雨养条件下不同冬小麦品种产量形成及氮素利用特征

刘海红,徐学欣,吴姗姗,於思益,石 岩,赵长星

(山东省旱作农业技术重点实验室,青岛农业大学 农学院,山东 青岛 266109)

摘要:为了筛选适宜鲁东雨养地区高产高效冬小麦品种,于2016-2018年冬小麦生长季,在雨养条件下选用黄淮海地区32个中强筋冬小麦品种为材料,研究了不同冬小麦品种的产量、干物质积累与转运以及氮素吸收利用等方面的差异。结果表明,采用聚类分析方法对32个冬小麦品种的产量进行分类,共分为5种类型,2 aⅠ类冬小麦品种的产量分别为9 247.1,9 219.7 kg/hm2,并显著高于其余各类冬小麦品种,Ⅰ类冬小麦品种协同提高了库容量(单位面积粒数)和千粒质量;Ⅰ类冬小麦品种成熟期干物质积累量、开花后干物质积累量、开花前干物质转运量、收获指数、成熟期氮素积累量、氮素利用效率和氮素收获指数均显著高于其余各类冬小麦品种;2 a产量分别与库容量、成熟期干物质积累量、开花后干物质积累量、收获指数、氮素利用效率和氮素收获指数呈极显著正相关关系,2017-2018年产量与成熟期氮素积累量亦呈极显著正相关关系。综合2 a结果,烟农999和泰麦1918均属于Ⅰ类冬小麦品种,两品种协同提高了库容量和千粒质量、开花后干物质积累量和开花前干物质转运量、成熟期干物质积累量和收获指数以及成熟期氮素积累量和氮素收获指数,表现出产量较高且稳定。综上所述,在鲁东地区半湿润偏旱的气候环境雨养条件下,烟农999和泰麦1918是适宜此地区种植的高产高效冬小麦品种。

关键词:冬小麦;品种;库容量;干物质积累;氮素利用效率;雨养条件

冬小麦是我国重要的粮食作物之一,中国1/2的人口依赖小麦食品,山东省作为我国第二大冬小麦主产区和高产区,在保证我国粮食安全方面起着重要作用[1-2]。而此地区冬小麦季干旱频发,自然降雨不能满足冬小麦的正常生长需求,严重威胁着冬小麦的安全生产[3]。小麦的产量是由穗数、穗粒数(单位面积粒数)和千粒质量共同决定,产量与单位面积粒数呈正相关,而且近年来小麦产量的增长主要是得益于单位面积粒数的增加[4],有研究表明,山东省1960-2000年间小麦产量潜力的提高主要依赖穗粒数、粒质量和收获指数的增加[5]。冬小麦产量的形成一方面来自于开花后光合同化物的积累,另一方面来自于开花前贮藏同化物的转运,因此提高开花后光合同化物积累和促进开花前贮藏同化物的转运将有利于产量的提高[6]。与灌溉条件相比,雨养条件下冬小麦产量的降低主要是由于单位面积粒数和开花后光合同化物积累的降低所致,而开花前贮藏同化物转运反而提高[7]

氮素是影响植株生长和产量的基本营养元素之一,不同小麦品种的产量、氮素吸收和氮素利用效率存在着显著的基因型差异[8],韩胜芳等[9]和王东等[10]研究表明,保持一定的氮素积累量是提高小麦氮素利用效率的基础,小麦籽粒的含氮量与氮素利用效率呈极显著正相关;小麦籽粒产量与成熟期氮素积累量呈显著的乘幂函数关系[11],雨养旱地小麦的穗数、穗粒数、生物量、收获指数、成熟期的氮素积累量、氮素收获指数均随产量增加而显著增加[12]。环境和基因型差异是影响冬小麦产量形成、氮素吸收和利用的重要因素,各小麦品种在冬小麦不同种植区域的产量表现也不尽相同[8-10]。针对鲁东地区半湿润偏旱的气候条件,本研究选取了32个中强筋冬小麦品种为材料,在雨养条件下,对不同小麦品种的产量、干物质积累和转运以及氮素吸收利用等指标进行系统分析,为筛选适宜鲁东地区种植的高产稳产和氮素吸收利用效率较高的冬小麦品种提供理论依据。

1 材料和方法

1.1 试验地概况

试验于2016-2018年冬小麦生长季,在山东省胶州市青岛农业大学胶州现代农业示范园(35.53°/N,119.58°/E)开展田间试验。2 a前茬作物玉米收获后播种,试验田土壤质地为壤土,播种前0~20 cm土层土壤养分状况见表1;2016-2017年和2017-2018年小麦季降雨量分别为78.1,154.0 mm。

表1 试验地0~20 cm土层土壤养分状况
Tab.1 Soil nutrient condition in 0-20 cm soil layer of the experimental field

生长季Growing season 有机质/(g/kg)Organic matter土壤 pHSoil pH碱解氮/(mg/kg)Hydrolysable N速效磷/(mg/kg)Available P速效钾/(mg/kg)Available K2016-2017年16.3±0.37.1±0.08127.1±2.85.7±0.2129.8±2.92017-2018年17.4±0.37.8±0.06129.4±2.64.9±0.1140.0±3.1

1.2 试验设计

试验采用32个冬小麦品种分别为:临麦4号、郯麦98、儒麦1号、烟农999、泰农18、济麦22、良星99、鲁原502、山农24号、山农28号、山农29号、青农2号、鑫麦296、泰农19、泰山28、齐麦2号、烟农173、泰农33、菏麦19、泰麦1918、DH51202、泰山27、济麦23、泰科麦33、洲元9369、济南17号、烟农19号、济麦20、济麦229、师栾02-1、齐民7号和金海1212。每个品种3次重复,共96个小区,随机区组排列,试验小区面积为8.36 m×4.07 m=34.0 m2,每个小区种植38行小麦,行距为22 cm。小麦播种前将前茬玉米秸秆粉碎还田旋耕2遍,底施基肥为施可丰复合肥(N-P2O5-K2O,15%-15%-15%),施肥量480 kg/hm2,后期不追肥、不灌溉。2 a分别于2017年10月13日和2018年10月13日播种,播种量均为97.4 kg/hm2,2017年6月12日和2018年6月14日收获,其他管理措施同一般高产田。

1.3 测定项目和方法

1.3.1 干物质的测定 分别在小麦开花期和成熟期,各小区内随机连续选取50个单茎,开花期分为茎、叶、穗,成熟期分为茎、叶、颖壳+穗轴和籽粒。各器官样品经105 ℃杀青30 min,70 ℃烘干至恒质量,称质量。相关指标计算公式如下[6]

开花前干物质转运量(kg/hm2)=开花期干物质积累量-成熟期干物质积累量(籽粒除外);

开花后干物质积累量(kg/hm2)=成熟期干物质积累量-开花期干物质积累量;

收获指数=成熟期籽粒质量/成熟期干物质积累量。

1.3.2 植株氮素积累及氮素利用效率的计算 成熟期各器官样品粉碎后,采用凯氏定氮法测定各器官含氮量。相关指标计算公式如下[13-14]

各器官氮素积累量=各器官干质量×氮素含量;

氮素利用效率=籽粒产量/植株氮素积累量;

氮素收获指数=籽粒氮素积累量/植株氮素积累量。

1.3.3 籽粒产量的测定 成熟期调查穗数、穗粒数和千粒质量,并在各小区选取3 m2收获脱粒测产,籽粒含水量为13%。

1.4 数据统计

试验数据在Excel 2013下进行处理和作图,并用SPSS统计分析软件进行聚类分析和差异性检验分析,显著水平P<0.05。

2 结果与分析

2.1 不同小麦品种产量分类

由图1可知,对不同冬小麦品种产量进行聚类分析,可将32个不同冬小麦品种由高至低分为五类,2016-2017年,第Ⅰ类:烟农999、山农28号、泰麦1918;第Ⅱ类:良星99、鲁原502、鑫麦296、泰农19、泰农33、济麦23;第Ⅲ类:临麦4号、泰农18、济麦22、山农29号、青农2号、泰山28、齐麦2号、烟农173、泰科麦33、齐民7号、金海1212;第Ⅳ类:郯麦98、儒麦1号、菏麦19、DH51202、泰山27、烟农19号、济麦20;第Ⅴ类:山农24号、洲元9369、济南17号、济麦229、师栾02-1。2017-2018年,第Ⅰ类:烟农999、良星99、齐麦2号、烟农173、泰麦1918;第Ⅱ类:、济麦22、山农28号、鑫麦296、泰农33、济麦23、济南17号、济麦20、金海1212;第Ⅲ类:山农24号、青农2号、泰农19、菏麦19、DH51202、济麦229、齐民7号;第Ⅳ类:儒麦1号、泰农18、鲁原502、山农29号、泰山28、泰山27、洲元9369、烟农19号、师栾02-1;第Ⅴ类:临麦4号、郯麦98、泰科麦33。综合2 a结果表明,烟农999和泰麦1918的产量较其余品种更稳产。

图1 2016-2018年不同冬小麦品种产量的聚类树状图
Fig.1 The yield cluster dendrogram of different winter wheat varieties during 2016 to 2018 growing seasons

2.2 产量构成因素、库容量和产量

由表2可知,2016-2017年,平均产量和千粒质量均表现为Ⅰ类小麦品种最高并显著高于其余4类品种,平均产量分别为:9 247.1,8 676.7,8 207.6,7 686.1,7 248.6 kg/hm2;Ⅰ类小麦品种的穗数显著高于Ⅳ类小麦品种,但显著低于Ⅱ类和Ⅴ类小麦品种的穗数;Ⅰ类小麦品种的穗粒数显著高于Ⅱ类、Ⅲ类和Ⅴ类小麦品种,并与Ⅳ类小麦品种之间无显著差异;库容量表现为:Ⅱ类>Ⅰ类>Ⅲ类、Ⅴ类>Ⅳ类。由表3可知,2017-2018年,平均产量、穗数和库容量均以Ⅰ类小麦品种最高,平均产量和库容量分别为:9 219.7,8 525.2,8 012.3,6 896.5,5 669.3 kg/hm2;25.5,23.4,23.0,20.4,15.8×107/hm2。Ⅰ类小麦品种的穗粒数显著高于Ⅱ类和Ⅴ类,与Ⅳ类之间无显著差异,但低于Ⅲ类小麦品种;Ⅰ类小麦品种的千粒质量显著高于Ⅲ类和Ⅳ类,与Ⅱ类之间无显著差异,但显著低于Ⅴ类小麦品种。Ⅰ类小麦品种较高的千粒质量和库容量是其获得高产的原因之一。

表2 2016-2017年不同小麦品种产量构成因素、库容量和产量
Tab.2 Yield components, sink capacity and grain yield of different winter wheat varieties during 2016 to 2017 growing season

类别Type品种Variety穗数/(104穗/hm2)SN穗粒数/(粒/穗)GNPS库容量/(×107/hm2)SC千粒质量/gTGW产量/(kg/hm2)GYⅠ烟农999616.2±6.7a39.1±0.7b24.1±0.5b45.6±0.1b9 172.3±17.8b山农28号579.1±14.4b40.2±0.5b23.3±0.7b47.3±0.2a9 291.6±22.8a泰麦1918587.4±12.4ab43.0±1.1a25.2±0.7a43.4±0.3c9 277.4±39.8aⅡ良星99673.8±9.3b38.1±0.3c25.7±0.6b40.6±0.5b8 848.7±25.6a鲁原502564.7±5.7d40.9±0.4b23.1±0.4c43.7±0.1a8 547.2±36.2d鑫麦296621.5±13.9c37.5±0.3c23.3±0.6c44.0±0.2a8 639.3±27.3c泰农19626.8±21.4c41.6±0.3b26.1±1.0ab39.1±0.4c8 626.6±15.9c泰农33622.3±13.0c43.8±0.7a27.2±0.2a38.5±0.1c8 783.7±13.0b济麦23708.7±7.5a35.2±0.7d24.9±0.2b41.2±0.1b8 614.9±25.8cⅢ临麦4399.4±21.8h52.1±0.8a20.8±1.1d46.5±0.8a8 168.6±33.3c泰农18573.0±6.7e42.8±0.6c24.5±0.6a40.9±0.3e8 428.5±24.2a济麦22610.2±6.5d35.1±0.2e21.4±0.2cd44.5±0.2b8 058.2±23.3d山农29号475.2±4.9g44.6±0.6b21.2±0.2d46.5±0.1a8 407.9±22.8a青农2号551.0±15.8e42.5±0.6c23.4±1.0ab42.1±0.2d8 412.2±17.5a泰山28675.3±4.9b35.3±0.5e23.8±0.5ab41.1±0.2e8 105.8±21.1cd齐麦2号526.0±6.5f43.3±0.5c22.8±0.0.2b42.8±0.3c8 091.3±21.4d烟农173719.3±8.4a34.4±0.6e24.7±0.7a38.6±0.1g8 090.6±28.4d泰科麦33654.1±13.2bc34.6±0.8e22.6±0.7bc43.0±0.1c8 099.3±63.5d齐民7号651.1±7.5c36.6±0.4d23.8±0.4ab39.7±0.3f8 089.4±47.8d金海1212642.0±11.2cd35.5±0.5de22.8±0.6b43.5±0.1c8 331.6±67.3bⅣ郯麦98415.4±13.2e48.1±0.5a20.0±0.8d45.2±0.1a7 753.3±14.4ab儒麦1号413.1±7.5e48.7±0.5a20.1±0.4d45.1±0.1a7 789.4±27.8a菏麦19598.0±9.8b34.4±0.7d20.6±0.7cd43.7±0.2c7 538.9±37.4dDH51202678.4±4.7a32.3±0.6e21.9±0.5bc41.2±0.2d7 601.7±58.2cd泰山27481.3±15.5d43.0±0.7b20.7±1.0cd44.4±0.1b7 644.1±63.5bcd烟农19号590.4±7.0b39.6±0.3c23.4±0.1a39.2±0.3f7 770.6±54.4a济麦20547.2±11.2c41.9±0.4b22.9±0.4ab39.8±0.1e7 704.7±65.1abcⅤ山农24号585.1±6.5cd36.0±0.7c21.1±0.4b39.9±0.2a7 135.8±19.2c洲元9369554.8±20.1d41.4±0.5a23.0±1.1ab38.2±0.2b7 347.8±30.5a济南17号680.6±12.6b35.0±0.5c23.8±0.7a37.6±0.3c7 389.1±45.6a济麦229597.3±16.2c39.3±0.8b23.5±1.0a36.2±0.2d7 237.3±101.6b师栾02-1729.2±17.8a31.9±0.6d23.3±0.1a36.1±0.1d7 133.2±72.2cⅠ平均594.2±7.0b40.7±0.7a24.2±0.6b45.4±0.2a9 247.1±21.4aⅡ平均636.3±2.0a39.5±0.1b25.1±0.1a41.2±0.1c8 676.7±6.1bⅢ平均588.8±3.9b39.7±0.2b22.9±0.3c42.7±0.1b8 207.6±14.5cⅣ平均532.0±1.6c41.1±0.1a21.4±0.1d42.7±0.1b7 686.1±8.3dⅤ平均629.4±5.8a36.7±0.2c22.9±0.1c37.6±0.1d7 248.6±50.4e

注:SN.穗数;GNPS.穗粒数;TGW.千粒质量;SC.库容量;GY.产量。同列数字后不同字母表示处理间差异显著(P<0.05)。表3-7同。

Note: SN.Spike number; GNPS.Grain number per spike; TGW.1000-grain weight; SC.Sink capacity; GY.Grain yield. Values in a column followed by different letters are significantly different at P<0.05. The same as Tab.3-7.

表3 2017-2018年不同小麦品种产量构成因素、库容量和产量
Tab.3 Yield components, sink capacity and grain yield of different winter wheat varieties during 2017 to 2018 growing season

类型Type品种Variety穗数/(104穗/hm2)SN穗粒数/(粒/穗)GNPS库容量/(×107/hm2)SC千粒质量/gTGW产量/(kg/hm2)GYⅠ烟农999622.9±14.8b39.7±0.6bc24.8±0.9b44.8±0.2a9 484.4±13.5a良星99678.1±11.5a41.4±1.2b28.0±0.8a39.1±0.4d9 314.7±11.8b齐麦2号533.6±7.5c45.6±0.9a24.3±0.2b43.4±0.4b9 036.1±9.7e烟农173689.8±8.8a37.4±0.9d25.8±0.4b41.8±0.3c9 075.8±11.9d泰麦1918644.9±9.0b38.5±0.3cd24.8±0.3b43.8±0.1b9 187.5±6.5cⅡ济麦22621.3±9.3c38.2±0.7c23.7±0.4bc43.2±0.2d8 721.1±19.6a山农28号545.9±12.2d39.0±3.6abc21.2±1.8d45.9±0.3a8 384.6±30.7e鑫麦296537.5±3.7d41.4±0.4ab22.3±0.3cd44.6±0.6b8 546.7±15.9c泰农33544.6±8.8d41.8±0.5a22.8±0.6cd40.6±0.1e8 366.4±17.3e济麦23613.2±15.0c38.7±0.2bc23.7±0.5bc43.6±0.3cd8 656.4±41.6c济南17号653.3±11.3b38.2±0.9c25.0±0.9ab39.8±0.2f8 529.7±16.4c济麦20756.9±2.0a34.2±0.3d25.9±0.2a38.8±0.1g8 559.7±12.6c金海1212552.2±6.8d40.6±0.8abc22.4±0.7cd43.9±0.1c8 437.0±6.7dⅢ山农24号489.3±6.3d40.7±0.9bc19.9±0.6d40.6±0.4c7 889.2±19.3e青农2号525.4±6.7c42.3±1.1b22.2±0.9c41.7±0.3b7 932.3±17.6d泰农19613.7±11.8a40.7±1.1bc25.0±0.5ab39.3±0.5d8 218.4±14.3b菏麦19515.0±6.1c42.4±1.9b21.8±0.8c43.6±0.1a8 045.8±8.9cDH51202549.8±9.4b41.9±0.5b23.0±0.4bc41.6±0.1b8 241.4±12.6a济麦229634.1±14.1a39.5±0.6c25.1±0.6a36.5±0.3e7 634.3±21.7f齐民7号528.4±4.7c44.9±0.4a23.7±0.4bc40.6±0.4c8 124.7±21.5bⅣ儒麦1号449.6±2.2e45.0±0.6b20.2±0.3cd39.1±0.5e6 667.8±3.2d泰农18477.9±6.8d43.4±0.8bc20.8±0.5bc42.0±0.5b7 257.5±6.9a鲁原502556.9±17.7b35.7±0.7g19.9±0.5cd40.3±0.2d6 816.3±21.6c山农29号441.7±10.1e39.9±2.4de17.7±1.4e45.3±0.5a6 822.1±5.9c泰山28513.5±13.3c37.7±0.6fg19.4±0.6cd40.8±0.6cd6 648.4±24.5d泰山27453.0±12.6e41.9±0.6cd19.0±0.7d41.6±0.1bc6 677.4±32.8d洲元9369460.8±3.6de48.2±0.9a22.2±0.4a37.2±0.7f6 967.1±86.1b烟农19号590.9±11.3a38.6±0.6ef22.8±0.6a37.6±0.3f7 248.2±37.7a师栾02-1601.4±8.0a36.7±0.9fg22.1±0.5a37.0±0.1f6 964.0±9.7bⅤ临麦4421.6±7.2a36.4±0.7a15.3±0.1b42.1±0.7b5 281.9±48.0c郯麦98421.6±6.6a37.0±1.0a15.6±0.2ab42.9±0.1ab5 644.7±13.5b泰科麦33434.8±10.4a37.7±0.5a16.4±0.5a43.9±0.3a6 081.4±49.8aⅠ平均633.8±2.7a40.5±0.3b25.5±0.1a42.6±0.2b9 219.7±3.6aⅡ平均603.1±2.9b39.0±0.6c23.4±0.3b42.5±0.1b8 525.2±5.4bⅢ平均550.8±1.2c41.8±0.5a23.0±0.3b40.6±0.1c8 012.3±3.2cⅣ平均505.1±4.3d40.8±0.4b20.4±0.3c40.1±0.1d6 896.5±5.6dⅤ平均426.0±1.5e37.1±0.5d15.8±0.2d42.9±0.2a5 669.3±33.9e

2.3 干物质积累与转运和收获指数

由表4,5可知,2 a各品种成熟期干物质积累量、开花期干物质积累量、开花后干物质积累量、开花前干物质转运量和收获指数表现规律一致。但是,Ⅰ类小麦品种的成熟期干物质积累量、开花后干物质积累量、开花前干物质转运量和收获指数均显著高于其余各类小麦品种;2016-2017年,Ⅰ类小麦品种的开花期干物质积累量亦显著高于其余各类小麦品种,2017-2018年,Ⅰ类小麦品种的开花期干物质积累量与Ⅱ类之间无显著差异,但显著高于Ⅲ、Ⅳ和Ⅴ类小麦品种的。表明较高的成熟期干物质积累量、收获指数、开花后干物质积累量和开花前干物质转运量是Ⅰ类小麦品种获得较高产量的原因之一。

表4 2016-2017年不同小麦品种干物质积累与转运和收获指数
Tab.4 Dry matter accumulation and translocation, and harvest index of different winter wheat varieties during 2016 to 2017 growing season

类别Type品种Variety成熟期干物质积累量/(kg/hm2)DMM开花期干物质积累量/(kg/hm2)DMA开花后干物质积累量/(kg/hm2)DMP开花前干物质转运量/(kg/hm2)DMT收获指数HIⅠ烟农99919 390.1±191.5b13 432.5±22.5a5 957.6±189.3a3 505.6±244.2a0.488±0.007 6a山农28号19 831.8±112.8a13 480.5±157.5a6 351.3±230.4a3 029.2±209.7a0.473±0.001 6a泰麦191819 660.3±171.2ab13 356.0±161.7a6 304.3±147.0a3 056.9±335.2a0.476±0.023 6aⅡ良星9919 116.1±117.5ab13 044.0±126.2a6 072.1±239.4ab2 814.2±217.4a0.465±0.001 6a鲁原50218 861.1±145.4b13 312.5±122.0a5 548.6±241.8b3 193.0±208.3a0.463±0.001 6a鑫麦29618 994.0±100.9ab13 272.0±457.0a5 722.0±387.2ab3 112.6±399.7a0.465±0.001 1a泰农1918 975.4±128.2ab13 128.0±252.4a5 847.4±126.9ab2 978.7±140.4a0.465±0.002 3a泰农3319 088.5±234.4ab12 888.0±103.6a6 200.5±312.4a2 625.8±300.3a0.462±0.005 0a济麦2319 260.5±102.3a13 408.5±48.3a5 852.0±56.3ab2 836.6±33.8a0.451±0.001 1bⅢ临麦418 634.4±846.3ab12 979.5±845.1ab5 654.9±106.5ab2 744.2±106.7cdef0.452±0.018 1cd泰农1818 289.2±167.4abc12 991.5±245.0ab5 297.7±147.8c3 248.9±145.1ab0.467±0.003 1a济麦2218 490.8±185.9abc13 222.5±275.6a5 268.3±106.6c2 984.7±125.5bc0.446±0.003 2d山农29号18 640.8±46.7ab12 877.5±130.5ab5 763.3±100.2ab2 860.4±116.3cde0.463±0.000 2abc青农2号18 773.4±231.4a12 999.0±107.6ab5 774.4±142.1a2 706.8±210.1cdef0.452±0.014 0cd泰山2818 119.2±139.9abc12 376.5±293.1b5 742.7±197.5ab2 478.2±208.5f0.454±0.002 3bcd齐麦2号17 925.4±97.0bc12 268.5±180.9b5 656.9±104.2ab2 527.3±120.9ef0.457±0.001 3bcd烟农17317 835.3±188.9c12 591.0±65.5ab5 244.3±124.4cd2 905.7±263.6bcd0.457±0.013 0bcd泰科麦3318 418.4±162.9abc12 963.0±7.8ab5 455.4±170.5bc2 848.8±107.1cde0.451±0.000 8cd齐民7号18 176.0±825.0abc12 486.0±676.9ab5 690.0±150.5ab2 557.9±144.9def0.455±0.020 1bcd金海121217 778.4±145.5c12 849.0±359.0ab4 929.4±222.0d3 537.5±286.7a0.476±0.000 2aⅣ郯麦9817 842.8±169.9b12 580.5±187.9bcd5 262.3±149.9c2 616.3±142.2ab0.442±0.003 4a儒麦1号17 881.7±129.0ab12 537.0±246.2cd5 344.7±152.8bc2 578.0±179.0bc0.443±0.002 2a菏麦1917 932.8±91.4ab13 111.5±185.8a4 821.3±112.9d2 896.3±187.1a0.430±0.013 5abDH5120218 282.2±235.8ab13 066.5±223.4ab5 215.7±162.1c2 559.6±129.8bc0.425±0.002 6b泰山2718 404.0±226.9a12 987.0±116.9abc5 417.0±148.6abc2 404.6±111.1bcd0.425±0.002 1b烟农19号17 803.7±146.9b12 163.5±404.5d5 640.2±260.2a2 236.8±310.9d0.442±0.000 9a济麦2017 839.6±409.4b12 249.0±309.8d5 590.6±99.6ab2 308.4±46.2cd0.443±0.006 9aⅤ山农24号16 572.2±115.9d12 084.0±113.2c4 488.2±100.5d2 792.4±663.4a0.440±0.037 6a洲元936916 911.8±118.7c12 274.5±62.8bc4 637.3±57.5cd2 768.0±28.6a0.438±0.001 6a济南17号17 256.9±246.9b12 400.5±96.2b4 856.4±157.3c2 638.6±111.3a0.434±0.003 7a济麦22918 189.3±212.8a12 988.5±293.2a5 200.8±80.8b2 187.3±182.9ab0.406±0.001 2ab师栾02-118 369.3±130.7a12 789.0±40.3a5 580.3±168.7a1 669.0±95.4b0.395±0.001 3bⅠ平均19 627.4±98.9a13 423.0±10.6a6 204.4±89.4a3 197.2±219.0a0.479±0.009 9aⅡ平均19 049.3±76.6b13 175.5±79.9b5 873.8±36.8b2 926.8±36.3b0.462±0.001 5bⅢ平均18 280.1±147.1c12 782.2±128.7c5 497.9±28.9c2 854.6±64.5b0.457±0.004 4bⅣ平均17 998.1±22.2d12 670.7±128.0c5 327.4±109.2c2 514.3±117.5c0.436±0.002 4cⅤ平均17 459.9±135.8e12 507.3±90.6d4 952.6±53.3d2 411.1±147.1d0.423±0.007 4d

注:DMM.成熟期干物质积累量;DMA.开花期干物质积累量;DMP.开花后干物质积累量;DMT.开花前干物质转运量;HI.收获指数。表5同。

Note: DMM.Dry matter accumulation at maturity; DMA.Dry matter accumulation at anthesis; DMP.Dry matter accumulation post-anthesis; DMT.Dry matter translocation; HI.Harvest index. The same as Tab.5.

表5 2017-2018年不同小麦品种干物质积累与转运和收获指数
Tab.5 Dry matter accumulation and translocation, and harvest index of different winter wheat varieties during 2017 to 2018 growing season

类别Type品种Variety成熟期干物质积累量/(kg/hm2)DMM 开花期干物质积累量/(kg/hm2)DMA开花后干物质积累量/(kg/hm2)DMP开花前干物质转运量/(kg/hm2)DMT 收获指数HIⅠ烟农99919 855.5±393.3a13 462.5±347.9a6 393.0±45.5b3 382.5±124.6a0.492±0.008 0a良星9919 734.0±334.7a13 314.0±315.0a6 420.0±47.8a3 157.5±82.8ab0.485±0.006 0a齐麦2号19 711.5±291.3a13 483.5±263.4a6 228.0±48.7e2 931.0±94.5bc0.465±0.001 9b烟农17319 602.0±269.5a13 341.0±275.6a6 261.0±45.5d2 829.0±106.6c0.464±0.004 7b泰麦191819 624.5±197.3a13 251.0±212.1a6 373.5±45.5c3 108.0±106.1b0.483±0.003 0a

表5(续)

类别Type品种Variety成熟期干物质积累量/(kg/hm2)DMM 开花期干物质积累量/(kg/hm2)DMA开花后干物质积累量/(kg/hm2)DMP开花前干物质转运量/(kg/hm2)DMT 收获指数HIⅡ济麦2219 479.0±605.2a13 222.5±582.4ab6 256.5±48.8a2 614.5±93.3b0.456±0.008 5b山农28号19 393.5±442.6a13 255.5±383.2ab6 138.0±69.0b2 365.5±105.4c0.439±0.008 4b鑫麦29619 167.0±388.1a13 497.0±339.0a5 670.0±55.9e3 027.0±54.6a0.454±0.006 8b泰农3318 736.5±558.5ab12 888.0±541.4ab5 848.5±47d2 605.5±42.9b0.452±0.014 6b济麦2319 642.5±326.3a13 408.5±325.7a6 234.0±42.2a2 451.0±124.1bc0.442±0.003 6b济南17号18 907.5±717.8ab12 850.5±636.8ab6 057.0±84.5c2 533.5±114.1bc0.455±0.011 4b济麦2019 104.0±181.8ab12 879.0±209.7ab6 225.0±34.2a2 484.0±96.1bc0.456±0.002 1b金海121218 039.0±517.8b12 249.0±493.9b5 790.0±49.8d2 857.5±112.5a0.480±0.010 9aⅢ山农24号18 040.5±213.0c12 834.0±238.6ab5 206.5±40.7e2 782.5±153.3b0.443±0.003 0ab青农2号18 207.0±807.6c12 534.0±715.7ab5 673.0±92.1d2 208.0±30.8cd0.433±0.015 3b泰农1919 549.5±616.9a13 608.0±571.0a5 941.5±65.8b2 431.5±98.9c0.429±0.008 0b菏麦1918 000.0±616.2c13 111.5±653.1ab4 888.5±37.2g3 291.0±43.5a0.455±0.018 6abDH5120219 342.5±362.3ab13 066.5±356.8ab6 276.0±42.3a2 094.0±44.8de0.433±0.007 6b济麦22917 877.0±702.3c12 073.5±615.1b5 803.5±92.8c1 936.5±24.8e0.433±0.010 6b齐民7号17 484.0±741.3c12 486.0±697.8ab4 998.0±50.7f3 090.0±237.3a0.463±0.010 8abⅣ儒麦1号15 930.0±610.8c11 787.0±568.7b4 143.0±43.2f2 673.0±158.2ab0.429±0.023 2a泰农1817 925.0±579.0a12 841.5±586.5a5 083.5±28.0c2 247.0±129.5cd0.409±0.006 5ab鲁原50217 494.5±452.7ab12 247.5±451.3ab5 247.0±27.0a1 944.0±200.6de0.411±0.001 0ab山农29号17 824.5±378.6a12 877.5±371.5a4 947.0±44.8d2 046.0±188.7de0.392±0.003 2b泰山2816 453.5±184.6bc12 076.5±166.5ab4 377.0±44.9e2 491.5±57.9bc0.417±0.004 8ab泰山2716 033.5±912.2c12 087.0±905.7ab3 946.5±43.1g2 863.5±113.4a0.426±0.027 6a洲元936917 356.5±617.7ab12 274.5±598.7ab5 082.0±45.6c1 897.5±34.4e0.403±0.012 2ab烟农19号17 953.5±708.1a12 763.5±706.1ab5 190.0±30.1b2 119.5±332.3de0.407±0.008 2ab师栾02-117 418.0±332.9ab12 339.0±289.1ab5 079.0±57.8c1 956.0±149.2de0.404±0.014 0abⅤ临麦414 497.5±263.5a11 479.5±309.3a3 018.0±45.8c2 449.5±205.6a0.377±0.005 1a郯麦9815 517.5±789.9a11 830.5±755.1a3 687.0±352b2 443.5±149.9a0.396±0.011 5a泰科麦3315 919.5±423.1a11 463.0±415.6a4 456.5±37.5a1 860.0±329.2a0.397±0.012 3aⅠ平均19 705.5±155.1a13 370.4±121.8a6 335.1±46.4a3 081.6±11.8a0.478±0.002 2aⅡ平均19 058.6±89.4b13 031.3±42.9ab6 027.4±48.8b2 617.3±27.6b0.454±0.000 9bⅢ平均18 357.2±278.8c12 816.2±238.6b5 541.0±57.7c2 547.6±41.0b0.441±0.002 7cⅣ平均17 154.3±310.3d12 366.0±309.3c4 788.3±36.8d2 248.7±104.8c0.411±0.006 4dⅤ平均15 311.5±156.3e11 591.0±124.6d3 720.5±37.7e2 251.0±78.2c0.390±0.004 6e

2.4 氮素积累、氮素利用效率和氮素收获指数

由表6可以看出,2016-2017年,第Ⅰ和Ⅱ类小麦品种成熟期氮素积累量间无显著差异,但显著高于其余各类品种;氮素利用效率表现为:Ⅰ>Ⅲ>Ⅱ>Ⅳ>Ⅴ;Ⅰ至Ⅴ类小麦品种氮素收获指数均值分别为:79.31%,75.92%,74.28%,74.10%和73.79%,Ⅰ类小麦品种氮素收获指数显著高于其余各类品种,Ⅲ、Ⅳ、Ⅴ类小麦品种间差异不显著。

表6 2016-2017年不同小麦品种氮素积累、氮素利用效率和氮素收获指数
Tab.6 Nitrogen accumulation, nitrogen use efficiency and nitrogen harvest index of different winter wheat varieties during 2016 to 2017 growing season

类别Type品种Variety成熟期氮素积累量/(kg/hm2)Nitrogen accumulation at maturity氮素利用效率/%Nitrogen use efficiency氮素收获指数/%Nitrogen harvest indexⅠ烟农999216.7±1.3b42.33±0.25a81.38±0.26a山农28号225.7±0.3b41.17±0.04a78.43±0.34b泰麦1918245.9±9.8a37.78±1.42b78.12±1.11bⅡ良星99239.9±0.9a36.88±0.04c76.55±0.10bc鲁原502204.8±1.8d41.74±0.19a77.16±0.46b鑫麦296218.0±0.6c39.63±0.19b76.20±0.35bc泰农19228.2±1.0b37.80±0.10c75.52±0.41c泰农33229.6±11.2b38.36±1.93bc71.26±1.18d济麦23234.6±1.9ab36.73±0.21c78.82±0.40aⅢ临麦4212.1±4.4bcd38.53±0.63cde75.16±1.05abc泰农18216.8±0.6b38.87±0.01cde74.65±0.23bc

表6(续)

类别Type品种Variety成熟期氮素积累量/(kg/hm2)Nitrogen accumulation at maturity氮素利用效率/%Nitrogen use efficiency氮素收获指数/%Nitrogen harvest index济麦22212.6±1.4bc37.90±0.25e71.84±0.30e山农29号202.3±1.3cde41.57±0.21b72.27±0.26de青农2号190.2±4.8f44.25±1.02a74.77±0.91bc泰山28199.0±0.7f40.74±0.13bc77.09±0.06a齐麦2号200.6±14.7def40.57±3.24bc75.48±2.21abc烟农173200.9±1.2def40.28±0.16bcd73.95±0.83cd泰科麦33218.5±2.0b37.07±0.17e76.23±0.22ab齐民7号233.1±6.7a34.74±0.93f71.89±1.66e金海1212218.5±2.6b38.13±0.17de73.75±0.19cdeⅣ郯麦98201.3±4.2ef38.53±0.74a74.96±0.18b儒麦1号205.2±2.2de37.97±0.30a75.54±0.42ab菏麦19212.7±4.3c35.45±0.73c71.50±0.60dDH51202196.6±3.0f38.68±0.38a72.46±0.99cd泰山27235.6±2.8b32.45±0.14d75.08±0.10b烟农19号245.9±2.7a31.60±0.32d72.59±0.53c济麦20210.6±3.4cd36.59±0.27b76.57±0.40aⅤ山农24号188.5±8.2d37.94±1.78a75.70±2.88ab洲元9369219.6±1.1b33.46±0.15b77.83±0.29a济南17号218.1±3.7b33.89±0.39b70.49±0.62c济麦229195.9±2.7c36.94±0.03a73.12±0.20bc师栾02-1250.8±2.8a28.44±0.11c71.80±0.36cⅠ平均229.4±3.4a40.43±0.51a79.31±0.32aⅡ平均225.9±2.3a38.52±0.40c75.92±0.06bⅢ平均209.5±0.9c39.33±0.24b74.28±0.40cⅣ平均215.4±1.6b35.89±0.27d74.10±0.28cⅤ平均214.6±3.4b34.13±0.46e73.79±0.39c

由表7可知,2017-2018年,Ⅰ类小麦品种的成熟期氮素积累量、氮素利用效率和氮素收获指数最高,且显著高于其余各类品种;成熟期氮素积累量表现为:Ⅰ>Ⅱ>Ⅲ、Ⅳ>Ⅴ,氮素利用效率表现为:Ⅰ>Ⅱ>Ⅲ>Ⅳ>Ⅴ,氮素收获指数表现为:Ⅰ>Ⅱ、Ⅲ>Ⅳ、Ⅴ。

表7 2017-2018年不同小麦品种氮素积累、氮素利用效率和氮素收获指数
Tab.7 Nitrogen accumulation, nitrogen use efficiency and nitrogen harvest index of different winter wheat varieties during 2017 to 2018 growing season

类别Type品种Variety成熟期氮素积累量/(kg/hm2)Nitrogen accumulation at maturity氮素利用效率/%Nitrogen use efficiency氮素收获指数/%Nitrogen harvest indexⅠ烟农999221.4±3.4b42.85±0.71a76.41±0.54a良星99232.6±3.9a40.06±0.71b72.68±1.51bc齐麦2号222.3±5.8b40.68±1.05b73.77±0.40b烟农173224.8±4.4ab40.40±0.84b72.18±0.79bc泰麦1918228.2±5.3ab40.28±0.94b71.54±0.87cⅡ济麦22215.2±6.0c40.56±1.19ab70.37±0.52b山农28号224.7±5.4b37.33±0.75de71.09±0.71ab鑫麦296234.2±2.7a36.49±0.48e69.76±0.30b泰农33199.4±2.9d41.97±0.56q65.86±1.33c济麦23225.4±6.8ab38.44±0.98cd70.75±0.91ab济南17号202.2±7.1d42.24±1.46a67.20±1.03c济麦20216.2±2.1bc39.60±0.33bc70.27±0.08b金海1212221.0±2.6bc38.18±0.42cde72.39±0.68aⅢ山农24号213.7±2.0bc36.92±0.39bcd69.26±0.58bc青农2号207.2±4.1cd38.30±0.69b68.49±0.45c泰农19220.4±4.1ab37.30±0.73bc65.03±1.03d菏麦19227.0±3.8a35.45±0.59d72.62±1.36aDH51202184.9±4.6e44.60±1.07a69.75±0.69bc济麦229198.5±3.9d38.46±0.72b72.56±0.77a齐民7号223.7±7.9a36.37±1.31cd71.17±0.63ab

表7(续)

类别Type品种Variety成熟期氮素积累量/(kg/hm2)Nitrogen accumulation at maturity氮素利用效率/%Nitrogen use efficiency氮素收获指数/%Nitrogen harvest indexⅣ儒麦1号195.7±4.4c34.09±0.82b72.41±2.26a泰农18228.7±4.5a31.75±0.60de69.88±0.54b鲁原502210.1±5.7b32.47±0.92cd69.66±0.78b山农29号211.6±2.4b32.25±0.34d64.97±0.47d泰山28196.7±3.2c33.80±0.43bc68.95±0.43b泰山27181.3±2.6d36.85±0.35a68.64±2.03bc洲元9369228.6±1.5a30.48±0.56e69.70±0.81b烟农19号226.8±6.6a31.98±0.89d67.63±0.75bc师栾02-1211.5±1.2b32.94±0.19bcd66.57±1.49cdⅤ临麦4154.7±4.0b34.16±0.66a68.52±0.75a郯麦98174.0±4.0b32.46±0.70ab68.23±1.10a泰科麦33207.8±8.7a29.33±1.48b68.44±0.78aⅠ平均225.8±2.5a40.85±0.45a73.32±0.34aⅡ平均217.3±2.6b39.35±0.43b69.71±0.16bⅢ平均210.8±2.3c38.20±0.44c69.84±0.19bⅣ平均210.1±0.8c32.95±0.10d68.71±0.71cⅤ平均178.8±1.7d31.98±0.35e68.40±0.68c

2.5 相关性分析

2016-2017年,产量分别与库容量、千粒质量、成熟期干物质积累量、开花后干物质积累量、收获指数、氮素利用效率和氮素收获指数呈极显著正相关(表8);穗数与穗粒数和千粒质量呈极显著负相关,与库容量呈极显著正相关;库容量分别与成熟期干物质积累量、收获指数和成熟期氮素积累量呈显著正相关,与开花后干物质积累量呈极显著正相关,千粒质量与库容量之间呈极显著负相关;千粒质量分别与成熟期干物质积累量和氮素收获指数呈显著正相关,与收获指数和氮素利用效率呈极显著正相关;成熟期干物质积累量分别与开花后干物质积累量和收获指数呈极显著正相关,与成熟期氮素积累量、氮素利用效率和氮素收获指数之间呈显著正相关;收获指数与开花后干物质积累呈显著正相关,成熟期氮素积累量与氮素利用效率呈极显著负相关,氮素收获指数与氮素利用效率呈显著正相关。

表8 2016-2017年不同小麦品种产量与农艺性状的相关关系(Pearson)
Tab.8 Correlation among agronomic traits and grain yield of different winter wheat varieties during 2016 to 2017 growing season(Pearson)

2016-2017 产量GY穗数SN穗粒数GNPS库容量SC千粒质量TGW成熟期干物质积累量DMM开花后干物质积累量DMP收获指数HI成熟期氮素积累量NAM氮素利用效率NUE穗数 SN 0.05ns 穗粒数 GNPS 0.21ns-0.89∗∗ 库容量SC 0.52∗∗0.62∗∗-0.21ns 千粒质量 TGW 0.47∗∗-0.58∗∗0.43∗-0.50∗∗ 成熟期干物质积累量DMM0.84∗∗0.09ns0.13ns0.43∗0.39∗ 开花后干物质积累量 DMP0.79∗∗0.04ns0.26ns0.52∗∗0.25ns0.88∗∗ 收获指数 HI 0.85∗∗-0.04ns0.22ns0.37∗0.48∗∗0.47∗∗0.44∗ 成熟期氮素积累量NAM 0.27ns0.29ns-0.11ns0.43∗-0.17ns0.39∗0.43∗0.03ns 氮素利用效率 NUE 0.58∗∗-0.20ns0.26ns0.06ns0.51∗∗0.36∗0.29ns0.65∗∗-0.63∗∗氮素收获指数 NHI 0.51∗∗-0.11ns0.20ns0.15ns0.35∗0.37∗0.34ns0.50∗∗0.02ns0.38∗

注:GY.产量;SN.穗数;GNPS.穗粒数;SC.库容量;TGW.千粒质量;DMM.成熟期干物质积累量;DMP.开花后干物质积累量;HI.收获指数;NAM.成熟期氮素积累量;NUE.氮素利用效率;NHI.氮素收获指数。ns、***分别表示无显著性关系(P>0.05),显著性相关(P<0.05)和极显著性相关(P<0.01)。表9同。

Note:GY.Grain yield; SN.Spike number; GNPS.Grain number per spike; SC.Sink capacity; TGW.Thousand grain weight; DMM.Dry matter accumulation at maturity; DMP.Dry matter accumulation post-anthesis; HI.Harvest index; NAM.Nitrogen accumulation at maturity; NUE.Nitrogen use efficiency; NHI.Nitrogen harvest index.ns,* and **mean no significant difference at P>0.05, difference at P<0.05 and P <0.01, respectively.The same as Tab.9.

表9 2017-2018年不同小麦品种农艺性状与产量的相关关系(Pearson)
Tab.9 Correlation among agronomic traits and grain yield of different winter wheat varieties during 2017 to 2018 growing season(Pearson)

2017-2018产量GY穗数SN穗粒数GNPS库容量SC千粒质量TGW成熟期干物质积累量DMM开花后干物质积累量DMP收获指数HI成熟期氮素积累量NAM氮素利用效率NUE穗数 SN 0.74∗∗ 穗粒数 GNPS 0.13ns-0.37∗ 库容量 SC 0.87∗∗0.87∗∗0.13ns 千粒质量 TGW 0.18ns-0.25ns-0.06ns-0.27ns 成熟期干物质积累量 DMM0.94∗∗0.74∗∗0.05ns0.83∗∗0.17ns 开花后干物质积累量 DMP0.92∗∗0.79∗∗0.01ns0.86∗∗0.07ns0.97∗∗ 收获指数 HI 0.88∗∗0.62∗∗0.12ns0.74∗∗0.22ns0.69∗∗0.70∗∗ 成熟期氮素积累量 NAM 0.65∗∗0.44∗∗0.25ns0.60∗∗0.09ns0.68∗∗0.64∗∗0.50∗∗ 氮素利用效率 NUE 0.79∗∗0.62∗∗-0.01ns0.68∗∗0.14ns0.70∗∗0.71∗∗0.75∗∗0.06ns 氮素收获指数 NHI 0.48∗∗0.26ns0.21ns0.39∗0.22ns0.29ns0.32ns0.64∗∗0.31ns0.35∗

2017-2018年,产量分别与穗数、库容量、成熟期干物质积累量、开花后干物质积累量、收获指数、成熟期氮素积累量、氮素利用效率以及氮素收获指数之间呈极显著正相关(表9);穗数分别与库容量、成熟期干物质积累量、开花后干物质积累量、收获指数、成熟期氮素积累量、氮素利用效率呈极显著正相关,与穗粒数呈显著负相关;库容量分别与成熟期干物质积累量、开花后干物质积累量、收获指数、成熟期氮素积累量、氮素利用效率和氮素收获指数呈极显著正相关,与氮素收获指数呈显著正相关;成熟期干物质积累量分别与开花后干物质积累量、收获指数、成熟期氮素积累量、氮素利用效率以及氮素收获指数之间呈极显著正相关;收获指数分别与成熟期氮素积累量、氮素利用效率以及氮素收获指数呈极显著正相关;氮素利用效率与氮素收获指数呈显著正相关。

3 讨论与结论

小麦产量是由单位面积穗数、穗粒数、千粒质量三者或者库容量(单位面积穗数×穗粒数)和千粒质量共同决定,小麦的基因型、栽培措施等因素影响了小麦产量的构成因素,并进一步影响产量[6,15]。赵倩等[16]对山东省2012-2016年审定通过的小麦品种的产量及其构成因素进行相关分析发现,产量与千粒质量呈显著正相关,与穗粒数呈不显著正相关。刘新月等[17]对1986-2014年黄淮旱地冬小麦品种产量性状演变研究发现,产量与有效穗和千粒质量均呈极显著正相关。较多研究表明,通过育种或栽培手段提高库容量是进一步提高小麦产量的关键,在库容量不降低的前提下,提高千粒质量亦可增加产量[15,18]。本试验结果表明,不同小麦品种的产量与穗数、穗粒数、库容量和千粒质量之间均呈正相关关系,且产量较高的Ⅰ类小麦品种的穗数、穗粒数和千粒质量也相对较高,Ⅰ类小麦品种同步获得较高千粒质量和库容量是其高产的原因之一。

小麦产量与成熟期的干物质积累量和收获指数密切相关,提高成熟期干物质积累量和收获指数可以有效提高小麦产量[6,19]。另外,小麦开花后绿色器官光合同化物积累和开花前营养器官贮藏物质的转运是产量形成的重要来源,增加开花后光合同化物积累可以增加收获指数和产量[6]。开花前贮藏物质转运和开花后同化物的积累在不同品种之间存在显著差异,邵庆勤等[20]对不同小麦品种的研究表明,皖麦29和良星66的开花前贮藏同化物转运量和开花后光合同化物积累量显著高于其余品种,因此产量较高。本试验研究结果表明,2 a产量与成熟期干物质积累量、开花后干物质积累量和收获指数均达到极显著正相关水平;开花后干物质积累量分别与成熟期干物质积累量和收获指数呈极显著正相关;Ⅰ类小麦品种的成熟期干物质积累量、收获指数、开花后干物质积累量和开花前干物质转运量显著高于其余各类小麦品种,因此其产量较高,而且其较高的开花后干物质积累量是收获指数较高的原因。

氮素是小麦生长发育、产量和品质形成的重要元素之一,提高小麦对氮素的吸收利用是提高产量的主要措施[21]。小麦品种间氮素吸收和利用存在显著差异,在相同施氮水平下,筛选高氮吸收和利用的小麦品种,可以减少农田氮素的损失[22-23]。黄明等[24]在干旱地区对不同小麦品种氮素吸收利用的研究表明,高产组小麦品种的成熟期氮素积累量和氮素利用效率显著高于中地产组小麦品种,而氮素收获指数品种间无显著差异。熊淑萍等[25]研究表明,氮高效品种周麦27和郑麦366较其余品种,协同提高籽粒产量、氮素吸收和氮素利用效率。本试验结果表明,2017年产量与氮素利用效率和氮素收获指数呈极显著正相关,与成熟期氮素积累量呈正相关关系但不显著;2018年产量与成熟期氮素积累量、氮素利用效率和氮素收获指数呈极显著正相关。Ⅰ类小麦品种较其余各类品种的成熟期氮素积累量、氮素利用效率和氮素收获指数较高。

2 a通过对32个供试冬小麦品种产量的聚类分析,烟农999和泰麦1918 2个品种均归为Ⅰ类,其产量表现最稳定。烟农999和泰麦1918同步提高了库容量和千粒质量,开花前干物质转运量和开花后干物质积累量、成熟期干物质积累量和收获指数以及成熟期氮素积累量和氮素收获指数,因此其产量较高。建议在鲁东地区雨养条件下,供试品种中烟农999和泰麦1918是适宜本地区种植的高产稳产和高氮素吸收利用的冬小麦品种。

参考文献:

[1] 张文博,覃志豪,李文娟,郑盛华,王斐.气候变化对冬小麦产量的影响研究-以山东省为例[J].江西农业学报, 2015, 27(9): 94-98.doi:10.19386/j.cnki.jxnyxb.2015.09.020.

Zhang W B, Qin Z H, Li W J, Zheng S H, Wang F.Research on impact of climatic change on winter wheat yield taking Shandong Province as an example [J]. Acta Agriculturae Jiangxi, 2015,27(9): 94-98.

[2] 张园,郭国安,田文仲,杨子光,吴少辉,高海涛,张少澜,张灿军,王建玮,马芳芳.黄淮区旱作条件下高产冬小麦品种筛选及高产指标研究[J].江西农业学报, 2017,29(6):7-12.doi:10.19386/j.cnki.jxnyxb.2017.06.02.

Zhang Y, Guo G A, Tian W Z, Yang Z G, Wu S H, Gao H T, Zhang S L, Zhang C J, Wang J W, Ma F F.Studies on screening and high-yielding indexes of high-yielding winter wheat varieties under dry farming condition in Huanghuai area [J]. Acta Agriculturae Jiangxi, 2017, 29(6):7-12.

[3] 陈玉洁,陈国庆,王良,刘晓静,王兰,刘肖瑜,李学国.不同RCP情景下山东省小麦、玉米关键生育期的气候变化预估[J].山东农业科学,2018,50(8):127-136.doi:10.14083/j.issn.1001-4942.2018.08.027.

Chen Y J, Chen G P, Wang L, Liu X J, Wang L, Liu X Y, Li X G. Prediction of climate change in key growth stages of wheat and maize in Shandong Province under different RCP scenarios [J].Shandong Agricultural Sciences, 2018,50(8):127-136.

[4] Garcia A L, Savin R, Slafer G A. Fruiting efficiency differences between cereal species[J]. Field Crops Research, 2019, 231: 68-80. doi:10.1016/j.fcr.2018.11.005.

[5] Zhou Y, Zhu H Z, Cai S B, He Z H, Zhang X K, Xia X C, Zhang G S. Genetic improvement of grain yield and associated traits in the Southern China winter wheat region: 1949 to 2000[J]. Euphytica, 2007,157(3):465-473. doi:10.1007/s10681-007-9376-8.

[6] Xu X X, Zhang M, Li J P, Liu Z Q, Zhao Z G, Zhang Y H, Zhou S L, Wang Z M. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain [J]. Field Crops Research, 2018, 221: 219-227.doi:10.1016/j.fcr.2018.02.011.

[7] Xu X X, Zhang Y H, Li J P, Zhang M, Zhou X N, Zhou S L, Wang Z M. Optimizing single irrigation scheme to improve water use efficiency by manipulating winter wheat sink-source relationships in Northern China Plain [J]. PLoS One, 2018, 13(3): e0193895.doi:10.1371/journal.pone.0193895.

[8] 赵刚,王淑英,王勇,李尚中,唐小明,张建军,王磊,党翼.不同冬小麦品种对氮素吸收利用效率的差异研究[J].华北农学报,2010,25(3):180-185. doi:10.7668/hbnxb.2010.03.038.

Zhao G, Wang S Y, Wang Y, Li S Z, Tang X M, Zhang J J, Wang L, Dang Y. Study on the difference of nitrogen uptake efficiency in the different wheat varieties[J]. Acta Agriculturae Boreali-Sinica, 2010,25(3):180-185.

[9] 韩胜芳,李淑文,吴立强,文宏达,肖凯.不同小麦品种氮效率与氮吸收对氮素供应的响应及生理机制[J]. 应用生态学报,2007,18(4):807-812.doi:10.13287/j.1001-9332.2007.0136.

Hang S F, Li S W, Wu L Q, Wen H D,Xiao K.Responses and corresponding physiological mechanisms of different wheat varieties in their nitrogen efficiency and nitrogen uptake to nitrogen supply[J].Chinese Journal of Applied Ecology, 2007,18(4):807-812.

[10] 王东,桑晓光,周杰,满建国,谷淑波,王杰,相昌芬,鹿莹.不同类型冬小麦氮、硫积累分配及利用效率的差异[J]. 中国农业科学, 2010,43(22):4587-4597. doi:10.3864/j.issn.0578-1752.2010.22.005.

Wang D, Sang X G, Zhou J, Man J G, Gu S B, Wang J, Xiang C F, Lu Y.Differences in accumulation and distribution and use efficiency of nitrogen and sulfur in different types of winter wheat[J]. Scientia Agricultura Sinica, 2010,43(22):4587-4597.

[11] 车升国,袁亮,李燕婷,林治安,沈兵,胡树文,赵秉强.我国主要麦区小麦氮素吸收及其产量效应[J].植物营养与肥料学报,2016,22(2):287-295. doi:10.11674/zwyf.15034.

Che S G, Yuan L, Li Y T, Lin Z A, Shen B, Hu S W, Zhao B Q.N uptake and yield response of wheat in main wheat production regions of China[J]. Journal of Plant Nutrition and Fertilizers, 2016,22(2):287-295.

[12] 马小龙,王朝辉,曹寒冰,佘旭,何红霞,包明,宋庆赟,刘金山.黄土高原旱地小麦产量差异与产量构成及氮磷钾吸收利用的关系[J].植物营养与肥料学报,2017,23(5):1135-1145.doi:10.11674/zwyf.17150.

Ma X L, Wang Z H, Cao H B, She X, He H X,Bao M, Song Q Y, Liu J S. Yield variation of winter wheat and its relation to yield components, NPK uptake and utilization in drylands of the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizers,2017, 23(5): 1135 1145.

[13] Man J G, Yu Z W, Zhang Y L, Shi Y, Wang L Q. Water and nitrogen use of winter wheat under different supplemental irrigation regimes[J]. Crop Science, 2016,56(6): 3237-3249.doi:10.2135/cropsci2015.08.0521.

[14] 金欣欣,张喜英,陈素英,孙宏勇,王彦梅,邵立威,高丽娜.不同灌溉次数和灌溉量对冬小麦氮素吸收转移的影响[J].华北农学报,2009,24(4):112-118.doi:10.7668/hbnxb.2009.04.023.

Jin X X, Zhang X Y, Chen S Y, Sun H Y, Wang Y M, Shao L W, Gao L N. Effect of different irrigation frequency and amount on nitrogen uptake, translocation of winter wheat[J]. Acta Agriculturae Boreali-Sinica, 2009,24(4):112-118.

[15] Quintero A, Molero G, Reynolds M P, Calderini D F. Trade-off between grain weight and grain number in wheat depends on GxE interaction: A case study of an elite CIMMYT panel(CIMCOG)[J].European Journal of Agronomy,2018,92:17-29.doi:10.1016/j.eja.2017.09.007.

[16] 赵倩,李美玲,李林志,辛庆国,殷岩. 2006-2012年山东省审定高产小麦品种产量构成因素相关和通径分析[J].山东农业科学,2013,45(11):21-24. doi:10.14083/j.issn.1001-4942.2013.11.021.

Zhao Q, Li M L, Li L Z, Xin Q G, Yin Y.Correlation and path analysis of yield components of high-yielding wheat varieties approved in Shandong Province from 2006 to 2012[J].Shandong Agricultural Sciences, 2013,45(11):21-24.

[17] 刘新月,裴磊,卫云宗.黄淮旱地小麦品种产量性状演变研究[J].农学学报,2015,5(7):1-8.

Liu X Y, Pei L, Wei Y Z. Study on variations of yield traits for dryland wheat varieties in Huanghuai plain[J]. Journal of Agriculture, 2015,5(7):1-8.

[18] Fischer R A, Byerlee D, Edmeades G. Crop yields and global food security.Will yield increase continue to feed the world?[J]. American Janurnal of Agricultural Economics,2015,97(2):661-663.doi:10.1093/ajae/aau121.

[19] Reynolds M P, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G. Achieving yield gains in wheat[J]. Plant Cell and Environment, 2012, 35(10):1799-1823.doi:10.1111/j.1365-3040.2012.02588.x.

[20] 邵庆勤,周琴,王笑,蔡剑,黄梅,戴廷波,姜东.不同小麦品种物质积累转运与抗倒性差异及其对多效唑的响应[J]. 核农学报, 2018, 32(12):2438-2447. doi:10.11869/j.issn.100-8551.2018.12.2438.

Shao Q Q, Zhou Q,Wang X, Cai J, Huang M, Dai T B, Jiang D. Study on dry matter accumulation and transportation and lodging resistance of different types of wheat and their sensitivity to paclobutrazol[J].Journal of Nuclear Agricultural Sciences, 2018,32(12):2438-2447.doi:10.11869/j.issn.100-8551.2018.12.2438.

[21] 张旭,田中伟,胡金玲,修明,姜东,戴廷波.小麦氮素高效利用基因型的农艺性状及生理特性[J]. 麦类作物学报,2016,36(10):1315-1322. doi:10.7606/j.issn.1009-1041.2016.10.07.

Zhang X, Tian Z W, Hu J L, Xiu M, Jiang D, Dai T B. Agronomic and physiological characteristics of high efficient nitrogen utilization in wheat[J]. Journal of Triticeae Crops,2016,36(10):1315-1322.

[22] 盛婧,孙国峰,吴纪中,周炜,王鑫.不同基因型小麦的氮吸收特征与农田归还率研究[J]. 麦类作物学报, 2015,35(6):813-819.doi:10.7606/j.issn.1009-1041.2015.06.12.

Sheng J, Sun G F, Wu J Z, Zhou W, Wang X. Nitrogen absorption characteristics and return rate of different genotypes of wheat cultivars[J]. Journal of Triticeae Crops, 2015,35(6):813-819.

[23] 王小纯, 王晓航, 熊淑萍,马新明,丁世杰,吴克远,郭建彪.不同供氮水平下小麦品种的氮效率差异及其氮代谢特征[J].中国农业科学,2015,48(13):2569-2579.doi:10.3864/j.issn.0578-1752.2015.13.009.

Wang X C, Wang X H, Xiong S P, Ma X M, Ding S J, Wu K Y, Guo J B. Differences in nitrogen efficiency and nitrogen metabolism of wheat varieties under different nitrogen levels[J]. Scientia Agricultura Sinica,2015,48(13):2569-2579.

[24] 黄明,吴金芝,李友军,王贺正,陈明灿,付国占.旱地不同产量水平小麦的产量构成及氮素吸收利用的差异[J].麦类作物学报,2019,39(2):163-170.doi:10.7606/j.issn.1009-1041.2019.02.06.

Huang M, Wu J Z, Li Y J, Wang H Z, Chen M C, Fu G Z. Differences of yield components and nitrogen uptake and utilization in winter wheat with different yield levels in drylands[J]. Journal of Triticeae Crops,2019,39(2):163-170.

[25] 熊淑萍,吴克远,王小纯,张捷,杜盼,吴懿鑫,马新明.不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析[J].中国农业科学,2016,49(12):2267-2279.doi:10.3864/j.issn.0578-1752.2016.12.003.

Xiong S P, Wu K Y, Wang X C, Zhang J, Du P, Wu Y X, Ma X M. Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency[J]. Scientia Agricultura Sinica,2016,49(12): 2267-2279.

Studies on Yield Formation and Nitrogen Utilization Characteristics of Different Winter Wheat Varieties under Rain-fed Condition

LIU Haihong, XU Xuexin, WU Shanshan, YU Siyi, SHI Yan, ZHAO Changxing

(Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China)

Abstract In order to screen high-yielding and efficient winter wheat varieties for rainfed region of Ludong, the field experiments were carried out in 2016-2018 growing seasons under rainfed condition, and 32 medium-strong gluten winter wheat varieties cultivated in Huang-Huai-Hai region were used to explore the changes of grain yield, dry matter accumulation and remobilization, nitrogen uptake and utilization of winter wheat varieties and so on. The results showed that 32 winter wheat varieties could be classified into 5 types by cluster analysis based on the grain yield. During the two growing years, grain yield of type Ⅰ were 9 247.1,9 219.7 kg/ha, respectively, which were significantly higher than those of other winter wheat types, and type Ⅰ winter wheat varieties synergistically increased sink capacity(grain number per unit area) and 1000-grain weight. Maturity and post-anthesis dry matter accumulation, pre-anthesis dry matter remobilization, harvest index, maturity nitrogen accumulation, nitrogen use efficiency and nitrogen harvest index of type Ⅰ winter wheat varieties were significantly higher than those of other winter wheat types. Grain yield was significantly and positively correlated with sink capacity, maturity and post-anthesis dry matter accumulation, harvest index, nitrogen use efficiency and nitrogen harvest index, respectively; grain yield was significantly and positively correlated with maturity nitrogen accumulation as well in 2017-2018 growing seasons. Based on the two year results, both Yannong 999 and Taimai 1918 belonged to type Ⅰ winter wheat varieties. Those two varieties synergistically increased sink capacity and 1000-grain weight, post-anthesis dry matter accumulation and dry matter remobilization, maturity dry matter accumulation and harvest index, maturity nitrogen accumulation and nitrogen harvest index, so the grain yield was significantly higher and more stable. In conclusion, under the semi-humid and drought climate and rain-fed conditions of Ludong region, Yannong 999 and Taimai 1918 were high-yielding and high efficient winter wheat varieties which were suitable for planting in this region.

Key words: Winter wheat; Varieties; Sink capacity; Dry matter accumulation; Nitrogen use efficiency; Rainfed condition

收稿日期:2019-09-07

基金项目:国家重点研发计划“粮食丰产增效科技创新”重点专项经费(2016YFD0300403;2018YFD0300604);青岛市现代农业产业技术体系小麦创新推广团队项目(6622316104)

作者简介:刘海红(1988-),女,海南琼中人,在读硕士,主要从事小麦节水高产栽培研究。

通讯作者:赵长星(1976-),男,山东曹县人,教授,博士,主要从事小麦节水高产栽培生理生态研究。

中图分类号:S143.1

文献标识码:A

文章编号:1000-7091(2019)06-0133-12

doi:10.7668/hbnxb.20190270