摘要:为探讨大豆GmbHLH041转录因子在应答镉胁迫中的作用,根据前期的镉胁迫前后大豆根系转录组测序结果,筛选获得响应Cd胁迫的GmbHLH041基因,利用NCBI和Phytozome数据库,结合生物信息学软件对GmbHLH041基因进行预测分析,并通过qRT-PCR的方法检测大豆根系中GmbHLH041基因在50 μmol/L CdSO4胁迫0,24 h的表达情况。结果显示,GmbHLH041基因编码542个氨基酸,相对分子质量为61.17 ku,理论等电点为5.89。二级结构预测结果显示,该氨基酸序列主要以无规则卷曲(39.48%)、α-螺旋(37.27%)和伸展链(16.61%)的形式存在,从拟南芥bHLH家族中的12个亚家族中挑选了24个bHLH蛋白并结合其他物种中亲缘关系较近的bHLH蛋白,对GmbHLH041进行系统进化树分析发现,GmbHLH041与野生大豆和狭叶羽扇豆的bHLH041蛋白亲缘关系较近,GmbHLH041划分到拟南芥bHLH家族第4亚族Ⅳd中。根据进化树的分析结果,选取与GmbHLH041亲缘关系最近的GsbHLH041、LabHLH041以及拟南芥第4亚族Ⅳd中的AT5G56960进行多重比对,结果显示,GmbHLH041含有一个保守的bHLH结构域;荧光定量PCR结果显示,GmbHLH041基因在50 μmol/L CdSO4胁迫24 h后表达量极显著上升,说明GmbHLH041基因在Cd胁迫应答中可能发挥着重要的作用。
关键词:大豆;镉;bHLH
重金属污染已日益成为威胁人类健康的环境问题,而镉(Cd)因其移动性大、毒性持久而成为毒性最强的重金属元素之一[1]。长期暴露在镉污染环境中会导致人体健康受损,包括肺气肿、骨损伤(Itai-Itai)、癌症、心血管疾病和不可逆转的慢性肾功能衰竭[2-4]。
大豆因其含有丰富的营养物质,在世界上的消费越来越广泛[5-6]。但有研究报道,大豆较易吸收重金属[7]。最近的分子生物学研究发现,一些基因家族参与调控植物对Cd的吸收和转运[8-9],其中也包括了bHLH(Basic helix-loop-helix)转录因子家族[10]。
bHLH是普遍存在于真核生物中的转录因子家族,尤其是在哺乳动物中,其结构、功能和进化都得到了很好的分析[11-12]。近年来,有关bHLH在植物中的功能报道越来越多,主要在植物表皮分化、响应环境胁迫以及调控次生代谢调控中起着重要作用[13-15]。
前期对栽培大豆进行了Cd胁迫,并取其根系进行了转录组测序,对其差异基因进行分析发现,GmbHLH041基因在Cd胁迫后呈上调表达,推测该基因与大豆耐Cd性相关。本试验结合NCBI(National Center for Biotechnology Information)和Phytozome基因组数据库,并通过生物信息学软件,对大豆GmbHLH041基因进行进化树分析和同源序列比对,并通过荧光定量PCR分析Cd胁迫下大豆根系中GmbHLH041基因的表达情况,为进一步明确大豆GmbHLH041基因的功能以及作物在Cd胁迫后的应答机制提供理论基础。
前期对Cd胁迫前后大豆根系进行了转录组测序,分析了差异基因的表达情况,结果发现,通过GmbHLH041基因(GenBank登录号为 XM_006600391)在Cd胁迫后表达量急剧上升。从NCBI数据库中获得GmbHLH041的序列,结合生物信息学分析软件 BioXM 2.6对大豆GmbHLH041蛋白理化性质进行分析。
大豆GmbHLH041蛋白进化树分析:首先使用Clustal X2对氨基酸序列进行比对分析,然后用 MEGA 6 软件中的邻接法(Neighbor-Joining,NJ)构建系统进化树,校验参数 Bootstrap 重复1 000 次。
保守序列多重比对:首先使用Clustal X2对氨基酸序列进行比对分析,导出的文件格式通过GeneDoc软件打开。
大豆种子用去离子水浸泡6 h,播种于营养土中,在光照培养箱内催芽。4 d后选取生长一致的幼苗移至1/2 Hoagland 营养液中培养,每2 d更换一次营养液。培养15 d后,用50 μmol/L CdSO4进行处理,取0,24 h的根系,液氮速冻于-80 ℃保存,用于目标基因诱导表达分析。
将50 μmol/L CdSO4 处理 0,24 h的根部组织用TRIzol 试剂进行提取,通过琼脂糖凝胶电泳检测总 RNA 的浓度和纯度。 采用TaKaRa反转录试剂盒反转RNA合成cDNA。
根据NCBI中GmbHLH041基因序列设计引物,引物序列为F:5′-GAACACTTCTTCCTCCA-3′;R:5′-ACAACTTTCTCCTCTCAC-3′;以大豆tublin基因作为内参基因,tublin-F:5′-ATTCCCTTCCCTCGTCTG-3′;tublin-R:5′-CCTTGGTGCTCATCTTGC-3′,以cDNA为模板,按照 SYBR Premix Ex Taq(TaKaRa)反应体系进行定量 PCR 分析,以组成型表达的tublin 为内参,计算出目标基因的相对表达量,每个样品3次生物学重复。
以大豆根系cDNA为模板,利用RT-PCR技术扩增出长度为1 629 bp的GmbHLH041的开放阅读框(Opening reading frame,ORF),编码542个氨基酸的蛋白质,GmbHLH041蛋白相对分子质量为61.17 ku,理论等电点为5.89,在Phytozome数据库比对发现,GmbHLH041基因位于大豆第17条染色体上。
用SOPMA对GmbHLH041蛋白氨基酸序列的二级结构预测结果显示,该氨基酸序列主要以无规则卷曲(39.48%)、α-螺旋(37.27%)和伸展链(16.61%)为主,含少量的β-转角(6.64%)(图1)。利用TMHMM 2.0 Server对GmbHLH041蛋白的跨膜结构域进行预测,发现该蛋白没有跨膜区段。
图1 GmbHLH041蛋白氨基酸序列的二级结构预测
Fig.1 The secondary structure prediction of the GmbHLH041 amino acids sequence
GmbHLH041. 大豆,XP_006600454.1;GsbHLH041.野生大豆,KHN06623.1;CcbHLH041.木豆,XP_020221722.1;VrbHLH041. 绿豆, XP_014500514.1;VabHLH041. 小豆, XP_017421300.1;LabHLH041. 狭叶羽扇豆,XP_019462343.1;MtbHLH. 蒺藜苜蓿, XP_003595200.2;CabHLH041. 鹰嘴豆, XP_004488061.1;AibHLH041. 花生,XP_020974464.1;AdbHLH041.蔓花生, XP_015954671.1;JrbHLH041.胡桃, XP_018845545.1;MdbHLH041.苹果, XP_008344123.1;SibHLH041. 芝麻, XP_011094007.1;AT5G56960.1 Ⅳd;AT1G68240.1Ⅴ1;AT3G59060.2Ⅶa;AT1G02340.1Ⅵb;AT4G30980.1X1;AT1G25330.1 Ⅻ;AT1G27740.1VⅢC;AT2G42280.1Ⅸ;AT3G47640.1Ⅴb;AT1G49770.1Ⅰb;AT1G69010.1 Ⅴa;AT3G21330.1Ⅷb;AT3G22100.1Ⅷa;AT3G19500.1Ⅹ;AT3G61950.1a;AT5G54680.1Ⅳc;AT2G22770.1Ⅳa;AT1G10610.1Ⅲc;AT4G21330.1Ⅲa;AT4G09820.1Ⅲf;AT5G65640.1Ⅲb;AT2G31210.1Ⅱ;AT1G32640.1Ⅲe;AT4G16430.1Ⅲd.拟南芥bHLH 12个亚家族中的24个bHLH蛋白。
GmbHLH041.(Glycine max,XP_006600454.1);GsbHLH041.(Glycine soja,KHN06623.1);CcbHLH041.(Cajanus cajan,XP_020221722.1);VrbHLH041.(Vigna radiata var. radiate, XP_014500514.1);VabHLH041.(Vigna angularis, XP_017421300.1);LabHLH041.(Lupinus angustifolius ,XP_019462343.1);MtbHLH.(Medicago truncatula, XP_003595200.2);CabHLH041.(Cicer arietinum, XP_004488061.1);AibHLH041.(Arachis ipaensis,XP_020974464.1);AdbHLH041.(Arachis duranensis, XP_015954671.1);JrbHLH041.(Juglans regia, XP_018845545.1);MdbHLH041.(Malus domestica, XP_008344123.1);SibHLH041.(Sesamum indicum, XP_011094007.1);AT5G56960.1 Ⅳd;AT1G68240.1Ⅴ1;AT3G59060.2Ⅶa;AT1G02340.1Ⅵb;AT4G30980.1Ⅹ1;AT1G25330.1 Ⅻ;AT1G27740.1ⅧC;AT2G42280.1Ⅸ;AT3G47640.1Vb;AT1G49770.1Ⅰb;AT1G69010.1 Ⅴa;AT3G21330.1Ⅷb;AT3G22100.1Ⅷa;AT3G19500.1Ⅹ;AT3G61950.1a;AT5G54680.1Ⅳc;AT2G22770.1Ⅳa;AT1G10610.1Ⅲc;AT4G21330.1Ⅲa;AT4G09820.1Ⅲf;AT5G65640.1Ⅲb;AT2G31210.1Ⅱ;AT1G32640.1Ⅲe;AT4G16430.1Ⅲd.24 Bhlh proteins from 12 bHLH subgroups of Arabidopsis thaliala.
图2 大豆GmbHLH041蛋白和其他物种bHLH蛋白的系统进化树分析
Fig.2 Phylogenetic tree analysis of soybean GmbHLH041 protein and other species bHLH proteins
GmbHLH041蛋白在NCBI中进行比对,挑选亲缘关系较近的12个其他物种的bHLH,并根据拟南芥中bHLH转录因子亚家族的划分[16],在每个亚家族中选取至少 1个bHLH 氨基酸序列作为该亚家族的代表,从12个亚家族中共选取了24个 bHLH 蛋白质的氨基酸序列,进行进化树分析,结果显示,GmbHLH041与野生大豆(Glycine soja)和狭叶羽扇豆(Lupinus angustifolius)的bHLH041蛋白亲缘关系较近,属于拟南芥bHLH家族第4亚族Ⅳd中(图2)。
多重比对结果发现:GmbHLH041含有一个由60~70个氨基酸组成的保守的bHLH结构域,该结构域包括2个不同功能的保守区域:一个是位于N端参与DNA结合的由15个左右碱性氨基酸组成的区域(The basic region),另一个是位于C端的HLH区域(The helix-loop-helix region),主要参与形成二聚体,由2个疏水氨基酸形成的α-螺旋和1个可变环连接而成(图3)。
图3 大豆GmbHLH041蛋白保守序列多重比对
Fig.3 Comparison of amino acid sequences of the bHLH domains of GmbHLH041
分析了大豆根系在50 μmol/L CdSO4胁迫24 h后GmbHLH041基因的表达情况,从图4可以看出,根系中GmbHLH041基因在Cd胁迫后表达量极显著上升。
图中不同字母代表差异显著性(P<0.01)。
Different letters in the figure represent significant difference(P<0.01).
图4 50 μmol/L CdSO4胁迫24 h GmbHLH041基因在大豆根系中的表达情况
Fig.4 The expression of GmbHLH041 in soybean roots treated with 50 μmol/L CdSO4 for 24 h
镉是植物非必需营养元素,具有很强的生物毒性和较强的化学活性,在植物体内大量积累,会通过食物链危及人类的健康[2-3,17]。植物在进化过程中会形成一系列机制以应对环境胁迫[2]。
bHLH基因家族广泛参与植物的生长发育[18-19]、应对环境胁迫以及信号通路的调控[20-21]。目前,关于bHLH的研究主要集中在模式植物拟南芥中,近年来,陆续有研究报道,bHLH转录因子参与调控植物对金属离子的吸收。Van等[22]报道,Cd胁迫后,拟南芥以及Zn/Cd超富集植物天蓝遏蓝菜(Thlaspi caerulescens)中bHLH100转录因子的表达量上升,在拟南芥中过表达bHLH100能增加转基因植株对Zn和Ni的耐受性。最新的研究发现,3个拟南芥bHLH转录因子(FIT、AtbHLH38和AtbHLH39)参与了植物对Cd胁迫的响应[10]。
前期对Cd胁迫不同时间的大豆根系进行了转录组测序,对测序结果进行差异基因的筛选,发现GmbHLH041基因在Cd胁迫后表达量极显著上升。通过PCR从大豆根系中克隆到该基因,结合生物信息学预测蛋白结构,分析结果显示,该基因含有一个长度为1 629 bp的开放阅读框(Opening reading frame,ORF),编码542个氨基酸的蛋白质,GmbHLH041蛋白相对分子质量为61.17 ku,理论等电点为5.89,位于大豆第17条染色体上。与拟南芥的系统进化树分析显示,GmbHLH041属于第4亚族Ⅳd中,对4个bHLH同源基因氨基酸序列分析结果显示,GmbHLH041含有一个典型的bHLH结构域。荧光定量PCR结果表明,GmbHLH041基因在Cd胁迫后的大豆根系中上调表达,表明该基因可能与镉胁迫调控有关。已经进一步构建了表达载体,以期获得转基因植株,进一步研究该基因的生物学功能。
参考文献:
[1] Fang X,Wang L,Deng X,et al. Genome-wide characterization of soybean P1B-ATPasesgene family provides functional implications in cadmium responses[J]. BMC Genomics,2016,17(1):376.
[2] Sun N,Liu M,Zhang W T,et al. Bean Metal-responsive element-binding transcription factor confers cadmium resistance in tobacco[J]. Plant Physiology,2015,167(3):1136.
[3] Clemens S,Aarts M M,Thomine S,et al. Plant science:the key to preventing slow cadmium poisoning[J]. Trends in Plant Science,2013,18(2):92.
[4] Albert Q,Leleyter L,Lemoine M,et al. Determination and validation of soil thresholds for cadmium based on food quality standard and health risk assessment [J]. Science of the total environment,2018,619:700-706.
[5] Troise A D,Wiltafsky M,Fogliano V A. The quantification of free amadori compounds and amino acids allows to model the bound maillard reaction products formation in soybean products[J]. Food Chemistry,2018,247:29-38.
[6] Zatybekov A,Abugalieva S,Didorenko S A,et al. GWAS of agronomic traits in soybean collection included in breeding pool in Kazakhstan[J]. BMC Plant Biology,2017,17(1):179.
[7] Shute T,Macfie S M. Cadmium and zinc accumulation in soybean:a threat to food safety [J]. Science of the Total Environment,2006,371(1/3):63-73.
[8] Hall J L,Williams L E. Transition metal transporters in plants[J]. Journal of Experimental Botany,2003,54(393):2601-2613.
[9] Krämer U,Talke I N,Hanikenne M. Transition metal transport[J]. FEBS Letters,2007,581(12):2263-2272.
[10] Wu H,Chen C,Du J,et al. Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots[J]. Plant Physiology,2012,158(2):790.
[11] Ledent V,Vervoort M. The basic helix-loop-helix protein family:comparative genomics and phylogenetic analysis[J]. Genome Research,2001,11(5):754.
[12] Li X L,Zhang H M,Ai Q,et al. Two bHLH transcription factors,bHLH34 and bHLH104,regulate Iron homeostasis in Arabidopsis thaliana[J]. Plant Physiology,2016,170(4):2478-2493.
[13] Amoutzias G D,Robertson D L,Oliver S G,et al. Convergent evolution of gene networks by single-gene duplications in higher eukaryotes[J]. EMBO Reports,2004,5(3):274-279.
[14] Castillon A,Shen H,Huq E. Phytochrome interacting factors:central players in phytochrome-mediated light signaling networks[J]. Trends in Plant Science,2007,12(11):514-521.
[15] Stevens J D,Roalson E H,Skinner M K. Phylogenetic and expression analysis of the basic helix-loop-helix transcription factor gene family:genomic approach to cellular differentiation[J]. Differentiation,2008,76(9):1006-1022.
[16] Heim M A,Jakoby M,Werber M,et al. The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity[J]. Molecular Biology and Evolution,2003,20(5):735-747.
[17] Fang X L,Wang L,Deng X J,et al. Genome-wide characterization of soybean P-1B-ATPase gene family provides functional implications in cadmium responses[J]. BMC Genomics,2016,17:376.
[18] Zhu Z G,Chen G P,Guo X H,et al. Overexpression of SlPRE2,an atypical bHLH transcription factor,affects plant morphology and fruit pigment accumulation in tomato[J]. Scientific Reports,2017,7(1):5786.
[19] Moerkercke A V,Steensma P,Schweizer F,et al. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus[J]. Proceedings of the National Academy of Science,2015,112(26):8130-8135.
[20] Patra B,Pattanaik S,Schluttenhofer C,et al. A network of jasmonate-responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus[J]. New Phytologist,2017,217(4):1566-1581.
[21] Takahashi Y,Ebisu Y,Shimazaki K I. Reconstitution of abscisic acid signaling from the receptor to DNA via bHLH transcription factors[J]. Plant Physiology,2017,174(2):815.
[22] Van D M,Judith E,Schat H,et al. Expression differences for genes involved in lignin,glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens[J]. Plant,Cell & Environment,2008,31(3):301-324.
Abstract:In order to investigate the roles of GmbHLH041 in soybean response to cadmium stress,GmbHLH041 was chosen based on the primary transcriptome sequencing of soybean roots after cadmium treatment. By using NCBI,phytozome database combined with bioinformatics software,the systematic prediction and analysis of GmbHLH041 were conducted,and by qRT-PCR,the expression of GmbHLH041 in soybean roots was investigated after 50 μmol/L CdSO4 treatment for 0 and 24 h. GmbHLH041 existed mainly in Random coil(39.48%),Alpha helix(37.27%)and Extended strand(16.61%)according to the secondary structure prediction. The results showed that GmbHLH041 encoded 542 amino acids,the relative molecular weight was 61.17 ku and the theoretical pI was 5.89. Phylogenetic analysis of GmbHLH041 was conduncted with 24 bHLH protein from 12 subgroup of bHLH family in Arabidopsis thaliana and other closely related bHLH proteins of other species. The results of phylogenetic analysis showed that the GmbHLH041 protein had a close homologous relationship with GsbHLH041 and LabHLH041 and belonged to the subclass Ⅳd of Arabidopsis thaliana bHLH proteins. Acording to the results of phylogenetic analysis,alignment of GmbHLH041 with closely related GsbHLH041,LabHLH041 and AT5G56960 from the bHLH subclass Ⅳd of Arabidopsis thaliana,the results showed that GmbHLH041 had a conserved bHLH domain. The expression of GmbHLH041 was up-regulated significantly after 50 μmol/L CdSO4 treatment for 24 h,indicating its important function in response to cadmium stress.
Key words:Soybean;Cadmium;bHLH
中图分类号:Q78;S565.01
文献标识码:A
文章编号:1000-7091(2018)03-0014-05
doi:10.7668/hbnxb.2018.03.003
收稿日期:2018-03-01
基金项目:江苏省自然科学基金项目(BK20130727);江苏省农业科技自主创新资金项目(CX(15)1040);江苏现代农业(特粮特经)产业技术体系集成创新中心(012095411702)