南瓜属 EST-SSR 标记的开发及 在杂种纯度鉴定中的应用

张国裕 张 帆 姜立纲 濯伟卜 李海真

(国家蔬菜工程技术研究中心 北京 100097)

摘要: 为利用 SSR 标记进行快速、准确的南瓜杂交种纯度分析,进行了南瓜 EST-SSR 标记的开发。从 NCBI 数据库下载 $1\,457\,$ 条南瓜属作物 EST 序列,去除冗余序列后进行 SSR 位点搜索,共得到 $215\,$ 条含有 SSR 位点的 EST 序列。这些 SSR 位点包含 $111\,$ 种重复基元,其中二核苷酸($62\,$ 个,占 $28.\,84\%$) 和三核苷酸($86\,$ 个,占 $40.\,0\%$) 重复类型占主导地位; 重复基元中出现最多的是 CT($21\,$ 个,占 $9.\,77\%$),其次为 TC($13\,$ 个,占 $6.\,05\%$) 和 AAG($12\,$ 个,占 $5.\,58\%$)。将 $215\,$ 个 SSR 位点设计成 EST-SSR 引物后,随机合成了其中的 $43\,$ 对引物。利用 $4\,$ 份遗传背景差异较大的南瓜自交系对合成的 $43\,$ 对引物进行扩增效果评价,其中 $28\,$ 对引物有稳定清晰的扩增产物,占合成引物的 $65.\,12\%$ 。利用这些有效扩增引物对南瓜属作物商品杂交种进行纯度检测,共获得 $13\,$ 个杂交组合的特异性检测引物, $F_1\,$ 杂交种的纯度在 $79.\,2\%\,$ ~ $100.\,0\%\,$ 与田间检测结果相符。结果表明 利用南瓜 EST 序列开发 SSR 引物具有简单快速、成本低和适用性好的特点。

关键词:南瓜; EST-SSR; 标记开发; 杂种纯度

中图分类号: S642.1 文献标识码: A 文章编号: 1000 - 7091(2011)06 - 0097 - 05

EST-SSR Markers Development from *Cucurbita* and Their Use in Purity Testing of F₁ Hybrid Seed

ZHANG Guo-yu ZHANG Fan "JIANG Li-gang ZHAI Wei-bo "LI Hai-zhen (National Engineering Research Center for Vegetables "Beijing 100097 "China)

Abstract: Expressed Sequence Tags(ESTs) are a source of simple sequence repeats (SSRs) that can be used to develop molecular markers for genetic studies. The object of the present study is to develop EST-SSR markers from *Cucurbita* and uses these markers in quickly purity testing of F₁ hybrid seed. The availability of 1457 ESTs for *cucurbita* which documented in GenBank ,provided a unique opportunity to develop EST-SSR markers ,and 215 SSRs were identified among these non-redundant EST sequences. These SSRs contained 2 – 6 bp nucleotide motifs including 111 different motif types. The trinucleotide repeat is the dominant type ,accounting for 40% with 86 motifs and the frequency of occurrence of dinucleotide repeat is 28.84% with 62 motifs. Among these motifs ,CT motif (21 9.77%) was the most common type and then were TC and AAG motifs accounting for 6.05% and 5.58%, respectively. A total of 215 primer pairs were designed and 43 of them were synthesized and used to determine their usability by amplification in 4 *Cucurbita* inbred lines. The results show that 28 of them could successfully amplify, accounting for 65.12% of testing primer pairs. Then these primer pairs were used to test the F₁ hybrid seed purity in *Cucurbita*. Seed genetic purity from 13 combinations ranged from 79.2% to 100.0%, which were in high accordance with those from field grow-out trials. Taken together ,this study reported an effective and feasible approach to develop SSR markers for *cucurbita* and demonstrated their usefulness in purity testing of hybrid squash seed.

Key words: Cucurbita; EST-SSR; Marker development; Hybrid seed purity

收稿日期:2011-07-12

基金项目: "十一五"科技支撑项目(2009BADB8B02);北京市新世纪百千万人才工程培养资助项目(2008);国家农业科技成果转化资金项目(2010GB2A000003);北京市科委项目(D101105046510001);北京市农林科学院科技创新能力建设专项(KJCX201101010-9);北京市农林科学院科研项目(2010A004)

作者简介:张国裕(1978-) 男 山东肥城人 助理研究员 博士 注要从事南瓜生物技术遗传育种研究。

通讯作者:李海真(1965-) 女 山西昔阳人 研究员 主要从事南瓜遗传育种研究。

SSR(Simple sequence repeat) 广泛存在于植物 基因组中 随机分布 重复数目变异大。在众多分子 标记方法中、SSR标记以其共显性、高度重复性、多 态性丰富、符合孟德尔遗传等优点备受推崇 成为构 建遗传连锁图谱、进行分子标记辅助育种、系谱分 析、品种指纹图谱绘制、品种纯度检测以及目标性状 分子标记筛选等的理想工具[1]。但是传统的 SSR 标记开发步骤繁琐,极为耗费人力和时间。利用表 达序列标签(Expressed sequence tags EST) 开发 SSR 标记 具有成本低、简单快速、通用性好的特点。 近 年来,大量快速增长的 EST 序列资源为 SSR 标记的 开发提供了新的途径。目前,基于 EST 数据的 SSR 标记已在一些植物如油菜[2]、甘蓝[3]、白菜[4]、黄 瓜[5] 和小麦[6] 等作物中成功开发和应用,并广泛应 用于作物遗传分析与分子标记辅助育种 取得了很 好的成果。

南瓜属作物按用途主要包括食用、砧木和观赏三大类型,已经成为我国高效农业的优势作物,种植面积逐年增加。但由于开发困难,南瓜属作物可利用的 SSR 标记较少,限制了南瓜分子标记及相关遗传学研究的发展。尽管公用数据库中南瓜属作物的EST 数据不断增加,但国内外至今尚未见利用其EST 序列开发 SSR 标记的相关报道。

本研究拟利用 NCBI 数据库中南瓜属作物的 EST 序列资源,分析序列中的 SSR 信息,筛选和鉴定 EST-SSR 引物,开发南瓜 EST-SSR 标记,并以这些标记探索南瓜属3个栽培种(中国南瓜、印度南瓜和西葫芦)不同杂交组合 F₁杂种的纯度快速鉴定方法。EST-SSR 标记的开发将丰富南瓜属作物的分子标记,为南瓜遗传分析和分子标记辅助育种等研究奠定基础。

1 材料和方法

1.1 南瓜属作物 EST 数据下载和预处理

从 GenBank (http://www.ncbi.nlm.nih.gov/dbEST/index.html) 下载南瓜属作物的 1 457 条 EST 序列 并应用软件 Phrap 对获得的 EST 序列进行片段

重叠分析和聚类 结合人工筛查 法除冗余 EST 序列。 1.2 EST-SSR 的定位

应用软件 SSRIT(Simple Sequence Repeat Identifucation Tool) 在线分析搜索 SSR 位点(http://www.gramene.org/db/markers/ssrtool) ,筛选标准为: 二核苷酸、三核苷酸、四核苷酸、五核苷酸和六核苷酸重复类型的最少重复次数分别设置为 5 4 3 3 3 次及以上。

1.3 EST-SSR 引物设计

应用软件 Primer 5.0 设计 EST-SSR 引物。引物设计的总体原则为: SSR 序列的开始和结束位置分别距扩增片段 5′和 3′端不少于 50 bp; 引物长度 $18 \sim 24$ bp; T_m 值 $50 \sim 60$ °C, T_m 区向引物 T_m 值相差小于 2°C; GC 含量 40% ~ 60 %; PCR 扩增产物长度 $150 \sim 260$ bp; 尽量避免引物二级结构与错配的出现。引物由英潍捷基(上海) 贸易有限公司合成。

1.4 DNA 提取、PCR 扩增及电泳检测

南瓜叶片总 DNA 的提取采用 CTAB 法 [7] 利用 1% 琼脂糖凝胶电泳检测 DNA 提取质量。 PCR 反应体系为 $15~\mu$ L: 模板 DNA $0.5~\mu$ L($30\sim60~ng$)、 $10\times$ PCR Buffer $1.5~\mu$ L、dNTP(2.5~mmol/L) $0.3~\mu$ L、Taq DNA 聚合酶($5~U/\mu$ L) $0.2~\mu$ L、引物($10~\mu mol/L$) $0.6~\mu$ L、超纯水 $11.9~\mu$ L。 PCR 反应程序: 95% 3~min; 94% 30~s 55% 30~s 72% 30~s 35 个循环; 最后 72% 5~min。 采用 8% 的非变性聚丙烯酰胺凝胶电泳分离扩增产物,银染后分析条带。

1.5 植物材料

用于杂交种纯度分析的 13 个南瓜杂交组合材料 均由北京市农林科学院蔬菜研究中心南瓜课题组提供。

2 结果与分析

2.1 南瓜 EST 序列中 SSR 的特征

在1457条南瓜 EST 序列中,去掉冗余序列后通过串联重复序列位置的筛查,得到包含 SSR 位点的 EST 序列 215条,占 EST 序列总数的 14.76%。共观察到 111 种重复基元 在不同重复类型中(表1),

表 1 南瓜 EST-SSR 的特征

Tab. 1 Characteristics of the EST-SSR markers in Cucurbita

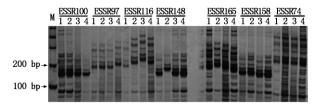
重复类型 Repeat type	数量 Number	种类 Type	百分比/% Proportion	出现频率/% Frequency
ntepeat type	rumber	Турс	Troportion	Trequency
二核苷酸 Dinucleotide	62	10	28.84	4. 26
三核苷酸 Trinucleotide	86	39	40.00	5.90
四核苷酸 Tetranucleotide	32	28	14.88	2.20
五核苷酸 Pentanucleotide	19	19	8.84	1.30
六核苷酸 Hexanucleotide	16	15	7.44	1.10

二核苷酸和三核苷酸为优势重复类型,共占重复类型总数的 68.84%。其中,三核苷酸重复类型所占的比例最大(86 个,占 40%),二核苷酸重复类型次之(62 个,占 28.84%),然后是四核苷酸(14.88%)、五核苷酸(8.84%)和六核苷酸重复(7.74%)。出现最多的重复基元是 CT(21 个,占 9.77%) 其次为 TC(13 个,占 6.05%)和 AAG(12 个,占 5.58%)其余重复基元所占比例较小(均低于 1%)、SSR 的总长度变化为 $10 \sim 36$ bp。

2.2 南瓜 EST-SSR 引物开发及有效扩增分析

利用软件 Primer 5.0 将搜索得到的 215 个南瓜 SSR 位点设计为 EST-SSR 引物 ,并随机合成其中的 43 对引物(表 2)。利用 4 份遗传背景差异较大的 南瓜自交系对所获得的引物进行初步的 PCR 筛查 ,以检测评价引物扩增的有效性。结果表明: 有 28 对引物能够在 4 份自交系中扩增出清晰的条带 ,占合成引物的 65. 12% ,每对多态性引物检测出的等位基因有2~3个。图1 示部分引物在4份自交系中

表 2 南瓜属作物 EST-SSR 引物信息

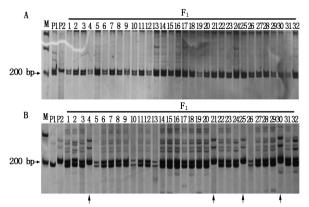

Tab. 2 Details of 43 Cucurbita EST-SSR primers

编号	引物名称		反向引物序列	退火温度/℃	产物/bp
Serial No.	Primer nam	e Forward primer sequence (5′-3′)	Reverse primer sequence (5′-3′)	Tm	Expected size
1	ESSR25	TGAGTATGGGTATGGGGAAG	AGCACAGATGGATGAGCG	54	216
2	ESSR35	ATTCTTTGGACATGTGGAGC	AATCTGATCCATTCCGAGGT	54	219
3	ESSR42	CATGAAAAATGCGTTTGTCT	GAAGATCTCAGGGTCAACGT	54	179
4	ESSR60	TTAAATGCCTTGGATGAGAA	GTCGAAGTTGGCATCGTTAA	55	208
5	ESSR61	CGGAACATCTCTGAATCCTG	TCACCAGAGATCGAAACGAC	55	199
6	ESSR74	TTGAGACCAAGGAAGTAGTAGC	CACCCGTCTCTTTCACCTC	54	231
7	ESSR80	TCTTGATCCCACAGACTTCTC	GAACTCAATATTCCTGCACCT	54	193
8	ESSR97	TAATTAAGGCGTGAAATTGG	GAAAAGAAACATAAACAGGGC	54	196
9	ESSR100	AGAGAGAAAGAGAAAGCGG	TTCATGCTCGCAGACCTATC	55	173
10	ESSR103	GAGATTTTCTCAGCGCCCT	TTGGCGTTTTGGAGTGAC	56	184
11	ESSR109	TTTTTGATGTGGGGCCTAAG	TAACAGAAGGCAAAGGCGG	58	206
12	ESSR113	TAGATGGGTGCAGTCAGTTG	CTCTTGATCCAGTAGATTCCG	54	210
13	ESSR116	ACAACTTTTTAGGAGTGGCG	AAAAGAATGGCGAAACAGAT	54	229
14	ESSR117	TTTCATCATGGATTTCTGGTTC	GGCCCCTACAGCCATACAG	57	195
15	ESSR121	AGTTGCGTGCATGTTACAACT	GCATATGTAGCCAACAGCAAC	56	202
16	ESSR127	CGAAGGTAAAGGGAGATTGC	GGGCCATTTTCAGATCAAGT	56	196
17	ESSR138	GGATTCAGTGGCAAGTTGG	ATCGCACATAAGTTGAACCG	56	236
18	ESSR142	AGGGAGCTGGAACACCAAG	CCAATACCCTACGCCTTCAC	57	216
19	ESSR145	TAATATCACCACTTCCACGGG	GGCGTTCGCAACACAGTC	57	218
20	ESSR148	CCTCTCCCGAACCGCTT	CTCATCCTGGTACTTGCTCTTG	57	163
21	ESSR158	TAGTCCTATCTTCTTGCTCCATTC	TGAAGGTGCGACAATGGAT	57	169
22	ESSR160	GGTCTGCTTAATTTGCAATCTC	ATCATCAGCGAGTGAGGGTT	56	214
23	ESSR161	AAACATTTTGGTTCGTGGAGAT	CGCCGATGTGAGGTGATTC	58	192
24	ESSR165	AACCGACCAAGCCATACG	CGGATTGCATCTTTCAAGTCT	56	212
25	ESSR168	CCACCGTCCATCTTGAATC	TTATGAGTTCAAGAAGGCGG	55	203
26	ESSR200	TTCTCTGTTTGCCAAGTTGC	CTTCCCATGACAAAAGAGCC	56	207
27	ESSR210	CCAGTAGTGGCAGTCAAAGC	TTCCGAATAGCAGATAGCAAG	55	251
28	ESSR212	TCAGGCTTCGTGGTGGTATT	TGCTCAGTTCCAAGGCTTCT	57	257
29	ESSR8	GGGTTAACTATGGAGTCTGCT	CCATCTTCACTTGTTTTTGCT	53	176
30	ESSR20	GGTCTCCAACTGGGTTGTAC	ATATTTCCATTGCGTGTTTA	54	138
31	ESSR23	GTAAGGGGGACTTCACCTGTTT	GCTTACTTTTAAAAATGCAGAGAGG	59	180
32	ESSR27	TGCTGCTCCGCTCATCC	GATAGATAAAGGGTCCCAATAAGAG	57	216
33	ESSR39	GTTTCATCATGGATTTCTGGT	CTACAGCCATACAGGGATAAAT	54	191
34	ESSR54	ACCGCTAAAGTAATAAAACAACCAT	TTGCCTGTTACATCTCTCTCTGC	58	197
35	ESSR61	CGGAACATCTCTGAATCCTG	TCACCAGAGATCGAAACGAC	55	199
36	ESSR64	GAAGGGCACAAGGAAGGC	AGACAGACAGACGCAGAAAGAG	56	199
37	ESSR90	GTTTGTCGGGAAAGAATGTG	CTCAAGGATTTCAACAACCAT	54	243
38	ESSR118	GAGAAGAAGCCACTGACGAC	CAATGCTTTTAGCTGCTGTC	54	238
39	ESSR123	CTTGAGAGTAGAAACTGACCCAC	CTCACAGAGAAAGTAGCGCAG	55	229
40	ESSR130	GGAACGGTCAGTCCCCCT	AGATTGGAAGAGGAGAAAGGGT	58	212
41	ESSR151	TCCATCGTTTGTGTTTGTCTC	GAACAATCTTAGCTGTGAGATGG	56	212
42	ESSR189	AAACGCGTAAATAGGTCGC	TTCATCGATTTGGAAATTGG	56	267
43	ESSR196	CATTTCAAGCACCTAGTTGG	CAAATACATCATCACAACATGGT	55	240

注:1~28. 有效扩增引物;29~43. 没有扩增产物的引物。

Note: 1 – 28. Represent primers have product; 29 – 43. Represent primers have no product.

的扩增结果。另外 15 对引物没有检测到扩增产物,可能是由于所设计的引物跨越 mRNA 剪切位点或者引物序列与扩增材料 DNA 的序列差异较大 不能有效匹配等原因造成的。结果表明: 设计的 EST-SSR 引物可以作为分子标记进一步应用于南瓜属作物遗传育种等研究中。



M. DNA 标准分子量; EST-SSR 引物. ESSR100、ESSR97-ESSR116、ESSR148、ESSR165、ESSR158、ESSR74。
M. Maker; EST-SSR primers were ESSR100 , ESSR97, ESSR116 , ESSR148 , ESSR165 , ESSR158 , and ESSR74.

图 1 EST-SSR 引物在 4 份南瓜自交系中的 PCR 扩增结果 Fig. 1 Amplification of 7 primers in 4 *Cucurbita* inbred lines 2.3 南瓜属作物不同品种杂交种纯度分析

利用特异的分子标记能够简便快速的鉴定商品杂交种的纯度,提高准确性^[8]。本研究利用获得的28 对有稳定扩增产物的引物对南瓜不同杂交组合的26 个亲本(14 个西葫芦亲本、8 个中国南瓜亲本和4 个印度南瓜亲本)进行筛查,以获得不同杂交组合中亲本鉴定的特异分子标记。并利用亲本之间特异的分子标记进行商品杂种一代(F₁)的纯度检

测分析。图 2 为标记 ESSR61 在亲本组合 Z13 × 14 (图 2-A) 和标记 ESSR97 在亲本组合 Z39 × 40 (图 2-B) F_1 杂种鉴定中的分析结果。EST-SSR 标记能够有效鉴别杂交种以及来源于母本自交形成的种子。13 个不同杂交组合的杂种纯度分析结果见表 3 F_1 杂种纯度在 79.2% ~ 100.0% 这与田间种植鉴定的分析结果高度吻合。其中 杂交组合 Z23 × 24 与 Z39 × 40 的 F_1 杂种纯度较低 分别为 88.5% 与 79.2%。

M. DNA 标准分子量; P1. 父本; P2. 母本; F₁. 子代杂交种; 黑色箭头表示非杂交种。 M. Maker; P1. Male parent; P2. Female parent; F₁. Hybrid seeds;

Maker; P1. Male parent; P2. Female parent; F₁. Hybrid seeds; Vertical arrows indicate the contaminating seeds.

图 2 南瓜属作物杂交组合 Z13×14 与 Z39×40 F₁ 杂交种的纯度分析

Fig. 2 Practical purity test for F_1 hybrid seed of combinations Z13 \times 14(A) and Z39 \times 40(B) using EST-SSR markers

表 3 南瓜属作物 13 个杂交组合 F₁ 杂种的纯度分析 Tab. 3 Purity testing of F₁ hybrid seed using EST-SSR markers

杂交组合代号 Combinations code	类型 Type	EST-SSR 标记 ESSR markers	检测种子数/粒 Number of testing seeds	杂交种数/粒 Number of hybrid seeds	种子纯度/% Seed purity	田间检测纯度/% Field test purity
Z3 ×4	西葫芦	ESSR168	189	187	98.9	99.1
$Z5 \times 6$	西葫芦	ESSR116	195	191	97.9	98.0
$Z9 \times 10$	西葫芦	ESSR80	184	184	100.0	100.0
$Z11 \times 12$	西葫芦	ESSR74	193	189	97.9	98.1
$Z13 \times 14$	西葫芦	ESSR61	183	179	97.8	98.0
$Z15 \times 16$	西葫芦	ESSR80	197	197	100.0	100.0
$Z17 \times 18$	印度南瓜	ESSR142	190	190	100.0	100.0
$Z19 \times 20$	印度南瓜	ESSR121	189	182	96.3	96.5
$Z21 \times 22$	中国南瓜	ESSR148	195	191	97.9	98.1
$Z23 \times 24$	中国南瓜	ESSR97	200	177	88.5	88.9
$Z25 \times 26$	中国南瓜	ESSR61	204	204	100.0	100.0
$Z27 \times 28$	西葫芦	ESSR142	186	186	100.0	100.0
Z39 × 40	中国南瓜	ESSR97	197	156	79.2	79.5

3 讨论

3.1 南瓜 EST-SSR 的特征

数据库下载的 1 457 条南瓜 EST 序列中 ,有 215 条 EST 序列挖掘到 SSR 位点 ,占 EST 序列总数的

14.76% 高于大白菜^[4](10.4%)、甘蓝^[3](6.0%)、小麦^[6](2.1%)等作物 EST 序列中的 SSR 位点丰度。但也有些研究中 EST 序列 SSRs 出现频率高达 $16.1\% \sim 20.19\%$ [9,10]。不同研究中 SSRs 出现频率的差异除了跟作物 EST 序列相关外 还可能与低质

量和冗余序列的去除严谨程度以及 SSR 位点筛选时的参数设置有关。基元重复次数的设置是 SSR 位点多少的主要影响因素 相对较宽的搜索条件会导致含 SSR 位点的序列比例增加。

大多数植物的 EST-SSR 以三核苷酸和二核苷酸重复类型为主[11],但主导重复基元的类型不同植物间有所差异。南瓜 EST-SSR 中重复类型最多是三核苷酸(86 个 40%),这与高粱、甘蓝、大白菜等植物的研究结果一致; 其中,AAG 是南瓜三核苷酸重复类型中出现频率最高的重复基元 这也与甘蓝、大白菜等作物中 SSR 的分布特点相符^[3 4 10],进一步证实了双子叶植物中 AAG 重复基元的丰度较高这一推测^[12]。

Morgante 等^[13]对多种不同植物综合分析后,认为二核苷酸重复类型中 AG 重复基元所占比例最高,并在大白菜、大麦、小麦和甘蓝等作物的研究中得到证实^[3]。但南瓜中 CT (21 个,占总数的9.77%)重复基元所占比例最高,这表明南瓜属作物在二核苷酸重复基元的偏好性上有其自身的特点。

本研究合成的 43 对 EST-SSR 引物中,在南瓜属作物不同品种间有效扩增引物占 65. 12%, EST 序列较高的保守性使得 EST-SSR 在种与品种间有较好的通用性,这一特点显著提高了标记的利用价值,可增加现有标记的数目。但 EST 的保守性也导致其扩增产物较基因组 SSR 标记多态性低,每对引物检测出的等位基因只有 2~3 个。

3.2 南瓜属 EST-SSR 在杂种纯度鉴定中的应用

杂种优势利用是提高作物产量最有效的途径之 一 杂交种已广泛应用于南瓜属作物生产。分子标 记技术因其准确、快速、稳定以及不受环境影响等特 点。已逐步成为作物杂交种检测分析的首选工具。 罗伏青等[14] 利用 RAPD 标记探讨了南瓜杂交种子 纯度鉴定的方法 验证了分子标记在南瓜杂交种纯 度鉴定中的准确性。刘泽发和孙小武[15]曾利用 RSAP标记鉴定南瓜杂交种子纯度。限于可利用 SSR 标记的数量,目前还没有研究利用 SSR 分子标 记技术进行南瓜属作物杂交种的检测分析。SSR 标 记的共显性特点可以将亲本与杂交种区分开,与 RAPD、RSAP等标记相比操作简便、可重复性好、准 确度高。本研究利用 EST-SSR 从种子到检测结果 仅需要 2~3 d 比田间鉴定(30~60 d) 大大节约了 时间与人力物力投入,结果不受环境及人为因素干 扰 更为精准 在杂交种检测分析中应用前景广阔。

南瓜 EST-SSR 的开发丰富了南瓜属分子标记数量 .有助于南瓜遗传学研究及分子标记辅助育种。 EST-SSR 标记在南瓜商业杂交种生产上的应用能更简便快捷、科学准确地鉴定杂种纯度 .促进商品种生产的科学化与规范化。

参考文献:

- [1] Varshney P K ,Vraner A ,Sorrells M E. Genomic microsatellite markers in plants: features and applications [J]. Treads in Biotechnology 2005 23(1):48 55.
- [2] 李小白 准海瑞 涨明龙. EST-SSRs 检测油菜(*Brassica napus*) 亲本遗传多样性[J]. 农业生物技术学报 2007, 15(4):661-667.
- [3] 陈 琛 庄 木 李康宁. 甘蓝 EST-SSR 标记的开发与应用[J]. 园艺学报 2010 37(2): 226 227.
- [4] 忻 雅 准海瑞 卢美贞 ,等. 白菜 EST-SSR 信息分析 与标记的建立 [J]. 园艺学报 2006 33(3):549 554.
- [5] 胡建斌 李建吾. 黄瓜基因组 EST-SSRs 的分布规律及 EST-SSR 标记开发 [J]. 西北植物学报 2008 28(12): 2429-2435.
- [6] Nicot N Chiquet V Gandon B et al. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs) [J]. Theor Appl Genet 2004,109: 800 805.
- [7] Murry H G ,Thompson W F. Rapid isolation of high molecular weight plant DNA [J]. Nucleic Acids Research , 1980 8:4321 – 4325.
- [8] Jang I ,Moon J H ,Yoon J B ,et al. Application of RAPD and SCAR markers for purity testing of F₁ hybrid seed in chili pepper (Capsicum annuum) [J]. Molecules and Cells 2004 ,18(3):295 299.
- [9] 王金彦 潘丽娟 杨庆利 ,等. 花生 EST-SSR 分子标记 的开发[J]. 华北农学报 2009 ,24(增刊): 42 - 45.
- [10] 李杰勤, 王丽华, 詹秋文, 等. 高粱 EST-SSR 标记的建立及其在苏丹草中的应用初探[J]. 草业科学 2010, 27(3):112-117.
- [11] Varshney R K ,Thiel T ,Stein N ,et al. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species [J]. Cell Mol Biol Lett ,2002 ,7: 537 – 546.
- [12] Gao L F ,Tang J F ,Li H W et al. Analysis of microsatellites in major crops assessed by computational and experimental approaches [J]. Molecular Breeding ,2003 , 12: 245 261.
- [13] Morgante M ,Hanafey M ,Powell W. Microsatellites are preferentially associated with nonrepeatitive DNA in plant genomes [J]. Nature Genetics ,2002 ,30: 194 – 200
- [14] 罗伏青 孙小武 ,董亚静 ,等. RAPD 标记鉴定南瓜种子纯度的研究 [J]. 华北农学报 ,2008 ,23(3):63 -66.
- [15] 刘泽发 孙小武. RSAP 标记鉴定印度南瓜种子纯度方法研究[J]. 园艺学报 2009 36(增刊): 2007.