棉铃虫 NPV 的病征、毒力 测定和寄主范围

孙士英 王卫国

(河北省科学院微生物研究所病毒室)

棉铃虫是棉花的大害虫,对棉花蕾铃危害严重。我们在进行棉铃虫 NP V 应用研究的过程中,对病征、毒力和寄主范围,进行了观察和测定,现总结如下。

一、材料和方法

材料: 所用病毒为室内增殖的馆陶棉铃虫 NPV。供试棉铃虫幼虫为室内人工饲料饲养; 供试的其他害虫于发生季节分别在大田采集, 虫龄 3 — 4 龄。

病毒对棉铃虫的毒力测定方法: 将一定浓度的病毒悬液滴加于人工饲料表面,涂布均匀,剂量0.263—2630多角体/mm²每个玻璃管放入3龄幼虫1头,置26℃温室饲养,让其取食感染,逐日记载死亡虫数,死虫经显微镜检查有无多角体。另设空白对照。

寄主范围测定:将供试害虫的寄主植物叶片浸沾病毒悬液,凉干后饲养幼虫,逐日记载死亡情况,死虫逐头镜检。

二、结果

(一) 病征:幼虫感病早期症状不明显,发病后期可观察到食量下降,行动和反应 迟钝,有些个体颜色变浅,略有光泽,体节稍隆肿。幼龄期感病的个体发育缓慢,小于 正常个体。濒死前,幼虫常爬至养虫管顶部的棉塞上或植株顶部,用腹足和尾足倒挂死 亡。死虫体壁脆弱易破,破裂后由体内流出灰白色或带褐色液体,无臭味,内含大量病毒

表 1 不同 N P V 剂量感染三龄棉铃虫的死亡率和死亡时间

		Andrew Company of the Company		
感染剂量	供试	死亡率	校正死亡	平均死亡
(PIB/mm ²)	虫 数	(%)	率 (%)	时间(日)
2.63×10^{-1}	33	33.15	14.73	5.50
2.63×10^3	33	32.05	13.23	6.07
2.63×10^{2}	33	56.30	44.26	5.5 2
2.63×10 ¹	33	85.10	80.99	5. 67
2.63×10°	33	91,25	88,83	5. 35

多角体。解剖病虫观察,可见到气管细胞膨大,脂肪体较厚,乳白而不透明。病毒感染棉铃虫后的症状学,前人曾作了详细观察^[1],我们的观察结果与前人的结果基本一致。

(二)病毒的毒力测定 1、剂量与死亡率的关 系:我们用0,263 — 2630 PIB/mm² 饲料表面的病毒剂量感染3 龄幼虫,重复两次,结果如表1和图1。 所得结果表明, 死亡率随剂量增加而提 高, 计算得 L_{Dso} 为 22.1 PIB/mm² 饲 料表面,说明病毒毒力是比较强的。据 Daoust 等测定, 孵化后饲养三天的幼 虫L_{D50}为6.4PIB/mm²饲料表面^[2], 低于我们的 测 定 结 果。Ignoffo 测定 H.zea的 LDso 为 32 PIB/mm² 饲料表 面[3],较我们结果为高。不同作者测定 结果的差异,可能是由于虫种、虫铃和 病毒株不同之故。

2、剂量与死亡时间的关系: 在幼 虫龄期和环境温度相同的条件下,在一 定剂量范围内, 幼虫死亡速度随剂量增 加而提高。剂量为0.263、2.63、26.3、

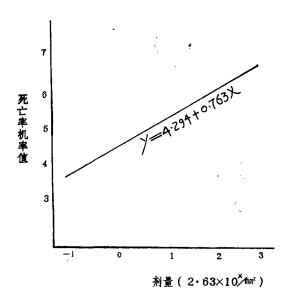



图1: 感染剂量与死亡率关系直线

263 和 2630 PIB/mm² 饲料表面时,幼虫平均死亡时间分别为5.50、6.07、5.52、5.67 和5.35天(表1)。

3、不同龄期幼虫对病毒的敏感性:将多角体悬液滴于人工饲料表面,涂布均匀, 剂量为 26,300 PIB/mm² 饲料表面,分别感染3、4、5 龄幼虫,单虫饲养,每种虫数 50头, 重复2-4次, 每天检查幼虫死亡率, 所得结果如图2。可以看出幼虫死亡率随 龄期增大而下降,死亡时间随龄期增长而延长,3、4、5龄幼虫的死亡率分别为100, 85.4,64.8%,与前人试验结果相近似[4,5]。我们并曾观察到幼虫期感染病毒没有死亡

毒的死亡曲线

的个体,有少数可在蛹期死亡,用病虫 血淋巴注射蛹, 蛹可发生病毒病。棉铃 **业对病毒有所谓成熟免疫现象**[5], → 般说来,龄期愈小对病毒愈敏感,龄期 增大,则增强对病毒的免疫力。因此, 在大田防治上,为了获得较高的杀虫效 果,应抓紧在卵高峰期使用病毒。

(三) 寄主范围测定

1、棉铃虫 NPV 感染棉小造桥虫 和粘虫试验:我们用棉铃虫 NPV 饲喂 粘虫和棉小造桥虫等二种夜蛾害虫,所 得结果如表 2。结果表 明,棉铃虫 NPV 不感染棉小造桥虫,但可引起粘虫幼虫 感病死亡,浓度为4×10°/m1时,发病 率可达39.1-61.1%, NPV接粘虫后再

大口 "明天江",这大口马马马,这时间,					
处 理			测定	病毒病死	
•	(PIB/m1)	龄期	虫数	亡(%)	
	0.25×10^{8}	3	40	0	
NPⅤ→粘虫	1 × 10 ⁸	3	90	39.1	
	4 × 10 ⁸	3	90	61.1	
NP V+5PPM保	1×10 ⁸	3	50	71.4	
幼激素→粘虫	4×10 ⁸	3	50	76.9	
NP V→粘虫→棉	0.25×10^8	3	40	0	
铃虫→粘虫	1×10 ⁸	3	40	7.4	
	4×10 ⁸	3	40	47.4	
NPV→粘虫→棉 铃虫	1 × 10 8	3	30	100	
NP V→造桥虫	1×108	3	30	0	

表2 棉铃虫NPV感染粘虫和棉小造桥虫结果

表 3 棉铃虫NPV对几种害虫的感染试验

虫 名	多角体之度 (PIB/ml)	供试虫 龄 期	测定 虫数	病毒死虫 数
茴香凤蝶	1×10 ⁸	3	30	0
甘薯麦蛾	1×10 ⁸	3-4	100	0
合欢尺蠖	1×10 ⁸	3	20	0
玉 米 螟	5 × 10 ⁷	3	50	0
青麻卷叶蛾	1 × 10 8	3-4	10	0
玉米灯蛾	· 1×10 ⁸	34	20	0
棉大卷叶螟	5 × 10 °	3-4	70	0
小麦叶蜂	1 × 10 8	4	60	0

回接棉铃虫,浓度为1×100%加1时,死亡率达100%说明棉铃虫 NPV 除可侵染同属的昆虫外[6],对于同一种的某些害虫亦可有某种程度的侵染。棉铃虫 NPV加保幼激素感染粘虫,死亡率为71.4—76.9%,但保幼虫激素可否增效,尚待进一步研究。

2、NPV感染其它害虫试验:用棉铃虫NPV浸叶饲喂茴香风蝶、甘薯麦蛾、合欢尺蠖、玉米螟、精麻卷叶蛾、玉米灯蛾、棉大卷叶螺、小麦叶蜂等害虫,所得结果表明,0.05—1×10⁸ PIB/ml浓度的棉铃虫NPV未能引起上述害虫发生病毒病(表3),说明棉铃虫 NPV很难感染不同科的远缘种害虫。

小 结

(一)感染核型多角体 病毒的棉铃虫幼虫,症状不 如其它多角体病虫明显,但 后期可看到体表光润,体节 降肿等现象,食量降低,行

动迟钝,濒死前幼虫常爬向高处,死虫体壁脆弱易破,初死幼虫略具腥味而无恶臭。

- (二) 馆陶棉铃虫 NP V 感染三龄初棉铃虫的 L_{D50} 为 22.1 PIB/mm² 饲料表面。在环境条件相同的情况下幼虫死亡率和死亡速度随浓度增加而提高,在病毒浓度相同的条件下,死亡率随龄期增大而下降,虫龄愈小,对病毒愈敏感。因此,在大田防治上应抓紧在卵高峰期使用病毒。
- (三)棉铃虫 NP V 不感染棉小造桥虫、茴香凤蝶、甘薯麦蛾、合 欢 尺 蠖、玉米 螟、青麻卷叶蛾、玉米灯蛾、棉大卷叶螟、小麦叶蜂等害虫。但对于同一科中的粘虫可引起一定程度的感染。

大圆寒羊皮肤测定结果

单位: cm mm

表 9

12.0	•	7 6 *	- 100 IN IN	, AL AL A	+ ha. •	
项 目	枕骨后至尾根长	宽		厚		
坝	项 目	化有归至尾依长 苋	·	肩部	背侧	臀部
平	均	119.67	83.83	2.37	2.69	2.51
标准	差差	2.222	7.24	0.45	0.39	0.56
差异	系数	1.85	8.64	19.0	14.63	22.38

四、讨论

- 1、大尾寒羊是产肉性能较好的品种,其屠宰率比农区品种的同羊、湖羊、农牧交错区的滩羊以及培育品种新疆细毛羊、东北细毛羊均高。所以,在我省中南部及黄、淮、海平原地区,可利用丰富的农副产品和野生饲草资源适当发展。
- 2、大尾寒羊尾脂较重,平均4.17公斤,相当于活重的8.47%,占净肉重的18.34%, 是提供人们动物性脂肪的重要来源之一,可用于食品工业以及轻工产品如某些化妆品的 生产或开辟其他利用途径。
- 3、大尾寒羊是优良的农区绵羊品种,今后应做好本品种选育工作,进一步保持和 提高各种生产性能,不必引入外种进行杂交改良。

(上接第42页)

主要天敌如瓢虫、草蛉、蜘蛛等未发现有明显影响,这是生物防治的有利条件之一,保护天敌,不仅可以增加对目标害虫的防治效果,而且对稳定生态平衡有重要作用。

(六)细菌农药较我省过去常用的白**偃**菌,固体发醇生产所需时间短,易于繁殖。 其生产过程安全,对操作人员无不良影响。

(上接第53页)

参考 文献

- 1, V.H Whitlock 1974 J. Invert Pathol 23, 70-75
- 2. Daoust.R. Aand R. E Roome 1974 ibid 23, 318-24
- 3, Ignoffo, C.M. 1965 ibid 7,315-319
- 4. Laoust. R.A 1974 ibid 23, 400-401
- 5, Whitlock V. H 1977 ibid 30, 80-86
- 6、湖北荆州微生物站、华中师院生物系,昆虫学报,1976,19(2)167-72