Cloning and Expression of LRR-RLK Gene LP7 in Rice
LIN Faming1,2, LI Shen1, WANG Ke1, GAO Junfeng1, LI Guanghao1, WANG Daichang2, DU Changqing1, ZHAO Quanzhi1
1. College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; 2. College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
Abstract:LRR-RLK (Leucine-rich repeat receptor-like protein kinase) is the largest subfamily of the receptor-like protein kinase RLK family and plays an important role in regulating the plant abiotic stress. To understand the role of rice LRR-RLK member LP7 (LOC_Os05g24010) in resistance to low phosphorus stress, the full-length sequence of LP7 was cloned from rice variety Nipponbare, and its deduced amino acid sequence was analyzed to study the tissue expression pattern, subcellular localization and expression change under low phosphorus stress. The results showed that the LP7 gene was 2 832 bp in length and encoded 943 amino acids. The LP7 protein had the typical characteristics of LRR-RLK membership. The LP7 protein had high homology with the homologous protein NP_001131018 of maize, reaching to 77%. Expression patterns showed that LP7 could express in roots, stems, leaves and other tissues, but the highest in leaves. Subcellular localization result indicated that the LP7 protein was localized on the cell membrane. Real-time quantitative PCR analysis showed that the LP7 gene was induced by low-phosphorus stress, and its expression level increased by 15 times, compared to normal culture condition. The results indicated that LP7 might have important functions in response to low phosphorus stress in rice.
[1] Baker B,Zambryski P,Staskawicz B, Dinesh-Kumar S P. Signaling in plant-microbe interactions[J]. Science, 1997, 276:726-733.doi:10.1126/science.276.5313.726. [2] Torii K U. Receptor kinase activation and signal transduction in plants:An emerging picture[J]. Current Opinion in Plant Biology, 2000, 3(5):361-367.doi:10.1016/s1369-5266(00)00097-2. [3] Mccarty D R, Chory J. Conservation and innovation in plant signaling pathways[J]. Cell, 2000, 103(2):201-209.doi:10.1016/S0092-8674(00)00113-6. [4] Braun D M, Walker J C. Plant transmembrane receptors:New pieces in the signaling puzzle[J]. Trends in Biochemical Sciences, 1996, 21(2):70.doi:10.1016/S0968-0004(96)80185-X. [5] Walker J C, Zhang R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica[J]. Nature, 1990, 345(6277):743-746.doi:10.1038/345743a0. [6] Shiu S H, Bleecker A B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases[J]. Proc Natl Acad Sci USA, 2001, 98(19):10763-10768.doi:10.1073/pnas.181141598. [7] De S I, Voss U G, Jurgens G, Beeckman T. Receptor-like kinases shape the plant[J]. Nature Cell Biology, 2009, 11(10):1166-1173.doi:10.1038/ncb1009-1166. [8] Antolín-Llovera M, Ried M K, Binder A, Parniske M. Receptor kinase signaling pathways in plant-microbe interactions[J]. Annual Review of Phytopathology, 2012, 50(1):451-473.doi:10.1146/annurev-phyto-081211-173002. [9] 张蕾, 吕应堂. 植物受体蛋白激酶的研究进展[J]. 生命科学, 2002, 14(2):95-98.doi:10.3969/j.issn.1004-0374.2002.02.009. Zhang L, Lu Y T. Research progress of plant receptor protein kinase[J]. Chinese Bulletin of Life Sciences, 2002, 14(2):95-98. [10] Walker J C. Structure and function of the receptor-like protein kinases of higher plants[J]. Plant Molecular Biology, 1994, 26(5):1599-1609.doi:10.1007/BF00016492. [11] 朱巍巍, 马天意, 张梅娟, 沙伟. 类受体蛋白激酶在植物中的研究进展[J]. 基因组学与应用生物学, 2018, 37(1):451-458.doi:10.13417/j.gab.037.000451. Zhu W W, Ma T Y, Zhang M J, Sha W. Advances in the study of receptor-like protein kinases in plants[J]. Genomics and Applied Biology, 2018, 37(1):451-458. [12] Dievart A, Clark S. LRR-containing receptors regulate plant development and defense[J]. Development, 2004,131(2):251-261.doi:10.1242/dev.00998. [13] Torii K U, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier R,Komeda Y. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats[J]. Plant Cell, 1996, 8(4):735-746.doi:10.2307/3870348. [14] Clark S E, Williams R W, Meyerowitz E M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis[J]. Cell, 1997, 89(4):575-85.doi:10.1016/S0092-8674(00)80239-1. [15] Jinn T L, Stone J M, Walker J C. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission[J]. Genes & Development, 2000, 14(1):108-17.doi:10.1101/gad.14.1.108. [16] Clouse S D, Langford M, Mcmorris T C. A brassinosteroid-lnsensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development[J]. Plant Physiology, 1996, 111(3):671-678.doi:10.1104/pp.111.3.671. [17] Li J M, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction[J]. Cell, 1997, 90(5):929-938.doi:10.1016/S0092-8674(00)80357-8. [18] Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science, 1995, 270(5243):1804-1806.doi:10.1126/science.270.5243.1804. [19] Wang G L, Ruan D L, Song W Y, Sideris S, Chen L L, Pi L Y, Zhang S P, Zhang Z, Fauquet C, Gaut B, Whalen M, Ronald P. Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution[J]. The Plant Cell, 1998, 10(5):765-779.doi:10.2307/3870663. [20] 白辉,李莉云,刘国振. 水稻抗白叶枯病基因Xa21 的研究进展[J]. 遗传,2006, 28(6):745-753.doi:10.3321/j.issn:0253-9772.2006.06.020. Bai H, Li L Y, Liu G Z. Research progress of rice bacterial blight resistance gene Xa21[J]. Hereditas, 2006, 28(6):745-753. [21] Park C J, Lee S W, Chern M, Sharma R, Canlas P E, Song M Y, Jeon J S, Ronald P C. Ectopic expression of rice Xa21 overcomes developmentally controlled resistance to Xanthomonas oryzae pv. oryzae[J]. Plant Science An International Journal of Experimental Plant Biology, 2010, 179(5):466-471.doi:10.1016/j.plantsci.2010.07.008. [22] Zhou Y B, Wang D, Wu T, Yang Y Z, Liu C, Yan L, Tang D Y, Zhao X Y, Zhu Y H, Lin J Z, Liu X M. LRRK1, a receptor-like cytoplasmic kinase, regulates leaf rolling through modulating bulliform cell development in rice[J]. Molecular Breeding, 2018, 38(5):48.doi:10.1007/s11032-018-0811-4. [23] Bettembourg M, Dal-Soglio M, Bureau C, Vernet A, Dardoux A, Portefaix M, Bes M, Meynard D, Mieulet D, Cayrol B, Perin C, Courtois B, Ma J F, Dievart A. Root cone angle is enlarged in docs1 LRR-RLK mutants in rice[J]. Rice, 2017, 10(1):50.doi:10.1186/s12284-017-0190-1. [24] Wang D X, Yang C J, Wang H J, Wu Z H, Jiang J, Liu J J, He Z N, Chang F, Ma H, Wang X L. BKI1 regulates plant architecture through coordinated inhibition of the brassinosteroid and ERECTA signaling pathways in Arabidopsis[J]. Molecular Plant, 2017, 10(2):297-308.doi:10.1016/j.molp.2016.11.014. [25] Van der Does D, Boutrot F, Engelsdorf T, Rhodes J, McKenna J F, Vernhettes S, Koevoets I, Tintor N, Veerabagu M, Miedes E, Segonzac C, Roux M, Breda A S, Hardtke C S, Molina A, Rep M, Testerink C, Mouille G, Höfte H, Hamann T, Zipfel C. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses[J]. PLoS Genetics, 2017, 13(6):e1006832.doi:10.1371/journal.pgen.1006832. [26] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 method[J]. Methods, 2001, 25(4):402-408.doi:10.1006/meth.2001.1262. [27] Sparkes I A, Runions J, Kearns A, Hawes C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants[J]. Nature Protocols, 2006, 1(4):2019-2025.doi:10.1038/nprot.2006.286. [28] Wang J, Liu S H, Li C C, Wang T L, Zhang P Y, Chen K S. PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively pegulates salinity and oxidation-stress tolerance[J]. PLoS One, 2017, 12(2):e0172869.doi:10.1371/journal.pone.0172869. [29] Liu P L, Du L, Huang Y, Gao S M, Yu M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants[J]. BMC Evolutionary Biology, 2017, 17(1):47.doi:10.1186/s12862-017-0891-5. [30] Wang J, Li C C, Yao X H, Liu S H, Zhang P Y, Chen K S. The Antarctic moss leucine-rich repeat receptor-like kinase (PnLRR-RLK2) functions in salinity and drought stress adaptation[J]. Polar Biology, 2018,41(2):353-364.doi:10.1007/s00300-017-2195-z. [31] Wang J, Liu S, Li C, Wang T, Zhang P, Chen K. PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance[J]. PLoS One, 2017, 12(2):e0172869.doi:10.1371/journal.pone.0172869.