doi:10.7668/hbnxb.2014.S1.035

玉米自交系耐盐碱性鉴定研究初探

肖万欣,王延波,赵海岩,刘 晶,常 程,张书萍,徐 亮,赵

(辽宁省农业科学院 玉米研究所,辽宁 沈阳 110161)

摘要:在不同盐碱含量的试验地块下,通过整个生育期对供试材料耐盐碱指标的测定,评价了玉米骨干自交系的 耐盐碱性,并对供试材料的耐盐碱性划分了等级。结果表明,成株率、株高、绿叶数、穗粒数和出籽率耐盐碱指数均与 产量耐盐碱指数呈不同程度的正相关关系,其中,出籽率耐盐碱指数与产量耐盐碱指数相关性达到显著水平。可见, 开花散粉期,较高的成株率、散粉后维持相对较多的绿色叶片数、成熟期确保较高的穗粒数和出籽率是耐盐碱性较高 的材料获得高产的前提。和其他自交系相比,齐319玉米自交系耐盐碱性较强。

关键词:玉米;骨干自交系;耐盐碱性;农艺性状;产量

中图分类号:S513.01 文献标识码:A 文章编号:1000-7091(2014)增刊-0183-05

A Preliminary Study on Saline-alkali Tolerance Identification of **Different Maize Inbred Lines**

XIAO Wan-xin, WANG Yan-bo, ZHAO Hai-yan, LIU Jing, CHANG Cheng, ZHANG Shu-ping, XU Liang, ZHAO Meng

(Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China)

Abstract: The saline-alkaline tolerance of maize skeleton inbred lines were evaluated, of which were classed into different grades through the determination of the saline-alkaline tolerance index in the whole growth stage in this study. The results showed that, the saline-alkaline tolerance index of mature plant rate, plant height, green leaf number, seed number per spike and seed-producing percentage were positive related to the yield, which the saline-alkaline tolerance index of seed-producing percentage and yield reached significant level. This study also concluded that higher mature plant rate at tasseling-silking stage, relatively more green leaf number after silking, more seed number per spike and seed-producing percentage at seed mature stage was the premise to obtain high yield. Compared with other skeleton inbred lines, Qi 319 inbred lines had a stronger saline-alkaline tolerance.

Key words: Maize; Skeleton inbred lines; Saline-alkali tolerance; Agronomic traits; Yield

土壤盐渍化是目前危害农业生产的环境因子之 一,我国约有 0.2 亿多 hm² 的盐渍土地[1],约占耕 地面积的20%,主要分布于土壤蒸发量大,降水量 少的干旱、半干旱地区以及滨海地区[2-3],种植耐盐 品种是减轻土壤盐渍化危害的有效方法之一[4]。 我国科学家已对水稻[5-8]、小麦[9-10]、大豆[11-12]、 谷子[2]、高粱[13-14] 等作物不同生育时期的耐盐性 表现、盐对其农艺性状及籽粒品质的影响、耐盐生理 生化、盐胁迫下不同作物的生理生化反映等方面进 行了研究。玉米是对土壤盐渍化中度敏感的作物,

耗水量大,生长发育期易受到干旱的侵袭[15],因此, 玉米耐盐碱种质资源的鉴定和筛选,对于我国农业 生产意义重大。本研究在前人研究的基础上,以不 同的玉米骨干自交系为材料,通过对整个生育期耐 盐碱指标的调查和相关分析,试图找出评判玉米自 交系耐盐碱性强弱的指标。在盐碱胁迫下,试图筛 选出耐盐碱性较强的玉米种质资源,以期为我国盐 碱地开发利用和耐盐碱育种的筛选与鉴定提供理论 依据。

收稿日期:2014-09-26

基金项目:农业部转基因重大专项(2011ZX08003-004);国家科技支撑计划项目(2011BAD16B12;2012BAD04B03;2013BAD07B03)

作者简介: 肖万欣(1982 -), 男, 辽宁本溪人, 助理研究员, 博士, 主要从事玉米逆境生理生态研究。

通讯作者:刘 晶(1974-),男,辽宁沈阳人,助理研究员,硕士,主要从事玉米产量生理研究。

程(1982-),女,辽宁盘锦人,助理研究员,硕士,主要从事玉米产量生理研究。

1 材料和方法

1.1 供试材料

本试验选用郑 58、掖 478、齐 319 和 7922 骨干 玉米自交系作为试材。

1.2 试验设计

本试验于2013年在盘锦赵圈河镇(盐碱地块)和西安镇(非盐碱地块,CK)试验地进行,每块试验地面积是0.33 hm²,每份材料种植2行,行长5 m,每行按18穴播种,2次重复,共948行。试验地周围500 m半径无玉米种植。试验地pH值和含盐量测定结果见表1。盐碱地块去年种植水稻,非盐碱地块去年种植玉米。5月17-18日播种,播种前,盐碱地块深翻、旋耕、耙压平整土壤2次。2块试验地周围均新建排水沟渠。

表 1 不同深度土壤盐碱含量表

Tab. 1 Content of saline-alkali soil at different depth

地块	土壤深度/cm	pH 值	含盐量/‰
Condition	Soil depth	pH value	Salt content
CK	0 ~ 20	8.02	0.69
	20 ~ 50	8.13	0.75
盐碱地	0 ~ 20	8.28	1.23
Saline land	20 ~ 50	8.41	1.64

6月7日间苗、定苗,盐碱地块7月15日追肥, 非盐碱地块6月30日追肥,均使用尿素,施用量 225 kg/hm²。生长期间,根据不同试验地杂草生长 状况,组织人员对于正区人工铲地、拔草,观察道则 应用百草枯化学除草剂进行除草。

1.3 测定项目与方法

- 1.3.1 出苗率和成株率 出苗率 = (出苗数/播种 粒数) × 100%、成株率 = (成株数/定苗数) × 100%。
- 1.3.2 绿色叶片数和开花散粉间隔天数(ASI) 在散粉期,从每小区第1行行头的第3株开始连续 取5株(缺苗时按顺序往下延续,不取每行头和行

尾 2 株),调查单株绿叶数,计算平均值。

散粉期:小区 50% 植株达到雄穗主轴上部 1/3 以上开始散粉日:

吐丝期:小区 50% 植株雌穗花丝长度达1 cm; 绿叶数 = 超过 1/3 叶片面积为可见绿色的叶片数;

散粉吐丝间隔(ASI)=吐丝日期-散粉日期。 1.3.3 产量及其农艺性状 玉米成熟时,收回的籽粒产量和百粒质量按 14%标准含水量计算。每个品种取有代表性 5 穗进行室内考种,考种指标包括:穗长、穗粗、秃尖长、穗行数、行粒数和百粒质量。并计算出 籽率:出 籽率(%)=(粒重/总穗重)×100%。

- 1.3.4 耐盐碱指数 耐盐碱指数 = 盐地测定值/非 盐地测定值。其中, ASI 耐盐碱指数按照非盐地测 定值/盐地测定值计算。
- 1.3.5 耐盐碱等级划分方法 根据产量耐盐碱指数的平均数(X)和标准差(σ)为分级依据,分为:
- 一级耐盐碱 $(Xi > X + \sigma)$ 、二级耐盐碱 $(X + \sigma > Xi > X \sigma)$ 和三级耐盐碱 $(Xi < X \sigma)$ 。
- 1.3.6 数据分析方法 统计学分析采用 Excel 和 SPSS 进行分析。

2 结果与分析

2.1 产量、穗粒数和出籽率

收获测产结果见表 2,从表中可以看出,盐碱地块平均单株籽粒产量是 47.2 g/株,非盐碱地块平均单株籽粒产量是 81.9 g/株,和非盐碱地块相比,不同材料平均减产 42.0%,其中,齐 319 自交系单株籽粒产量减产幅度较小,掖 478 自交系单株籽粒产量减产幅度较高。和其他材料相比,齐 319 自交系在盐碱胁迫条件下穗粒数较多,出籽率高于其对应的非盐碱地块出籽率。

表 2 不同材料的籽粒产量、穗粒数和出籽率比较

Tab. 2 Comparison on seed yield, seed number per spike and seed-producing percentage of different materials

	籽米	籽粒产量/(g/株)			穗粒数			出籽率/%		
++ 101 27 27	Seed yield			Seed	number pe	r spike	Seed-producing percentage			
材料名称 Name	盐碱地块 Saline land	СК	减少/% Decreasing range	盐碱地块 Saline land	СК	减少/% Decreasing range	盐碱地块 Saline land	СК	减少/% Decreasing range	
郑 58 Zheng 58	40.1b	68.1a	41.1	233b	344a	32.3	77.4ab	80.0a	3.2	
掖 478 Ye 478	41.2b	83.3a	50.5	253b	428a	40.9	59.8b	74.9a	20.2	
7922	54.0b	96.8a	44.2	355b	555a	36.0	70.9ab	79.4a	10.7	
齐 319 Qi 319	53.6b	79. 2a	32.3	257b	384a	33.1	59.7a	57. 2ab	-4.4	

注:同一指标、同一品种间字母符号不同的表示在 P=0.05 水平上差异显著。表 3~6 同。

2.2 出苗率、成株率和 ASI

不同材料在盐碱地块平均出苗率是 68.1%,平均成株率是 65.8%,分别比非盐碱地块降低 32.0,28.8 个百分点(表 3)。和其他材料相比,郑 58 自

交系的出苗率较高,齐319 自交系的成株率高于其对照成株率。根据 ASI 调查数据发现,掖478 自交系在盐碱胁迫下,ASI 比非盐碱地块缩短了1 d。齐319 在盐碱地块的 ASI 与对照 ASI 相同。

表 3 不同材料的出苗率、成株率和 ASI 比较

Tab. 3 Comparison on emergence rate, mature plant rate and ASI of different materials

	出苗率/% Emergence rate				成株率/	1%	ASI		
材料名称				Mature plant rate			ASI		
747年在45 Name	盐碱地块 Saline land	СК	降低/百分点 Decreasing range	盐碱地块 Saline land	CK	降低/百分点 Decreasing range	盐碱地块 Saline land	CK	比盐碱 地块提前/d Advance days
郑 58 Zheng 58	100.0a	100.0a	0.0	50.0b	127.8a	60.9	4a	2b	2
掖 478 Ye 478	77.8b	100.0a	22.2	100.0a	105.6a	5.3	2a	3a	– 1
7922	$50.0\mathrm{b}$	100.0a	50.0	33.3b	107.1a	68.9	5a	2b	3
齐 319 Qi 319	44.4b	100.0a	55.6	80.0a	66.7b	-20.0	3a	3a	0

注:非盐碱地块在计算成株率时包括了收获时有双穗的植株。

Note: The calculation of mature plant rate includes double ear plants in the non saline land.

2.3 农艺性状

不同材料在盐碱地块平均株高是 133.4 cm,在 非盐碱地块平均株高是 229.2 cm,较非盐碱地块株 高平均降低 42.0%。和其他材料相比,齐 319 自交 系在盐碱地块株高表现相对较高(表4)。不同材料

在盐碱地块平均穗位高是 41.1 cm, 在非盐碱地块平均穗位高是 92.6 cm, 较非盐碱地块穗位高平均降低 55.8%。和其他材料相比, 掖 478 自交系穗位高降低幅度相对较小。

表 4 不同材料的株高和穗位高比较

Tab. 4 Comparison on plant height and ear height of different materials

材料名称		株高/cm Plant height		穗位高/cm Ear height			
Name	盐碱地块 Saline land	CK	降低/% Decreasing range	盐碱地块 Saline land	CK	降低/% Decreasing range	
郑 58 Zheng 58	96.7b	183.3a	47.0	21.7b	63.3a	65.9	
掖 478 Ye 478	121.0b	218.3a	44.6	36.7b	69.0a	47.0	
7922	156.0b	280.3a	44.4	54.3b	130. 3a	58.3	
齐 319 Qi 319	160.0b	234.7a	31.8	51.7b	107.7a	51.8	

不同材料在盐碱地块平均穗长是 15.7 cm,在非盐碱地块平均穗长是 18.1 cm,较非盐碱地块穗长平均缩短 13.7%。平均穗粗是 4.1 cm,在非盐碱地块平均穗粗是 4.5 cm,较非盐碱地块穗粗平均缩短 7.9%。平均秃尖长是 0.7 cm,在非盐碱地块平

均秃尖长是 0.4 cm, 较非盐碱地块秃尖长平均长 0.3 cm。和其他材料相比, 掖 478 自交系穗长和穗粗缩短幅度均较小,郑 58 自交系在盐碱地块和非盐碱地块下,均表现无秃尖(表 5)。

表 5 不同材料穗长、穗粗和秃尖长比较

 $Tab.\,5\quad Comparison\,\,on\,\,ear\,\,length\,,ear\,\,diameter\,\,and\,\,bald\,\,tip\,\,length\,\,of\,\,different\,\,materials$

	穗长/cm				穗粗/cm		秃尖长/cm			
材料名称		Ear length			Ear diamete	er		Bald tip leng	gth	
かれるか Name	盐碱地块		缩短/%	盐碱地块		缩短/%	盐碱地块		缩短/%	
	Saline	CK	Decreasing	Saline	CK	Decreasing	Saline	CK	Decreasing	
	land		range	land		range	land		range	
郑 58 Zheng 58	10.3b	17.5a	41.0	3.8b	4.5a	14.8	0.0a	0.0a	0.0	
掖 478 Ye 478	18.0ab	18.3a	1.8	4.0a	4.0a	0.0	1.9a	1.2ab	0.7	
7922	15.0a	15.8a	5.3	4.2a	4.8a	13.2	0.0a	0.3a	-0.3	
齐 319 Qi 319	19.3ab	20.7a	6.5	4.4ab	4.6a	3.6	1.0a	0.0ab	1.0	

C T A GRICULTURAE 18 ORFOLL-SINICA

29 卷

和其他材料相比,齐319 在盐碱地块和非盐碱地块绿色叶片数没有变化,均为8片,掖478 自交系和7922 自交系在盐碱地块上的绿色叶片数均比对照少1片(表6)。

表 6 不同材料绿色叶片数比较

Tab. 6 Comparison on green leaf number of different materials

	绿色叶片数							
材料名称	Green leaf number							
Name	盐碱地块	CV	比非盐碱地块减少					
	Saline land	CK	Reduced leaves					
郑 58 Zheng 58	4ab	6a	2					
掖 478 Ye 478	9a	10a	1					
7922	8a	9a	1					
齐 319 Qi 319	8a	8a	0					

2.4 耐盐碱性综合评价

由于在非盐碱地块不同材料秃尖长数据不同,有的没有秃尖,所以,无法根据公式计算秃尖长耐盐碱指数,所以,在耐盐碱性综合评价里面不涉及秃尖长耐盐碱指数(表7)。结合试验结果,根据耐盐碱指数的公式计算出了不同指标的耐盐碱指数。和其他指标相比,出籽率的耐盐碱指数较高,平均值是0.93,穗位高的耐盐碱指数较低,平均值是0.44。和其他材料相比,齐319自交系的单株产量、出籽率、成株率、株高和绿叶数耐盐碱指数均高于其他材料。郑58自交系的穗粒数和出苗率耐盐碱指数均高于其他材料。掖478自交系的ASI、穗位高、穗长和穗粗耐盐碱指数均高于其他材料。

表 7 不同材料耐盐碱指数比较

片

Tab. 7 Comparison on saline-alkaline tolerance of different materials

材料名称 Name	单株产量 See yield per plant	穗粒数 Seed number per spike	出籽率 See- producing percentage	出苗率 Emergence rate	成株率 Mature plant rate	ASI	株高 Plant height	穗位高 Ear height	穗长 Ear length	穗粗 Ear diameter	绿叶数 Green leaf number
郑 58 Zheng 58	0.59	0.68	0.97	1.00	0.39	0.50	0.53	0.34	0.59	0.84	0.67
掖 478 Ye 478	0.49	0.59	0.80	0.78	0.95	1.50	0.55	0.53	0.98	1.00	0.90
7922	0.56	0.64	0.89	0.50	0.31	0.40	0.56	0.42	0.95	0.88	0.89
齐 319 Qi 319	0.68	0.67	1.04	0.44	1.20	1.00	0.68	0.48	0.93	0.96	1.00

不同指标与产量耐盐碱指数的相关性分析见表 8,从表 8 可以看出,出籽率(R=0.9781)、穗粒数 (R=0.8275)、株高(R=0.7865)、成株率(R=0.3155)和绿叶数(R=0.2403)耐盐碱指数均与产

量耐盐碱指数呈正相关关系,其中出籽率耐盐碱指数与产量耐盐碱指数相关性达到显著水平(P = 0.0219)。出苗率耐盐碱指数(R = -0.4270)及其他指标与产量耐盐碱指数呈负相关关系。

表 8 不同材料产量和农艺耐盐碱指数相关分析

Tab. 8 Saline-alkaline tolerance index correlation analysis of yield and agronomic traits of different materials

number	c 1 ·					穗位高	穗长	穗粗	绿叶数	单株产量
	See-producing	Emergence	Mature	ASI	Plant	Ear	Ear	Ear	Green leaf	See yield
$_{ m spike}$	percentage	rate	Plant rate	(X5)	height	height	length	diameter	number	per plant
K 1)	(X2)	(X3)	(X4)		(X6)	(X7)	(X8)	(X9)	(X10)	(Y)
1										
0.917 0	1									
0.019 1	-0.2407	1								
0.193 8	0.193 5	-0.368 3	1							
0.6838	-0.407 1	-0.005 1	0.794 1	1						
0.304 0	0.6509	-0.745 5	0.748 5	0.213 4	1					
0.741 1	-0.4117	-0.455 0	0.765 5	0.8727	0.402 5	1				
0.6654	-0.3922	-0.753 9	0.478 8	0.5128	0.405 9	0.8642	1			
0.677 6	-0.335 4	-0.3515	0.849 3	0.937 0	0.4307	0.9820	0.759 0	1		
0.326 0	0.034 7	-0.8834	0.703 8	0.472 8	0.7664	0.8067	0.898 1	0.747 8	3 1	
0.827 5	0.978 1*	-0.427 0	0.315 5	-0.317 5	0.786 5	-0.243 2	-0.1922	-0.185 5	0.240	3 1
	10.917 0 0.019 1 0.193 8 0.683 8 0.304 0 0.741 1 0.665 4 0.677 6 0.326 0	(X2) (X3) (X4) (X2) (X2) (X3) (X4) (X4) (X5) (X6) (X6) (X6) (X6) (X6) (X6) (X7) (X7)	(X2) (X3) (X2) (X3) (X3) (X1) (X2) (X3) (X3)	(X2) (X3) (X4) (X1) (X2) (X3) (X4) (X4) (X1) (X2) (X3) (X4) (X4) (X1) (X2) (X3) (X4) (X4) (X2) (X3) (X4) (X4) (X4) (X2) (X3) (X4) (X4)	(X1) (X2) (X3) (X4) 1 0.917 0	(X1) (X2) (X3) (X4) (X6) 1 0.917 0 1 0.019 1 -0.240 7 1 0.193 8 0.193 5 -0.368 3 1 0.683 8 -0.407 1 -0.005 1 0.794 1 1 0.304 0 0.650 9 -0.745 5 0.748 5 0.213 4 1 0.741 1 -0.411 7 -0.455 0 0.765 5 0.872 7 0.402 5 0.665 4 -0.392 2 -0.753 9 0.478 8 0.512 8 0.405 9 0.677 6 -0.335 4 -0.351 5 0.849 3 0.937 0 0.430 7 0.326 0 0.034 7 -0.883 4 0.703 8 0.472 8 0.766 4	(X1) (X2) (X3) (X4) (X6) (X7) 1 0.917 0 1 0.019 1 -0.240 7 1 0.193 8 0.193 5 -0.368 3 1 0.683 8 -0.407 1 -0.005 1 0.794 1 1 0.304 0 0.650 9 -0.745 5 0.748 5 0.213 4 1 0.741 1 -0.411 7 -0.455 0 0.765 5 0.872 7 0.402 5 1 0.665 4 -0.392 2 -0.753 9 0.478 8 0.512 8 0.405 9 0.864 2 0.677 6 -0.335 4 -0.351 5 0.849 3 0.937 0 0.430 7 0.982 0 0.326 0 0.034 7 -0.883 4 0.703 8 0.472 8 0.766 4 0.806 7	(X1) (X2) (X3) (X4) (X6) (X7) (X8) 1 0.917 0	(X1) (X2) (X3) (X4) (X6) (X7) (X8) (X9) 1 0.917 0	(X1) (X2) (X3) (X4) (X6) (X7) (X8) (X9) (X10) 1 0.917 0

根据产量耐盐碱指数($X=0.58,\sigma=0.08$)将参试品种耐盐碱性分为 3 个等级(表 9),结果表明,在盐碱胁迫下,齐 319 自交系耐盐碱性最强,属于一级

耐盐碱等级。郑 58 和 7922 自交系属于二级耐盐碱 自交系。掖 478 自交系相对耐盐碱性较弱。

表 9 不同材料耐盐碱性级别表

Tab. 9 Saline-alkaline tolerance grades of different materials

等级 Grade	分级标准 Criterion of classification	材料名称 Name
一级 First class	Xi > 0.66	齐 319
二级 Second class	0.66 > Xi > 0.50	郑 58 和 7922
三级 Third class	Xi < 0.50	掖 478

3 结论与讨论

前人研究表明,小麦^[9,16]和水稻^[17]的发芽期耐盐性与生长后期的耐盐性没有必然的联系,但是高粱^[18]、玉米^[19]和粟类^[20]苗期的耐盐性与成株期的耐盐性是一致的。本试验结果表明,齐319自交系的出苗率和其他材料相比较低,且相关分析表明,齐319自交系出苗率耐盐碱指数与产量呈负相关关系,这与前人研究结论不一致,可能是由于选用的试验材料差异所致。笔者于2010年开展了不同玉米杂交种耐盐碱鉴定研究^[21],得出:玉米杂交种成株率耐盐碱指数与产量耐盐碱指数呈显著的正相关关系。本试验研究结论与2010年研究结论基本一致。

和其他材料相比,齐319 自交系成株率较高,盐碱胁迫没有影响到该材料散粉至吐丝的间隔时间。散粉期,相对较多的绿叶,促进了其光合产物的合成和积累,成熟期,齐319 自交系穗粒数较多,且出籽率高于其他材料,致使其最终单株产量相对较高。供试品种耐盐碱性顺序为齐319 > 郑58 > 7922 > 掖478。相关分析表明,出籽率耐盐碱指数与产量耐盐碱指数呈显著的正相关关系。

参考文献:

- [1] 王丽燕,赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报,2005,31(2):264-266.
- [2] 田伯红,王素英,李雅静,等. 谷子地方品种发芽期和 苗期对 NaCl 胁迫的反应和耐盐品种筛选[J]. 作物学 报,2008,34(12);2218-2222.
- [3] 赵可夫,李法曾.中国盐生植物[M].北京:科学出版 社 1999.
- [4] Epstein E, Rains D W. Advances in salt tolerance [J]. Plant and Soil, 1987, 99(1):17 29.
- [5] 顾兴友,卢永根,郑少玲,等.水稻苗期耐盐性遗传的世代平均数分析[J].作物学报,1999,25(6):686-690.
- [6] 周 政,李 宏,孙 勇,等. 高产、抗旱和耐盐选择对

- 水稻产量相关性状的影响[J]. 作物学报,2010,36:10 (10):1725 1735.
- [7] 阮松林,薛庆中,王清华. 种子引发对杂交水稻幼苗耐盐性的生理效应[J]. 中国农业科学,2003,36(4):463-468.
- [8] 陈志德,仲维功,杨 杰,等.水稻资源的耐盐性评价 [J]. 植物遗传资源学报,2004,5(4):351-355.
- [9] 马雅琴, 翁跃进. 引进春小麦种质耐盐性的鉴定评价 [J]. 作物学报, 2005, 31(1):58-64.
- [10] 刘 旭,史 娟,张学勇,等.小麦耐盐种质的筛选鉴 定和耐盐基因的标记[J]. 植物学报,2001,43(9):948-954.
- [11] 邵桂花, 闫淑荣, 常汝镇, 等. 大豆耐盐性遗传的研究 [J]. 作物学报, 1994, 20(6): 721-726.
- [12] 郭 蓓,邱丽娟,邵桂花,等. 大豆耐盐基因的 PCR 标记[J]. 中国农业科学,2000,33(1):13-19.
- [13] 马金虎,王宏富,王玉国,等. 种子引发对高粱幼苗耐盐性的生理效应[J]. 中国农业科学,2009,42(10): 3713-3719.
- [14] Krishnamurthy L, Serraj R, Hash C T, et al. Screening sorghum genotypes for salinity tolerant biomass production [J]. Euphytica, 2007, 156(1/2):15-24.
- [15] 徐立华,阴卫军,周柱华,等. 细胞工程技术培育玉米 耐盐自交系[J]. 作物杂志,2006(4):26-28.
- [16] Munns R, James R A. Screening methods for salinity tolerance: a case study with tetraploid wheat [J]. Plant and Soil, 2003, 253(1):201-218.
- [17] 方文先,汤陵华,王艳平.水稻种资耐盐性选择[J]. 植物遗传资源学报,2004,5(3):295-298.
- [18] Azhar F M, McNeilly T. Variability for salt tolerance in Sorghum bicolor L. Moench under hydroponic conditions [J]. Journal of Agronomy and Crop Science-Zeitschrift Fur Acker Und Pflanzenbau, 1987, 159(4):269 - 277.
- [19] Maiti R K, Amaya L E D, Cardona S I, et al. Genotypic variability in maize cultivars (*Zea mays L.*) for resistance to drought and salinity [J]. J Plant Physiology, 1996,148:741-744.
- [20] Kebebew F, McNeilly T. Variation in response of accessions of minor millets, *Pennisetum americanum* L. Leek (Pearl Millet) and *Eleusine coracana* L. Gaertn (Finger Millet), and Eragrostis tef (Zucc.) trotter (Tef), to salinity in early seedling growth [J]. Plant Soil, 1995, 175: 311-321.
- [21] 肖万欣,赵海岩,刘 晶,等.不同玉米杂交种耐盐碱性鉴定[J].玉米科学,2011,19(6):14-19,24.