|
|
Cloning and Functional Analysis of Cold Response Factor VcICE1 in Blueberry |
SONG Yang, LIU Hongdi, WANG Haibo, ZHANG Hongjun, LIU Fengzhi |
Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture, Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Xingcheng 125100, China |
|
|
Abstract In order to excavate the role of blueberry cold response genes in cold stress and explore the regulation mechanism of cold stress response, a cold response factor gene VcICE1 (Inducer of CBF3 expression 1) from blueberry was isolated by PCR, and its expression pattern and response to cold stress were analyzed. The transgenic Arabidopsis thaliana were generated via Agrobacterium -mediated transformation, and the expression differences in response to cold stress were compared between the transgenic line and wild-type of Arabidopsis. The transient expression assays in tobacco leaves were carried out to test the transcriptional regulation of AtCBF3 by VcICE1. Sequence analysis showed that the open reading frame(ORF) of VcICE1 was 1 566 bp in length, encoding 522 amino acids. Protein structure analysis showed that VcICE1 contained a basic helix-loop-helix domain. The phylogenetic tree indicated that the blueberry VcICE1 exhibited the highest sequence similarity with the Arabidopsis thaliana AtICE1. Expression analysis showed that VcICE1 could express in roots, stems, young leaves, flowers and fruits, but the expression levels varied in different organs, the highest in young leaves and relatively low in fruits. The expression analysis result indicated that VcICE1 could be induced by cold stress treatment. The VcICE1 protein could activate the expression of AtCBF3 and favorably contributed to cold tolerance in transgenic Arabidopsis. VcICE1 could respond significantly to cold treatment. It was speculated that VcICE1 played a regulatory role in response to cold stress.
|
Received: 10 March 2019
|
|
|
|
|
[1] 吴林. 中国蓝莓35年-科学研究与产业发展[J]. 吉林农业大学学报,2016,38(1):1-11.doi:10.13327/j. jjlau.2015.2935. Wu L. Thirty-five years of research and industry development of blueberry in China[J]. Journal of Jilin Agricultural University,2016,38(1):1-11. [2] 李亚东,孙海悦,陈丽. 我国蓝莓产业发展报告[J]. 中国果树,2016,5:1-10.doi:10.16626/j. cnki. Issn1000-8047.2016.05. 001. Li Y D,Sun H Y,Chen L. Report on the development of blueberry industry in China[J]. China Fruits,2016,5:1-10. [3] 乌凤章,王贺新,韩慧,郭峰. 防寒措施对越橘越冬微环境和越冬性的影响[J]. 果树学报,2012,29(2):278-282.doi:10. 13925/j. cnki. gsxb. 2012. 02. 022. Wu F Z,Wang H X,Han H,Guo F. Effect of winter protection methods on the microenvironment and winter hardiness of blueberry[J]. Journal of Fruit Science,2012,29(2):278-282. [4] 赵滢,王振兴,许培磊,杨义明,刘迎雪,刘海双,艾军. 山葡萄‘双丰’和‘左优红’叶绿素荧光特性及活性氧代谢与低温伤害的关系[J]. 园艺学报,2018,45(4):650-658.doi:10. 16420/j. issn. 0513-353x. 2017-0459. Zhao Y,Wang Z X,Xu P L,Yang Y M,Liu Y X,Liu H S,Ai J. The characteristics of chlorophyll fluorescence and metabolism of reactive oxygen species in relation to the cold injury of Vitis amurensis ‘Shuangfeng’ and ‘zuoyouhong’[J]. Acta Horticulturae Sinica,2018,45(4):650658. [5] 王海波,程来亮,常源升,孙清荣,陶吉寒,李林光. 苹果矮化砧‘71-3-150’对冷胁迫的生理与转录组响应[J]. 园艺学报,2016,43(8):1437-1451.doi:10. 16420/j. issn. 0513-353x. 2016-0031. Wang H B,Cheng L L,Chang Y S,Sun Q R,Tao J G,Li L G. Physiological and transcriptome response of apple dwarfing rootstock to cold stress and cold-resistant genes screening[J]. Acta Horticulturae Sinica,2016,43(8):1437-1451. [6] Puig C P,Dagar A,Ibanez C M,Singh V,Crisosto C H,Friedman H,Lurie S,Granell A. Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanism[J]. BMC Genomics,2015,16:245.doi:10. 1186/s12864-015-1395-6. [7] 单体敏,金鹏,许佳,李晓安,王累,郑永华. 外源甜菜碱处理对冷藏桃果实冷害和品质的影响[J]. 园艺学报,2015,42(11):2244-2252.doi:10.16420/j.issn.0513-353x.2015-0184. Shan T M,Jin P,Xu J,Li X A,Wang L,Zheng Y H. Effects of exogenous glycine betaine treatment on chilling injury and quality of cold-stored peach fruits[J]. Acta Horticulturae Sinica,2015,42(11):2244-2252. [8] 姜寒玉,雷天翔,李唯,何百鋆. 低温胁迫下‘贝达’和‘赤霞珠’葡萄不同组织糖含量及细胞结构的变化[J]. 果树学报,2015,35(4):604-611.doi:10.13925/j.cnki.gsxb.20140464. Jiang H Y,Lei T X,Li W,He B Y. Changes of sugar contents in different tissues and cell structure in two grape(Vitis vinifera L.) varieties under low temperature stress[J]. Journal of Fruit Science,2015,35(4):604-611. [9] 李亚东,卢春雨,裴嘉博. 低温伤害对越橘开花坐果的影响及成因分析[J]. 中国果树,2008,4:26-28.doi:10. 16626/j.cnki.issn 1000-8047.2008.04.013. Li Y D,Lu C Y,Pei J B. Effects of low temperature injury on flowering and fruiting of blueberry[J]. 2008,4:26-28. [10] 魏鑫,魏永祥,刘成,王升,谭永军,杨艳敏. 蓝莓抗寒性研究进展及越冬防寒措施[J]. 上海农业学报,2015,31(3):147-151.doi:10.15955/j.issn 1000-3924.2015.03.32. Wei X,Wei Y X,Liu C,Wang S,Tan Y J,Yang Y M. Research progress on cold resistance of blueberry and winter cold proof measure[J].Acta Agriculturae Shanghai,2015,31(3):147-151. [11] 李亚东,刘海广,唐雪东. 蓝莓栽培图解手册[M]. 北京:中国农业出版社,2014. Li Y D,Liu H G,Tang X D. Cultivation graphic manual of blueberry[M]. Beijing:China Agricultural Press,2014. [12] Thomashow M F. Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance[M]. New York:Cold Spring Harbor Laboratory Press,1994. [13] Shinozaki K,Yamaguchi-Shinozaki K. Molecular response to dehydration and low temperature:differences and cross-talk between two stress signaling pathways[J].Current Opinion in Plant Biology,2000,3(3):217-223.doi:10.1016/s1369-5266(00) 80068-0. [14] Thomashow M F. So what's new in the field of plant clod acclimation Lots![J]. Plant Physiology,2001,125(1):89-93.doi:10.1104/pp.125.1.89. [15] Chinnusamy V,Ohta M,Kanrar S,Lee B H,Hong X H,Agarwal M,Zhu J K. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes Dev,2003,17:1043-1054.doi:10.1101/gad.1077503. [16] Liu L Y,Duan L S,Zhang J C,Zhang Z X,Mi G Q,Ren H Z. Cucumber(Cucumis sativus L.) over-expressing cold-induced transcriptome regulator ICE1 exhibits changed morphological characters and enhances chilling tolerance[J]. Scientia Horticulturae,2010,124(1):29-33.doi:10.1016/j.scienta.2009.11.018. [17] Xiang D J,Hu X Y,Zhang Y,Yin K D. Over-expression of ICE1 gene in transgenic rice improves cold tolerance[J]. Rice Science,2008,15(3):173-178.doi:10. 1016/s1672-6308(08) 60039-6. [18] Budhagatapalli N,Narasimhan R,Rajaraman J,Viswanathan C. Ectopic expression of AtICE1 and OsICE1,transcription factor delays stress-induced senescence and improves tolerance to abiotic stresses in tobacco[J]. Journal of Plant Biochemistry and Biotechnology,2016,25(3):258-293.doi:10.1007/s13562-015-0340-8. [19] Li J T,Wang L N,Zhu W,Wang N,Xin H P,Li S H. Characterization of two VvICE1 genes isolated from Muscat Hamburg' grapevine and their effect on the tolerance to abiotic stresses[J]. Scientia Horticulturae,2014,165(165):266-273.doi:10.1016/j.scienta.2013.11.002. [20] Badawi M,Reddy Y V,Agharbaoui Z,Tominaga Y,Danyluk J,Sarhan F,Houde M. Structure and functional analysis of wheat ICE(Inducer of CBF Expression) genes[J]. Plant and Cell Physiology,2008,49(8):1237-1249.doi:10.1093/pcp/pcn100. [21] Song Y,Liu H D,Zhou Q,Zhang H J,Zhang Z D,Li Y D,Wang H B,Liu F Z. High-throughput sequencing of highbush blueberry transcriptome and analysis of basic helix-loop-helix transcription factors[J]. Journal of Integrative Agriculture,2017,16(3):591-604.doi:10.1016/s2095-3119(16) 61461-2. [22] Clough S J,Bent A F. Floral dip:a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana[J]. The Plant Journal,1998,16(6):735-743.doi:10.1046/j.1365-313x.1998.00343.X. [23] Yin X R,Allan A C,Chen K S,Ferguson I B. Kiwifruit EIL and ERF genes involved in regulating fruit ripening[J]. Plant Physiology,2010,153(3):1280-1292.doi:10.1104/pp.110.157081. [24] Jefferson R A,Kavanagh T A,Bevan M W. GUS fusions:β -glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. EMBO Journal,1987,6(13):3901-3907.doi:10.1089/dna.1987.6.583. [25] An J P,Qu F J,Yao J F,Wang X N,You C X,Wang X F,Hao Y J. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple[J]. Horticulture Research,2017,4:17023.doi:10.1038/hortres.2017.56. [26] Bailey P C,Martin C,Toledo-Ortiz G,Quail P H,Huq E,Hemi M A,Jakoby M,Werber M,Weisshaar B. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana[J]. The Plant Cell,2003,15(11):2497-2502.doi:10.1105/tpc.151140. [27] Li X L,Zhang H M,Ai Q,Liang G,Yu D Q. Two bHLH transcription factors,bHLH34 and bHLH104,regulate iron homeostasis in Arabidopsis thaliana[J]. Plant Physiology,2017,170:2478-2493.doi:10.1104/pp.15.01827. [28] Cui J,You C J,Zhu E G,Huang Q,Ma H,Chang F. Feedback regulation of DYT1 by interactions with downstream bHLH factor promotes DYT1 nuclear localization and anther development[J]. The Plant Cell,2016,28:1078-1093.doi:10.1105/tpc.15.00986. [29] Liang G,Zhang H M,Li X L,Ai Q,Yu D Q. bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana[J]. Journal of Experimental Botany,2017,68(7):1743-1755.doi:10. 1093/jxb/erx043. [30] Zhang J,Liu B,Li M S,Feng D R,Jin H L,Wang P,Liu J,Xiong F,Wang J F. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis[J]. The Plant Cell,2015,27:787-805.doi:10.1105/tpc.114.132704. [31] Hir R L,Castelain M,Chakraborti D,Moritz T,Dinant S,Bellini C. AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana[J]. Physiologia Plantrum,2017,160:321-327.doi:10.1111/ppl.12549. [32] Chen X,Huang H,Qi T C,Liu B,Song S S. New perspective of the bHLH-MYB complex in jasmonate-regulated plant fertility in Arabidopsis[J]. Plant Signaling and Behavior,2016,11(2):e1135280.doi:10.1080/15592324.2015.1135280. [33] Turnbull D,Yang L N,Naqvi S,Breen S,Welsh L,Stephens J,Morris J,Boevink P C,Hedley P E,Zhan J S,Birch P,Gilroy E M. RXLR effector AVR2 up-regulates a brassinosteroid-responsive bHLH transcription factor to suppress immunity[J]. Plant Physiology,2017,174:356-369.doi:10.1104/pp.16.01804. [34] Bulgakov V,Veremeichik G,Grigorchuk V,Rybin V,Shkryl Y. The rolB gene activates secondary metabolism in Arabidopsis calli via selective activation of genes encoding MYB and bHLH transcription factors[J]. Plant Physiology and Biochemistry,2016,102:70-79.doi:10.1016/j.plaphy.2016.02.015. [35] Takahashi Y,Ebisu Y,Shimazaki K. Reconstitution of abscisic acid signaling from the receptor to DNA via bHLH transcription factors[J]. Plant Physiology,2017,174:815-822.doi:10.1104/pp.16.01825. [36] 张腾国,常燕,王娟,王宁,王圆圆,陈琼琼,孙万仓. 油菜BnICE1 的克隆及表达分析[J]. 中国农业科学,2013,46(1):205-214.doi:10.3864/j.issn. 0578-1752.2013.01.024. Zhang T G,Chang Y,Wang J,Wang N,Wang Y Y,Chen Q Q,Sun W C. Cloning and expression analysis of a BnICE1 from Brassica napus L.[J].Scientia Agricultura Sinica,2013,46(1):205-214. [37] Feng X M,Zhao Q,Zhao L L,Xie X B,Li H F,Yao Y X,You C X,Hao Y J. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple[J]. BMC Plant Biology,2012,12:22.doi:10.1186/1471-2229-12-22. [38] Lee B H,Henderson D A,Zhu J K. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1[J]. The Plant Cell,2005,17(11):3155-3175.doi:10.1105/tpc.105.035568. |
|
|
|