Effects of GA3 and PBZ on Shoot Growth and Expression of GA-related Genes in Peach
TAN Bin1,2, WANG Ting1, HAO Pengbo1, ZHENG Xianbo1,2, CHENG Jun1,2, WANG Wei1,2, FENG Jiancan1,2
1. College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; 2. Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou 450002, China
Abstract:To investigate the effects of exogenous GA3 and PBZ treatments on the growth of shoots and the expression of genes related to gibberellin biosynthesis and gibberellin signal transduction pathway in Huangshuimi, the annual shoots of Huangshuimi were treated with exogenous GA3 and PBZ. The growth of shoots was measured and the expression levels of eight GA-related genes were determined by qRT-PCR. The results showed that the net length of shoots at 8 d was significantly higher in GA3 treatment than in CK. The expressions of KO and GA3-ox showed a trend of firstly increasing and then decreasing in the early stage after treatment, while gradually rising in the later stages. The expression of DELLA, GID1c and SLY1 genes related to GA signal transduction was inhibited at the early stage and then rapidly increased in the late growth period after treatment. And the expression of the three genes was up to maximum in 14 d after treatment. For the PBZ treatment, the net length of shoots was lower than the CK at many stages, and reached to a significant level at 17 d after treatment. The expression of genes related to gibberellin biosynthesis KO, GA20-ox and GA2-ox showed the trend of increasing gradually and then decreased. While GA3-ox showed almost no expression in whole treatment period. The expression of DELLA, GID1c, SLY1 and ERF11 related to gibberellin signal transduction pathway were slightly lower than the CK during the whole process. It was speculated that the exogenous PBZ might regulate the plant growth at the transcriptional level by inhibiting the synthesis of active gibberellin and further affecting the expression of genes involved in the gibberellin signal transduction pathway. Meanwhile, the reverse treatment of GA3 could significantly abolish the inhibitory effect of PBZ on plant growth, and the expression of GID1c gene involved in gibberellin signal transduction pathway increased firstly and then decreased under GA3 treatment, while the expression of DELLA gene appeared to be inhibited in most of the time.
[1] 王志强, 牛良, 崔国朝, 鲁振华, 曾文芳. 我国桃栽培模式现状与发展建议[J]. 果农之友, 2015(9):3-4.doi:10.3969/j.issn.1671-7759.2015.09.001. Wang Z Q, Niu L, Cui G Z, Lu Z H, Zeng W F. Present situation and development suggestion of peach cultivation model in China[J]. Fruit Growers' Friend, 2015(9):3-4. [2] Lammerts W E. The breeding of ornamental edible peaches for mild climates. i. inheritance of tree and flower characters[J]. American Journal of Botany, 1945, 32(2):53-61.doi:10.2307/2437110. [3] Scorza R. Characterization of four distinct peach tree growth types[J]. Journal of the American Society for Horticultural Science, 1984, 109(4):455-457. [4] Moore J N, Rom R C, Brown S A, Klingaman G L.‘Bonfire’ dwarf peach, ‘Leprechaun’ dwarf nectarine, and ‘Crimson Cascade’ and ‘Pink Cascade’ weeping peaches[J]. Hortscience, 1993, 28(8):854. [5] 宗学普, 张贵荣, 王志强, 刘淑娥. 矮化型油桃新品种——矮丽红[J]. 落叶果树, 1997(2):26.doi:10.13855/j.cnki.lygs.1997.02.021. Zong X P, Zhang G R, Wang Z Q, Liu S E. A new dwarf nectarine variety-Alihong[J]. Deciduous Fruits, 1997(2):26. [6] 刘伟, 张安宁, 李桂祥, 董晓民, 陶吉寒. 山东省桃生产成本与效益分析[J].中国农学通报,2016, 32(1):88-91.doi:10.11924/j.issn.1000-6850.casb15060047. Liu W, Zhang A N, Li G X, Dong X M, Tao J H. Production cost and benefit analysis of peach in Shandong province[J]. Chinese Agricultural Science Bulletin, 2016, 32(1):88-91. [7] 刘芳,袁华招,沈欣杰,廖雄,李天红.外源GA3和PP333对甜樱桃新梢生长及赤霉素代谢关键基因表达的影响[J].核农学报, 2013, 27(3):272-278. Liu F, Yuan H S, Shen X J, Liao X, Li T H. Effects of GA3 And PP333 on shoot growth and gene expression of gibberellins metabolism in Prunus avium[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(3):272-278. [8] Sugavanam B. Diastereoisomers and enantiomers of paclobutrazol:Their preparation and biological activity[J]. Pesticide Science, 2010, 15(3):296-302.doi:10.1002/ps.2780150312. [9] Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase[J]. Plant Molecular Biology, 2004, 54(4):533-547.doi:10.1023/b:plan.0000038261.21060.47. [10] Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene[J]. Proceedings of the National Academy of Sciences, 2002, 99(13):9043-9048.doi:10.1073/pnas.132266399. [11] Ayele B T, Magome H, Lee S, Shin K, Kamyia Y, Soh M S, Yamaguchi S. GA-sensitive dwarf1-1D, (gsd1-1D) defines a new mutation that controls endogenous GA levels in Arabidopsis[J]. Journal of Plant Growth Regulation, 2014, 33(2):340-354.doi:10.1007/s00344-013-9385-x. [12] Xu Y L, Li L, Wu K, Peeters A J, Gage D A, Zeevart J A. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase:Molecular cloning and functional expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(14):6640-6644.doi:10.1073/pnas.92.14.6640. [13] Carrera E, Jackson S D, Prat S. Feedback control and diurnal regulation of gibberellin 20-oxidase transcript levels in potato[J]. Plant Physiology, 1999, 119(2):765-773.doi:10.1104/pp.119.2.765. [14] Reinecke D M, Wickramarathna A D, Ozga J A, Kurepin L V, Jin A L, Good A G, Pharis R P. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea[J]. Plant Physiology, 2013, 163(2):929-945.doi:10.2307/23598714. [15] Wuddineh W A, Mazarei M, Zhang J Y, Poovaiah C R, Mann D G J, Ziebell A, Sykes R W, Davis M F, Udvardi M K, Stewart C N. Identification and overexpression of gibberellin 2-oxidase (GA2ox) in switchgrass (Panicum virgatum L.) for improved plant architecture and reduced biomass recalcitrance[J]. Plant Biotechnology Journal, 2015, 13(5):636-647.doi:10.1111/pbi.12287. [16] Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T, Hsing Y C, Kitano H, Yamaguchi I, Matsuoka M. Gibberellin insensitive DWARF1 encodes a soluble receptor for gibberellin[J]. Nature, 2005, 437(7059):693-698.doi:10.1038/nature04028. [17] Peng J, Carol P, Richards D E, King K E, Cowling R J, Murphy G P, Harberd N P. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J]. Genes & Development, 1997, 11(23):3194.doi:10.1101/gad.11.23.3194. [18] Mcginnis K M, Thomas S G, Soule J D, Strader L C, Zale J M, Sun T P, Steber C M. The Arabidopsis SLEEPY1 gene encodes a putative F-Box subunit of an SCF E3 ubiquitin ligase[J]. Plant Cell, 2003, 15(5):1120-1130.doi:10.1105/tpc.010827. [19] Miller J, Gordon C. The regulation of proteasome degradation by multi-ubiquitin chain binding proteins[J]. Febs Letters, 2005, 579(15):3224-3230.doi:10.1016/j.febslet.2005.03.042. [20] Dill A, Sun T. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana[J]. Genetics, 2001, 159(2):777-785.doi:10.1002/gene.1080. [21] Li H, Wang Y, Li X, Wang Z, Zhao Y, Wang M. A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1[J]. Molecular Biology Reports, 2011, 38(1):191.doi:10.1007/s11033-010-0094-2. [22] Kim S I, Park B S, Kim D Y, Yeu S Y, Song S I, Song J T, Seo H S. E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development[J]. Biochemical Journal, 2015, 469(2):299-314.doi:10.1042/BJ20141302. [23] Zhou X, Zhang Z L, Park J, Tyler L, Yusuke J, Qiu K, Nam E A, Lumba S, Desveaux D, McCourt P, Kamiya Y, Sun T P. The ERF11 transcription factor promotes internode elongation by activating gibberellin biosynthesis and signaling[J]. Plant Physiology, 2016, 171(4):2760.doi:10.1104/pp.16.00154. [24] Boss P K, Thomas M R. Association of dwarfism and floral induction with a grape ‘green revolution’ mutation[J]. Nature, 2002, 416(6883):847-850.doi:10.1038/416847a. [25] Zhu L H, Li X Y, Welander M. Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size[J]. Plant Cell Reports, 2008, 27(2):289-296.doi:10.1007/s00299-007-0462-0. [26] Hollender C A, Hadiarto T, Srinivasan C, Scorza R, Dardick C. A brachytic dwarfism trait (dw) in peach trees is caused by a nonsense mutation within the gibberellic acid receptor PpeGID1c[J]. New Phytologist, 2016, 210(1):227-239.doi:10.1111/nph.13772. [27] 郝鹏博, 李敏, 谭彬, 郑先波, 叶霞, 李继东, 冯建灿. 31个桃品种(系)幼树对外源GA3和PBZ的敏感性分析[J]. 江西农业学报, 2017, 29(1):11-15.doi:10.19386/j.cnki.jxnyxb.2017.01.03. Hao P B, Li M, Tan B, Zheng X B, Ye X, Li J D, Feng J C. Sensitivity analysis of 31 peach variety (line) saplings to exogenous GA3 and paclobutrazol[J]. Acta Agriculturae Jiangxi, 2017, 29(1):11-15. [28] 郝鹏博. 外源赤霉素和多效唑对桃节间长度及赤霉素代谢基因表达影响[D]. 郑州:河南农业大学, 2017. Hao P B. Effects of GA3 and PBZ on internode length and gene expression of gibberellins metabolism in peach (Prunus persica L.)[D]. Zhengzhou:Henan Agricultural University, 2017. [29] Steffens G L, Wang S Y. Biochemical and physiological alteration in apple trees caused by a gibberellin biosynthesis inhibitor, paclobutrazol[J]. Acta Horticulturae, 1986, 179(179):433-442.doi:10.17660/ActaHortic.1986.179.68. [30] Bidadi H, Yamaguchi S, Asahina M, Satoh S. Effects of shoot-applied gibberellin/gibberellin-biosynthesis inhibitors on root growth and expression of gibberellin biosynthesis genes in Arabidopsis thaliana[J]. Plant Root, 2010, 4:4-11.doi:10.3117/plantroot.4.4. [31] Murase K, Hirano Y, Sun T P, Hakoshima T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature, 2008, 456(7221):459-463.doi:10.1038/nature07519. [32] Harberd N P, Belfield E, Yasumura Y. The angiosperm Gibberellin-GID1-DELLA growth regulatory mechanism:How an "inhibitor of an inhibitor" enables flexible response to fluctuating environments[J]. Plant Cell, 2009, 21(5):1328-1339.doi:10.1105/tpc.109.066969. [33] Kawaide H. Biochemical and molecular analyses of gibberellin biosynthesis in fungi[J]. Journal of the Agricultural Chemical Society of Japan, 2006, 70(3):583-590.doi:10.1271/bbb.70.583. [34] 邱碧云. 果树密植矮化剂——PP333[J]. 植物杂志, 1987(5):29. Qiu B Y. A dwarfing agent for dense planting of fruit trees-PP333[J]. Plants, 1987(5):29. [35] 吕文涛, 周玉珍, 娄晓鸣, 成海钟, 陈艳. 多效唑和矮壮素对盆栽朱顶红矮化的影响[J]. 湖北农业科学, 2016(16):4214-4216.doi:10.14088/j.cnki.issn0439-8114.2016.16.036. LÜ W T, Zhou Y Z, Lou X M, Cheng H D, Chen Y. Dwarfing effects of paclobutrazol and chlorocholine chloride on potted Hippeastrum vittatum[J]. Hubei Agricultural Sciences, 2016(16):4214-4216.