运用同位素 ¹⁵N 研究冬小麦 合理施用尿素时期和氮素利用率

刘宗衡 邢 竹

(河北省植保土肥研究所)

尿素是低分子有机化合物,其施用方法与其它氮肥有所不同。前两年我们研究了尿素深施和结合灌溉追施等施用方法,取得了进展。但是尿素在作物生育期的合理分配施用问题,尚未得到解决。为此,我们运用同位素¹⁵N进行了同等施肥量、不同施用时期的冬小麦盆栽试验,以探索其对作物产量及氮素利用率的影响,为冬小麦合理分配施用尿素提供科学依据。

一、试验材料与方法

采用 20×25 cm 瓷盆,每盆装风干土14斤。设以下四个处理:①对照:施过磷酸钙 ($P_2O_516.74$ %) 14克,硫酸钾 ($K_2O48.5$ %) 0.7克,不施标记肥料。②全底:磷钾肥同对照,1.4克标记尿素全部做底肥,装盆时一次施入。③ 1/3 底:磷钾肥同对照,1.4克标记尿素,其中 1/3 做底肥,装盆时施入; 2/3 做追肥,返青期 一次施入。④全追:磷钾肥同对照,1.4克标记尿素全部做追肥,返青期一次施入。各处理重复四次。

装盆方法:14斤风干土与全部磷钾肥混合均匀。施底肥的两个处理共八盆,先装土7斤于盆内压实,再将标记尿素与盆内50克土混合均匀,施于7斤土表面,然后将其余7斤土装入盆内压实。不施底肥的两个处理共八盆,则直接将14斤土装入压实。每盆从表层留出10克土待播种后覆盖种子。

播前浇水量按土重的25%计算,从盆下口浇入,待表土湿润后播种。每盆15穴,每穴一粒已经萌发的种子。出苗后根据干湿情况,秤重按土壤重20%补充水分。

收获及分析方法,小麦成熟后分别剪下地上部分秸秆和穗,秤重,烘干后秤重计算产量,然后分别将秸秆和籽粒粉碎,测其全N含量。并在盆中均匀取上约 100毫克 风干粉碎,测其全N含量。将全部硼酸接收液浓缩,进行¹⁵N丰度测定。

供试冬小麦品种:5064

供试标记尿素:上海化工研究院产品,出厂丰度11.14%,测定丰度10.9%。

供试土壤: 所内粘壤质褐土 (有机质1.5%, 全N0.08%, 速效磷30PPM, 速效钾130PPM)。

二、结果与分析

(一) 尿素不同施用时期对产量的影响。测产结果见表 1:

经方差分析看出,小麦籽粒产量各施肥处理与对照相比,差异极显著,施肥的三个处理中"全追"产量比"全底"产量高4.7克,差异极显著;"1/3底"比"全底"产量高2.8克,差异显著;"全追"比"1/3底"产量高1.9克,差异不显著。小麦秸秆产量的趋势与籽粒基本相同。但各施肥处理间的差别较籽粒小。可以看出底肥为主的处理虽然籽粒产量较低,但对秸秆产量的影响不大。

	表 1	籽	粒、	秸秆	产量	表	克/	'盆
番句	对照		全底		1/3底		全追	
重复	粒	秆	粒	秆	粒	秆	粒	秆
1	7.4	9.8	17.4	20.8	20.1	21.9	20.8	13.7
2	8.2	10.7	16.3	20.2	18.9	23.8	23.5	19.9
3	8.6	9.5	17.7	19.4	20.4	19.4	20.5	17.3
4	8.7	9.2	18.0	19.2	21.3	18.7	23.4	17.7
平均	8.2	9.8	17.4	19.9	20.2	21.0	22.1	18.1

以上结果说明:在中上等肥力的土壤上,尿素做追肥施用,虽然前期表现较施底肥 者秸秆矮些,但后期营养充足籽粒饱满产量高。尿素做底肥,前期生长旺盛,茎粗壮, 但后期小麦灌浆时却表现出养分供应不足,造成籽粒产量偏低。

(二) 尿素不同施用时期的氮素利用率: 小麦收获后对秸秆、籽粒及种植后的土壤 讲行了全N及¹⁵ N的测定, 其结果如表 2:

表 2

全 N 及 15N 丰度测定结果 (%)

处 理		土	壤	籽	粒	括	秆	作物则	及收%
	全N	1 5 N	全N	1 5 N	全N	1 5 N	来自肥料N	来自上 壤 N	
对	照	0.112	0.405	1.63	0.420	0.439	0.469		100
全	底	0.113	0.712	2.01	5.12	0.615	5.70	47.3	52.7
- <u>1</u> -	底	0.117	0.688	2.39	6.65	0.537	5.88	58.4	42.6
全	追	0.113	0.594	2.20	6.97	0.693	5.90	58.0	42.0

根据上表¹⁵N丰度计算氮素利用率(见表3):

表 3 作物对 15 N 的吸收量及利用率

						
处 理	吸收	量 m	g/盆	利	用率	%
	籽粒	秸秆	地上部分	籽粒	秸秆	地上 部分
全 底	16.4	6.4	22.9	24.5	9.6	34.1
를 底	30.0	6.2	36.2	44.8	9.3	54.1
全追	32.2	6.8	39	48.1	10.1	58.2

从表 3 计算结果看,氮素不同施用时期的利用率与小麦产量有相同的趋势,全部作追肥的利用率最高,部分作追肥部分作底肥的次之,全部作底肥的氮素利用率最低。从植株体内氮素来源看,尿素全部追肥和部分追肥的处理有58%来自肥料(其余来自土壤),而尿素全部作底肥的处理,植株体内氮

素具有47.3%来自肥料,可以说明,用尿素作追肥的处理,小麦吸收的氮素主要来自肥料,而用作底肥的处理,其氮素以来自土壤为主。

另外, 我们对小麦越冬后追肥前的幼苗及追肥后15天的幼苗进行了全氮及15N的测

定。其结果见表4:

-£:	
7	7

苗期植株分析结果

(%)

处 理 取苗	С	K	全	底	全	追	1/3	底
时 测定 间 项目	4月8日	4月24日	4月8日	4月24日	4月8日	4月24日	4月8日	4月24日
全 N 15 N	1.85 0.439	1.34 0.814	3.01 6.84	2.79	1.82 0.424	2.9 4.36	2.66 4.61	3.24 10.9

从苗期氮素分析结果看出,追肥前后两次取苗相距15天,此期间植株体内氮素变化幅度很大。追肥前"全底"及"1/3底"两处理由于提前施了氮肥,所以越冬后麦苗氮素养分含量很高,"全底"3.01%,"1/3底"2.66%,而播前未施氮肥的对照和"全追"两处理仅为1.85%和1.82%。追肥15天后"1/3底"处理氮素养分含量升高到3.24%,"全追"处理为2.9%,"全底"处理则因养分消耗而下降到2.79%,从小麦全生育期的长势看,施底肥的前期苗壮,但产量不高,施追肥的前期苗稍差些,但籽粒产量高,所以苗期植株体内养分的增减与成熟期产量高低的趋势也是一致的。

(三) 氮素平衡状况:不同处理对所施尿素的吸收量、残留量及损失量测定结果见表5:

表 5

平衡状况表

处 理	利	用	残	留	损	失
	g	%	g	%	g	%
全底	0.0229	34.1	0.0244	36.4	0.0197	29.4
全 追	0.0390	58.2	0.0150	32.4	0.0130	19.4
ま 底	0.0362	54.1	0.0230	34.5	0.0077	11.5

从表 5 可以看出尿素全部用作 底肥,因施肥早,时间长,数量大,前期苗小,作物不能充分吸收利用,到后期有相当一部分(占1/3以上)残留并被土壤固定,另外还有相当数量氮素损失掉。全部用作追肥的处理,因返青后气温上升快,作物生长迅速并大量吸收养

分,因此肥料利用率高,残留于土壤中的数量最少。但是由于一次施肥量较大,所以肥料的损失虽低于"全底"处理,但仍较高。底、追结合施用具备"全底""全追"的优点,其氮素吸收量略低于"全追",但明显高于全部做底肥处理,而且土壤残留率也比较高,氮素损失量最少。

三、结 论

- 1、尿素施用时期不同对小麦的产量有较大的影响,全部肥料在返青期一次施用产量最高,它与等量尿素全部作底肥施用产量差异极显著。而尿素作追肥一次施用与底、追结合施用产量虽有一定差异,但差异不显著。
- 2、用尿素作冬小麦追肥,返青期一次施用,其氮素利用率最高为58.2%;底、追结合施用,氮素利用率次之,为54.1%;全部作底肥播前施用,氮素利用率最低,仅为

- 34.1%。植株体内氮素来源,用尿素作追肥的处理主要来自肥料,作底肥处理则以来自土壤为主。
- 3、尿素施于冬小麦,以全部作底肥播前一次施入氮素的损失量最大,损失率为29.4%;全部做追肥返青期一次施入的损失量次之,损失率为19.4%;而以底、追结合施用的损失量最小,损失率为11.5%。
- 4、土壤残留的氮素以全部作底肥的最多,为 36.4%;底、追 结 合 施用次之,为 34.5%,以全部作追肥返青期一次施入的最少,为22.4%。
- 5、单纯从小麦籽粒产量来衡量,以氮素作追肥效果为最好。但从氮素利用率及尿素损失情况进行综合分析,在冬小麦播种前施用少量氮素作底肥,来年返青期及时追肥、浇水,对小麦产量的提高和氮素的充分利用都是有益的,特别是肥力较低的土壤上,推行以1/3的尿素作底肥,2/3作追肥办法,其效果也比较好。

(上接第20页)

地力每亩不少于 4 万株,高产地块可留苗 5 万株。播种前要用石灰乳浸种防病,施用种肥,每亩3—5斤硫铵或大粪干50斤与种子混种。 7 月中下旬粟杆蝇发生时可撒施毒土治虫。

四、生产示范及推广

"铁杆早"谷1979年在定县吴羊平大队示范100亩,平均亩产630.5斤,该队农事场种植1.2亩平均亩产711.6斤;1980年播种178亩,平均亩产600斤,其中8亩丰产田平均亩产819斤;1981年扩大到200亩,平均亩产608.5斤,其中8亩丰产田平均亩产863.2斤。1980年在定县、满城、完县、客城等县大面积示范13,000亩,一般地力亩产400斤以上,中上等地力亩产500—600斤。1981年保定地区示范103,000亩,一般亩产350—600斤,其中定县东亭区种植1.5万亩,平均亩产520斤。满城郭村公社播种1,800亩,一般亩产300—400斤。南阎童大队250亩,平均亩产500斤,高产地块亩产700斤。满城南辛庄大队播种78亩"铁杆早"谷,未倒伏,亩产500斤以上,而播种"竹叶青"谷因倒伏严重,亩产仅200斤。1982年"铁杆早"谷在保定地区示范20万亩以上,全省可达25一30万亩。1982年底保定地区评为科研成果一等奖,被河北省评为发展研究三等奖。