% respectively. The content of inorganic phosphorus was increased to be 53.5%-63.3% higher than CK. The correlation results, the available phosphorus in the reclaimed soil was closely related to the contents of Ca2-P, Ca8-P and O-P. In addition, it could be seen that in the reclaimed soil, Ca-P, iron-aluminum bound phosphorus and closed-state phosphorus maintain a certain ratio, and under certain conditions, they could be transformed by Ca8-P and O-P.

Key words: Reclaimed soil;Biochar; Enzyme activity; Inorganic phosphorus; Available phosphoru

收稿日期:2019-04-09

基金项目:晋中市科技重点研发计划(y182012)

作者简介:魏俊杰(1993-),男,山西阳泉人,在读硕士,主要从事土壤退化与生态重建研究。

通讯作者:洪坚平(1958-),男,浙江绍兴人,教授,博士,博士生导师,主要从事农业资源利用研究。

中图分类号:S154.3

文献标识码:A

文章编号:1000-7091(2019)06-0170-07

doi:10.7668/hbnxb.20190240